Volvocine Algae: From Simple to Complex Multicellularity

Part of the Advances in Marine Genomics book series (AMGE, volume 2)


The evolution of multicellularity provided new ways for biological systems to increase in complexity . However, although high levels of complexity have indeed been attained in several multicellular lineages, natural selection does not necessarily favor complex biological systems. Why and how, then, has complexity increased in some lineages? We argue that the volvocine green algae (Volvox and its relatives) are a uniquely valuable model system for understanding the evolution of multicellular complexity. Using a general framework for the evolution of complexity, we discuss the various levels of morphological and developmental complexity achieved in this group, and consider both the why and the how underlying the changes in complexity levels that took place in this group.


Cell differentiation Chlamydomonas Chlorophyta Complexity Genetics Multicellularity Natural selection Volvox 



We thank Erik Hanschen and Deborah Shelton for comments on the manuscript; we also thank Deborah Shelton for providing pictures of volvocine algae. We gratefully acknowledge support from a NASA Astrobiology Institute postdoctoral fellowship and from the John Templeton Foundation (MDH) and NSERC (AMN).


  1. Abedin M, King N (2010) Diverse evolutionary paths to cell adhesion. Trends Cell Biol 20:742–734CrossRefGoogle Scholar
  2. Ashby WR (1956) Introduction to cybernetics. Methuen, LondonCrossRefGoogle Scholar
  3. Ashby WR (1958) Requisite variety and its implications for the control of complex systems. Cybernetica 1:83–99Google Scholar
  4. Ayala FJ (1988) Can “progress” be defined as a biological concept? In: Nitecki MH (ed) Evolutionary progress. The University of Chicago Press, Chicago, pp 75-96Google Scholar
  5. Bisalputra T, Stein R (1966) The development of cytoplasmic bridges in Volvox aureus. Can J Bot 44:1697–1702CrossRefGoogle Scholar
  6. Bold HC (1949) The morphology of Chlamydomonas chlamydogama, sp. nov. Bull Torrey Bot Club 76:101–108CrossRefGoogle Scholar
  7. Bonner JT (2003) On the origin of differentiation. J Biosci 28:523–528CrossRefGoogle Scholar
  8. Boraas ME, Seale DB, Boxhorn JE (1998) Phagotrophy by a flagellate selects for colonial prey: a possible origin of multicellularity. Evol Ecol 12:153–164CrossRefGoogle Scholar
  9. Bory de Saint-Vincent JBGM (1824) Pandorina. In: Lamouroux JV, Bory de Saint-Vincent JBGM, Deslongschamps E (eds) Encyclopédie méthodique ou par ordre de matières. Histoire naturelle des zoophytes, ou animaux rayonnés, faisant suite à l’histoire naturelle des vers de Bruguière. Mme veuve Agasse, Paris, p 600Google Scholar
  10. Brooks AE (1972) The physiology of Astrephomene gubernaculifera. J Eukaryot Microbiol 19:195–199Google Scholar
  11. Buss LW (1987) The evolution of individuality. Princeton University Press, PrincetonGoogle Scholar
  12. Butterfield NJ (2009) Modes of pre-Ediacaran multicellularity. Precambrian Res 173:201–211CrossRefGoogle Scholar
  13. Carroll SB (2001) Chance and necessity: morphological complexity and diversity. Nature 409:1102–1109CrossRefGoogle Scholar
  14. Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36CrossRefGoogle Scholar
  15. Coleman AW (1979) Sexuality in colonial green flagellates. In: Levandowsky M, Hutner SH (eds) Biochemistry and physiology of protozoa. Academic Press, New York, pp 307–340Google Scholar
  16. Coleman AW (2001) Biogeography and speciation in the Pandorina/Volvulina (Chlorophyta) superclade. J Phycol 37:836–851CrossRefGoogle Scholar
  17. Crisp MD, Cook LG (2005) Do early branching lineages signify ancestral traits? Trends Ecol Evol 20:122–128CrossRefGoogle Scholar
  18. Darwin CR (1837) Notebook B: [Transmutation of species (1837–1838)]. CUL–DAR121. Darwin Online, Scholar
  19. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA, McDonald K, King N. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev Biol 357:73-82 (Elsevier Inc)Google Scholar
  20. de Mendoza A Sebé-Pedrós A Šestak MS Matejčić M Torruella G Domazet-Lošo T Ruiz-Trillo I (2013) Transcription factor evolution in eukaryotes and the assembly of the regulatory toolkit in multicellular lineages. Proc Natl Acad Sci U S A 110:E4858–E4866CrossRefGoogle Scholar
  21. Degnan BM, Vervoort M, Larroux C, Richards GS (2009) Early evolution of metazoan transcription factors. Curr Opin Genet Dev 19:591–599CrossRefGoogle Scholar
  22. Desnitski AG (1995) A review on the evolution of development in Volvox—morphological and physiological aspects. Eur J Protistol 31:241–247Google Scholar
  23. Ehrenberg CG (1832) Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abh K Abhandlungen der Königlichen Akad Wissenschaften zu Berlin. Phys Kl 1831:1–154Google Scholar
  24. Fulton AB (1978) Colonial development in Pandorina morum: II. Colony morphogenesis and formation of the extracellular matrix. Dev Biol 251:236–251CrossRefGoogle Scholar
  25. Gerisch G (1959) Die Zelldifferenzierung bei Pleodorina californica Shaw und die Organisation der Phytomonadinenkolonien. Arch Protistenkd 104:292–358Google Scholar
  26. Gilles R, Gilles C, Jaenicke L (1983) Sexual differentiation of the green alga Volvox carteri. Naturwissenschaften 70:571–572CrossRefGoogle Scholar
  27. Gottlieb B, Goldstein ME (1977) Colony develompent in Eudorina elegans (Chlorophyta, Volvocales). J Phycol 13:358–364Google Scholar
  28. Green KJ, Viamontes GI, Kirk DL (1981) Mechanism of formation, ultrastructure and function of the cytoplasmic bridge system during morphogenesis in Volvox. J Cell Biol 91:756–769CrossRefGoogle Scholar
  29. Greuel BT, Floyd GL (1985) Development of the flagellar apparatus and flagellar orientation in the colonial green alga Gonium pectorale (Volvocales). J Phycol 21:358–371CrossRefGoogle Scholar
  30. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654CrossRefGoogle Scholar
  31. Hanschen ER, Ferris PJ, Michod RE (2014) Early evolution of the genetic basis for soma in the Volvocaceae. Evolution 68:2014–2025Google Scholar
  32. Harris EH (2001) Chlamydomonas as a model organism. