Advertisement

Secondary Degeneration After Partial Optic Nerve Injury and Possible Neuroprotective Effects of Lycium Barbarum (Wolfberry)

  • Hong-Ying Li
  • Henry HL Chan
  • Patrick HW Chu
  • Raymond Chuen-Chung Chang
  • Kwok-Fai SoEmail author
Chapter

Abstract

Secondary degeneration occurs commonly in a range of neurodegenerative diseases, including glaucoma. Partial optic nerve transection (PONT) model was established in the last decade and was good for studying secondary degeneration in retinas and optic nerves. The results from the published papers about PONT showed that the mechanisms—apoptosis, necrosis, autophagy, oxidative stress, calcium overload, mitochondria, activation of c-jun, water channel change, and glial cells (microglia, astrocytes and oligodendrocytes)—were involved in secondary degeneration after PONT. In addition to the cell bodies and the axons of retinal ganglion cells (RGCs), other cells in the layers outside the ganglion cell layer were also affected according to the measurement of multifocal electroretinogram (mfERG) by our group. Lycium barbarum (L. barbarum) is a traditional medicine in the oriental world and has long been used as a functional food and for medicinal purposes. The data from our group and others showed that the polysaccharides extracted from L. barbarum (LBP) were neuroprotective in different animal models, including the PONT model. Our results showed that LBP could inhibit secondary degeneration of the cell bodies of RGCs rather than primary degeneration as well as preserve the function of retinas measured by mfERG. These effects are related with the antioxidant function of LBP, inhibition of c-jun N-terminal kinase (JNK) pathway in the retinas after PONT. Other possible mechanisms involved in LBP’s neuroprotective effects for secondary degeneration are immunomodulatory effects, preservation of synapses, and modulation of autophagy.

Keywords

Optic nerve Secondary degeneration Lycium barbarum Neuroprotection 

References

  1. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152–81.CrossRefPubMedGoogle Scholar
  2. Amagase H, Nance DM. Lycium barbarum increases caloric expenditure and decreases waist circumference in healthy overweight men and women: pilot study. J Am Coll Nutr. 2011;30:304–9.CrossRefPubMedGoogle Scholar
  3. Bayer AU, Neuhardt T, May AC, Martus P, Maag KP, Brodie S, Lutjen-Drecoll E, Podos SM, Mittag T. Retinal morphology and ERG response in the DBA/2NNia mouse model of angle-closure glaucoma. Invest Ophthalmol Vis Sci. 2001;42:1258–65.PubMedGoogle Scholar
  4. Begemann M, Grube S, Papiol S, Malzahn D, Krampe H, Ribbe K, Friedrichs H, Radyushkin KA, El-Kordi A, Benseler F, Hannke K, Sperling S, Schwerdtfeger D, Thanhauser I, Gerchen MF, Ghorbani M, Gutwinski S, Hilmes C, Leppert R, Ronnenberg A, Sowislo J, Stawicki S, Stodtke M, Szuszies C, Reim K, Riggert J, Eckstein F, Falkai P, Bickeboller H, Nave KA, Brose N, Ehrenreich H. Modification of cognitive performance in schizophrenia by complexin 2 gene polymorphisms. Arch Gen Psychiatry. 2010;67:879–88.CrossRefPubMedGoogle Scholar
  5. Bucheli P, Gao Q, Redgwell R, Vidal K, Wang J, Zhang W. Biomolecular and clinical aspects of Chinese wolfberry. In: Benzie IFF, Wachtel-Galor S, editors. Herbal medicine: biomolecular and clinical aspects. Boca Raton: Taylor & Francis; 2011a.Google Scholar
  6. Bucheli P, Vidal K, Shen L, Gu Z, Zhang C, Miller LE, Wang J. Goji berry effects on macular characteristics and plasma antioxidant levels. Optom Vis Sci. 2011b;88:257–62.Google Scholar
  7. Calkins DJ. Critical pathogenic events underlying progression of neurodegeneration in glaucoma. Prog Retinal Eye Res. 2012;31:702–19.CrossRefGoogle Scholar
  8. Chan HL, Brown B. Multifocal ERG changes in glaucoma. Ophthalmic Physiol Opt. 1999;19:306–16.CrossRefPubMedGoogle Scholar
  9. Chan HL, Brown B. Pilot study of the multifocal electroretinogram in ocular-hypertension. Br J Ophthalmol. 2000;84:1147–53.CrossRefPubMedCentralPubMedGoogle Scholar
  10. Chan HC, Chang RCC, Koon-Ching Ip A, Chiu K, Yuen WH, Zee SY, So KF. Neuroprotective effects of Lycium barbarum Lynn on protecting retinal ganglion cells in an ocular hypertension model of glaucoma. Exp Neurol. 2007;203:269–73.CrossRefPubMedGoogle Scholar
  11. Chang RCC, So KF. Use of anti-aging herbal medicine, Lycium barbarum, against aging-associated diseases. What do we know so far? Cell Mol Neurobiol. 2008;28:643–52.CrossRefPubMedGoogle Scholar
  12. Cheng D, Kong H. The effect of Lycium barbarum polysaccharide on alcohol-induced oxidative stress in rats. Molecules. 2011;16:2542–50.CrossRefPubMedGoogle Scholar
  13. Chiu K, Chan HC, Yeung SC, Yuen WH, Zee SY, Chang RCC, So KF. Modulation of microglia by wolfberry on the survival of retinal ganglion cells in a rat ocular hypertension model. J Ocul Biol Dis Infor. 2009;2:47–56.CrossRefPubMedCentralPubMedGoogle Scholar
  14. Chiu K, Zhou Y, Yeung SC, Lok CK, Chan OO, Chang RCC, So KF, Chiu JF. Up-regulation of crystallins is involved in the neuroprotective effect of wolfberry on survival of retinal ganglion cells in rat ocular hypertension model. J Cell Biochem. 2010;110:311–20.PubMedGoogle Scholar
  15. Chu PHW, Chan HHL, Brown B. Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram (mfERG). Invest Ophthalmol Vis Sci. 2006;47:929–37.CrossRefPubMedGoogle Scholar
  16. Chu PHW, Chan HHL, Brown B. Luminance-modulated adaptation of global flash mfERG: fellow eye losses in asymmetric glaucoma. Invest Ophthalmol Vis Sci. 2007;48:2626–33.CrossRefPubMedGoogle Scholar
  17. Chu PH, Li HY, Chin MP, So KF, Chan HH. Effect of Lycium barbarum (wolfberry) polysaccharides on preserving retinal function after partial optic nerve transection. PLoS One. 2013;8:e81339.CrossRefPubMedCentralPubMedGoogle Scholar
  18. Cui B, Liu S, Lin X, Wang J, Li S, Wang Q, Li S. Effects of Lycium barbarum aqueous and ethanol extracts on high-fat-diet induced oxidative stress in rat liver tissue. Molecules. 2011;16:9116–28.CrossRefPubMedGoogle Scholar
  19. Cummins N, Bartlett CA, Archer M, Bartlett E, Hemmi JM, Harvey AR, Dunlop SA, Fitzgerald M. Changes to mitochondrial ultrastructure in optic nerve vulnerable to secondary degeneration in vivo are limited by irradiation at 670 nm. BMC Neurosci. 2013;14:98.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Fan H, Deng C, Fu J, Ding L, Yin G, Ma Y. [Effects of Lycium barbarum polysaccharide on formation of traumatic neuroma and pain after transection of sciatic nerve in rats]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2010;24:1298–301.PubMedGoogle Scholar
  21. Fitzgerald M, Bartlett CA, Evill L, Rodger J, Harvey AR, Dunlop SA. Secondary degeneration of the optic nerve following partial transection: the benefits of lomerizine. Exp Neurol. 2009a;216:219–30.Google Scholar
  22. Fitzgerald M, Payne SC, Bartlett CA, Evill L, Harvey AR, Dunlop SA. Secondary retinal ganglion cell death and the neuroprotective effects of the calcium channel blocker lomerizine. Invest Ophthalmol Vis Sci. 2009b;50:5456–62.Google Scholar
  23. Fitzgerald M, Bartlett CA, Harvey AR, Dunlop SA. Early events of secondary degeneration after partial optic nerve transection: an immunohistochemical study. J Neurotrauma. 2010a;27:439–52.Google Scholar
  24. Fitzgerald M, Bartlett CA, Payne SC, Hart NS, Rodger J, Harvey AR, Dunlop SA. Near infrared light reduces oxidative stress and preserves function in CNS tissue vulnerable to secondary degeneration following partial transection of the optic nerve. J Neurotrauma. 2010b;27:2107–19.Google Scholar
  25. Fitzgerald M, Hodgetts S, Van Den Heuvel C, Natoli R, Hart NS, Valter K, Harvey AR, Vink R, Provis J, Dunlop SA. Red/near-infrared irradiation therapy for treatment of central nervous system injuries and disorders. Rev Neurosci. 2013;24:205–26.CrossRefPubMedGoogle Scholar
  26. Guimaraes JS, Freire MA, Lima RR, Souza-Rodrigues RD, Costa AM, dos Santos CD, Picanco-Diniz CW, Gomes-Leal W. Mechanisms of secondary degeneration in the central nervous system during acute neural disorders and white matter damage. Rev Neurol. 2009;48:304–10.PubMedGoogle Scholar
  27. Hausmann ON. Post-traumatic inflammation following spinal cord injury. Spinal Cord. 2003;41:369–78.CrossRefPubMedGoogle Scholar
  28. He M, Pan H, Chang RCC, So KF, Brecha NC, Pu M. Activation of the Nrf2/HO-1 antioxidant pathway contributes to the protective effects of Lycium barbarum polysaccharides in the rodent retina after ischemia-reperfusion-induced damage. PLoS One. 2014;9:e84800.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Ho YS, Yu MS, Lai CS, So KF, Yuen WH, Chang RCC. Characterizing the neuroprotective effects of alkaline extract of Lycium barbarum on beta-amyloid peptide neurotoxicity. Brain Res. 2007;1158:123–34.CrossRefPubMedGoogle Scholar
  30. Ho YS, Yu MS, Yik SY, So KF, Yuen WH, Chang RCC. Polysaccharides from wolfberry antagonizes glutamate excitotoxicity in rat cortical neurons. Cell Mol Neurobiol. 2009;29:1233–44.CrossRefPubMedGoogle Scholar
  31. Ho YS, Yu MS, Yang XF, So KF, Yuen WH, Chang RCC. Neuroprotective effects of polysaccharides from wolfberry, the fruits of Lycium barbarum, against homocysteine-induced toxicity in rat cortical neurons. J Alzheimers Dis. 2010;19:813–27.PubMedGoogle Scholar
  32. Honglin S, Nengjun X, Qian G, Chaomin N. Analysis of fatty acids components of medlar by GC/MS. J Chin Mass Spectrom Soc. 2009;30:99–104.Google Scholar
  33. Hood DC, Frishman LJ, Saszik S, Viswanathan S. Retinal origins of the primate multifocal ERG: implications for the human response. Invest Ophthalmol Vis Sci. 2002;43:1673–85.PubMedGoogle Scholar
  34. Hu CK, Lee YJ, Colitz CM, Chang CJ, Lin CT. The protective effects of Lycium barbarum and chrysanthemum morifolum on diabetic retinopathies in rats. Vet Ophthalmol. 2012;15:65–71.CrossRefPubMedGoogle Scholar
  35. Inbaraj BS, Lu H, Hung CF, Wu WB, Lin CL, Chen BH. Determination of carotenoids and their esters in fruits of Lycium barbarum linnaeus by HPLC-DAD-APCI-MS. J Pharm Biomed Anal. 2008;47:812–18.CrossRefPubMedGoogle Scholar
  36. Junlin L, Aicheng W. Gou qi. Beijing: Bejing Science and Technology Press; 2002.Google Scholar
  37. Kielczewski JL, Pease ME, Quigley HA. The effect of experimental glaucoma and optic nerve transection on amacrine cells in the rat retina. Invest Ophthalmol Vis Sci. 2005;46:3188–96.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Kim HP, Lee EJ, Kim YC, Kim J, Kim HK, Park JH, Kim SY, Kim YC. Zeaxanthin dipalmitate from Lycium chinense fruit reduces experimentally induced hepatic fibrosis in rats. Biol Pharm Bull. 2002;25:390–92.CrossRefPubMedGoogle Scholar
  39. Lau BW, Lee JC, Li Y, Fung SM, Sang YH, Shen J, Chang RCC, So KF. Polysaccharides from wolfberry prevents corticosterone-induced inhibition of sexual behavior and increases neurogenesis. PLoS One. 2012;7:e33374.CrossRefPubMedCentralPubMedGoogle Scholar
  40. Lee CJ, Lee JH, Seok JH, Hur GM, Park Js J, Bae S, Lim JH, Park YC. Effects of betaine, coumarin and flavonoids on mucin release from cultured hamster tracheal surface epithelial cells. Phytother Res. 2004;18:301–05.CrossRefPubMedGoogle Scholar
  41. Levkovitch-Verbin H, Quigley HA, Kerrigan-Baumrind LA, D’Anna SA, Kerrigan D, Pease ME. Optic nerve transection in monkeys may result in secondary degeneration of retinal ganglion cells. Invest Ophthalmol Vis Sci. 2001;42:975–82.PubMedGoogle Scholar
  42. Levkovitch-Verbin H, Quigley HA, Martin KR, Zack DJ, Pease ME, Valenta DF. A model to study differences between primary and secondary degeneration of retinal ganglion cells in rats by partial optic nerve transection. Invest Ophthalmol Vis Sci. 2003;44:3388–93.CrossRefPubMedGoogle Scholar
  43. Levkovitch-Verbin H, Dardik R, Vander S, Melamed S. Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res. 2010;91:127–34.CrossRefPubMedGoogle Scholar
  44. Levkovitch-Verbin H, Spierer O, Vander S, Dardik R. Similarities and differences between primary and secondary degeneration of the optic nerve and the effect of minocycline. Graefes Arch Clin Exp Ophthalmol. 2011;249:849–57.CrossRefPubMedGoogle Scholar
  45. Lewen A, Matz P, Chan PH. Free radical pathways in CNS injury. J Neurotrauma. 2000;17:871–90.CrossRefPubMedGoogle Scholar
  46. Li XM. Protective effect of Lycium barbarum polysaccharides on streptozotocin-induced oxidative stress in rats. Int J Biol Macromol. 2007;40:461–65.CrossRefPubMedGoogle Scholar
  47. Li SY, Yang D, Yeung CM, Yu WY, Chang RCC, So KF, Wong D, Lo AC. Lycium barbarum polysaccharides reduce neuronal damage, blood-retinal barrier disruption and oxidative stress in retinal ischemia/reperfusion injury. PLoS One. 2011;6:e16380.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Li H, Liang Y, Chiu K, Yuan Q, Lin B, Chang RCC, So KF. Lycium barbarum (wolfberry) reduces secondary degeneration and oxidative stress, and inhibits JNK pathway in retina after partial optic nerve transection. PLoS One. 2013;8:e68881.CrossRefPubMedCentralPubMedGoogle Scholar
  49. Mi X, Chiu K, Van G, Leung JWC, Lo ACY, Chung SK, Chang RCC, So K. Effect of Lycium barbarum Polysaccharides on the expression of endothelin-1 and its receptors in an ocular hypertension model of rat glaucoma. Neural Regen Res. 2012a;7:645–51.Google Scholar
  50. Mi XS, Feng Q, Lo AC, Chang RCC, Lin B, Chung SK, So KF. Protection of retinal ganglion cells and retinal vasculature by Lycium barbarum polysaccharides in a mouse model of acute ocular hypertension. PLoS One. 2012b;7:e45469.Google Scholar
  51. Miranda M, Arnal E, Ahuja S, Alvarez-Nolting R, Lopez-Pedrajas R, Ekstrom P, Bosch-Morell F, van Veen T, Romero FJ. Antioxidants rescue photoreceptors in rd1 mice: relationship with thiol metabolism. Free Radic Biol Med. 2010;48:216–22.CrossRefPubMedGoogle Scholar
  52. Moon JI, Kim IB, Gwon JS, Park MH, Kang TH, Lim EJ, Choi KR, Chun MH. Changes in retinal neuronal populations in the DBA/2J mouse. Cell Tissue Res. 2005;320:51–9.CrossRefPubMedGoogle Scholar
  53. Ng YF, Chan HH, Chu PH, Siu AW, To CH, Beale BA, Gilger BC, Wong F. Pharmacologically defined components of the normal porcine multifocal ERG. Documenta ophthalmologica. Adv Ophthalmol. 2008;116:165–76.Google Scholar
  54. Nickells RW. From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol. 2007;42:278–87.CrossRefPubMedGoogle Scholar
  55. Nork TM, Ver Hoeve JN, Poulsen GL, Nickells RW, Davis MD, Weber AJ, Vaegan, Sarks SH, Lemley HL, Millecchia LL. Swelling and loss of photoreceptors in chronic human and experimental glaucomas. Arch Ophthalmol. 2000;118:235–45.Google Scholar
  56. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71:281–99.Google Scholar
  57. Payne SC, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M. Chronic swelling and abnormal myelination during secondary degeneration after partial injury to a central nervous system tract. J Neurotrauma. 2011;28:1077–88.CrossRefPubMedGoogle Scholar
  58. Payne SC, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M. Myelin sheath decompaction, axon swelling, and functional loss during chronic secondary degeneration in rat optic nerve. Invest Ophthalmol Vis Sci. 2012;53:6093–101.CrossRefPubMedGoogle Scholar
  59. Payne SC, Bartlett CA, Savigni DL, Harvey AR, Dunlop SA., Fitzgerald M. Early proliferation does not prevent the loss of oligodendrocyte progenitor cells during the chronic phase of secondary degeneration in a CNS white matter tract. PLoS One. 2013;8:e65710.CrossRefPubMedCentralPubMedGoogle Scholar
  60. Pelzel HR, Schlamp CL, Poulsen GL, Ver Hoeve JA, Nork TM, Nickells RW. Decrease of cone opsin mRNA in experimental ocular hypertension. Mol Vis. 2006;12:1272–82.PubMedGoogle Scholar
  61. Rui C, Yuxiang L, Yinju H, Qingluan Z, Yang W, Qipeng Z, Hao W, Lin M, Juan L, Chengjun Z, Yuanxu J, Yanrong W, Xiuying D, Wannian Z, Tao S, Jianqiang Y. Protective effects of Lycium barbarum polysaccharide on neonatal rat primary cultured hippocampal neurons injured by oxygen-glucose deprivation and reperfusion. J Mol Histol. 2012;43:535–42.CrossRefPubMedGoogle Scholar
  62. Savigni DL, O’Hare Doig RL, Szymanski CR, Bartlett CA, Lozic I, Smith NM, Fitzgerald M. Three Ca channel inhibitors in combination limit chronic secondary degeneration following neurotrauma. Neuropharmacology. 2013;75C:380–90.CrossRefPubMedGoogle Scholar
  63. Selt M, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M. Limited restoration of visual function after partial optic nerve injury; a time course study using the calcium channel blocker lomerizine. Brain Res Bull. 2010;81:467–71.CrossRefPubMedGoogle Scholar
  64. Shan X, Zhou J, Ma T, Chai Q. Lycium barbarum polysaccharides reduce exercise-induced oxidative stress. Int J Mol Sci. 2011;12:1081–88.CrossRefPubMedCentralPubMedGoogle Scholar
  65. Song MK, Salam NK, Roufogalis BD, Huang TH. Lycium barbarum (Goji Berry) extracts and its taurine component inhibit PPAR-gamma-dependent gene transcription in human retinal pigment epithelial cells: possible implications for diabetic retinopathy treatment. Biochem Pharmacol. 2011;82:1209–18.CrossRefPubMedGoogle Scholar
  66. Song MK, Roufogalis BD, Huang TH. Reversal of the caspase-dependent apoptotic cytotoxicity pathway by taurine from Lycium barbarum (Goji Berry) in human retinal pigment epithelial cells: potential benefit in diabetic retinopathy. Evid Based Complement Alternat Med. 2012;2012:323784.PubMedCentralPubMedGoogle Scholar
  67. Stewart SS, Appel SH. Trophic factors in neurologic disease. Annu Rev Med. 1988;39:193–201.CrossRefPubMedGoogle Scholar
  68. Stoica BA, Faden AI. Cell death mechanisms and modulation in traumatic brain injury. Neurotherapeutics. 2010;7:3–12.CrossRefPubMedCentralPubMedGoogle Scholar
  69. Sutter EE, Tran D. The field topography of ERG components in man – I. The photopic luminance response. Vison Research. 1992; 32, 433 – 446.Google Scholar
  70. Szymanski CR, Chiha W, Morellini N, Cummins N, Bartlett CA, O’Hare Doig RL, Savigni DL, Payne SC, Harvey AR, Dunlop SA, Fitzgerald M. Paranode abnormalities and oxidative stress in optic nerve vulnerable to secondary degeneration: modulation by 670 nm light treatment. PLoS One. 2013 8:e66448.CrossRefPubMedCentralPubMedGoogle Scholar
  71. Tang WM, Chan E, Kwok CY, Lee YK, Wu JH, Wan CW, Chan RY, Yu PH, Chan SW. A review of the anticancer and immunomodulatory effects of Lycium barbarum fruit. Inflammopharmacology. 2011Google Scholar
  72. Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res. 2006;25:490–513.CrossRefPubMedCentralPubMedGoogle Scholar
  73. Tezel G. TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 2008;173:409–21.CrossRefPubMedCentralPubMedGoogle Scholar
  74. Tournier C, Hess P, Yang DD, Xu J, Turner TK, Nimnual A, Bar-Sagi D, Jones SN, Flavell RA, Davis RJ. Requirement of JNK for stress-induced activation of the cytochrome c-mediated death pathway. Science. 2000;288:870–74.CrossRefPubMedGoogle Scholar
  75. Vander S, Levkovitch-Verbin H. Regulation of cell death and survival pathways in secondary degeneration of the optic nerve—a long-term study. Curr Eye Res. 2012;37:740–48.CrossRefPubMedGoogle Scholar
  76. Vidal K, Bucheli P, Gao QT, Moulin J, Shen LS, Wang JK, Blum S, Benyacoub J. Immunomodulatory effects of dietary supplementation with a milk-based wolfberry formulation in healthy elderly: a randomized, double-blind, placebo-controlled trial. Rejuvenation Res. 2012;15:89–97.CrossRefPubMedGoogle Scholar
  77. Wang Y, Zhao H, Han F. Determination of amino acids and trace elements in aqueous extracts from Lycium barbarum L. Food Ind. 2012;33:113–15.Google Scholar
  78. Wells J, Kilburn MR, Shaw JA, Bartlett CA, Harvey AR, Dunlop SA, Fitzgerald M. Early in vivo changes in calcium ions, oxidative stress markers, and ion channel immunoreactivity following partial injury to the optic nerve. J Neurosci Res. 2012;90:606–18.CrossRefPubMedGoogle Scholar
  79. Wu PS, Wu SJ, Tsai YH, Lin YH, Chao JC. Hot water extracted Lycium barbarum and Rehmannia glutinosa inhibit liver inflammation and fibrosis in rats. Am J Chin Med. 2011;39:1173–91.CrossRefPubMedGoogle Scholar
  80. Xiao J, Liong EC, Ching YP, Chang RCC, So KF, Fung ML, Tipoe GL. Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. J Ethnopharmacol. 2012;139:462–70.CrossRefPubMedGoogle Scholar
  81. Xie C, Xu LZ, Li XM, Li KM, Zhao BH, Yang SL. Studies on chemical constituents in fruit of Lycium barbarum L. Zhongguo Zhong Yao Za Zhi. 2001;26:323–24.PubMedGoogle Scholar
  82. Xin Y, Zhang S, Gu L, Liu S, Gao H, You Z, Zhou G, Wen L, Yu J, Xuan Y. Electrocardiographic and biochemical evidence for the cardioprotective effect of antioxidants in acute doxorubicin-induced cardiotoxicity in the beagle dogs. Biol Pharm Bull. 2011;34:1523–26.CrossRefPubMedGoogle Scholar
  83. Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakic P, Flavell RA. Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk3 gene. Nature. 1997;389:865–70.CrossRefPubMedGoogle Scholar
  84. Yang M, Gao N, Zhao Y, Liu LX, Lu XJ. Protective effect of Lycium barbarum polysaccharide on retinal ganglion cells in vitro. Int J Ophthalmol. 2011;4:377–79.PubMedCentralPubMedGoogle Scholar
  85. Yang D, Li SY, Yeung CM, Chang RCC, So KF, Wong D, Lo AC. Lycium barbarum extracts protect the brain from blood-brain barrier disruption and cerebral edema in experimental stroke. PLoS One. 2012a;7:e33596.Google Scholar
  86. Yang RM, Suo YR, Wang HL. [Determination and analysis of trace elements in Lycium barbarum L. from different regions of Qinghai province]. Guang Pu Xue Yu Guang Pu Fen Xi. 2012b;32:525–28.Google Scholar
  87. Yoles E, Schwartz M. Degeneration of spared axons following partial white matter lesion: implications for optic nerve neuropathies. Exp Neurol. 1998;153:1–7.CrossRefPubMedGoogle Scholar
  88. Yu MS, Leung SK, Lai SW, Che CM, Zee SY, So KF, Yuen WH, Chang, RCC. Neuroprotective effects of anti-aging oriental medicine Lycium barbarum against beta-amyloid peptide neurotoxicity. Exp Gerontol. 2005;40:716–27.CrossRefPubMedGoogle Scholar
  89. Yu MS, Ho YS, So KF, Yuen WH, Chang RCC. Cytoprotective effects of Lycium barbarum against reducing stress on endoplasmic reticulum. Int J Mol Med. 2006;17:1157–61.PubMedGoogle Scholar
  90. Zhang Z, Liu X, Zhang X, Liu J, Hao Y, Yang X, Wang Y. Comparative evaluation of the antioxidant effects of the natural vitamin C analog 2-O-beta-D-glucopyranosyl-L-ascorbic acid isolated from goji berry fruit. Arch Pharm Res. 2011;34:801–10.CrossRefPubMedGoogle Scholar
  91. Zhang E, Yau SY, Lau BW, Ma H, Lee TM, Chang RCC, So KF. Synaptic plasticity, but not hippocampal neurogenesis, mediated the counteractive effect of wolfberry on depression in rats(1). Cell Transplant. 2012;21:2635–49.CrossRefPubMedGoogle Scholar
  92. Zhu CP, Zhang SH. Lycium barbarum polysaccharide inhibits the proliferation of HeLa cells by inducing apoptosis. J Sci Food Agric. 2012.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hong-Ying Li
    • 1
    • 2
    • 3
    • 4
  • Henry HL Chan
    • 6
  • Patrick HW Chu
    • 6
  • Raymond Chuen-Chung Chang
    • 1
    • 4
    • 5
  • Kwok-Fai So
    • 1
    • 3
    • 4
    • 5
    Email author
  1. 1.GHM Institute of CNS Regeneration and Guangdong Key Laboratory of Brain Function and DiseasesJinan UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of AnatomyJinan University School of MedicineGuangzhouPeople’s Republic of China
  3. 3.Department of OphthamologyThe University of Hong KongHong KongPeople’s Republic of China
  4. 4.The State Key Laboratory of Brain and Cognitive Science and the Research Centre of Heart, Brain, Hormone and Healthy AgingThe University of Hong KongHong KongPeople’s Republic of China
  5. 5.Department of AnatomyThe University of Hong KongHong KongPeople’s Republic of China
  6. 6.Laboratory of Experimental Optometry (Neuroscience), School of OptometryThe Hong Kong Polytechnic UniversityHong KongPeople’s Republic of China

Personalised recommendations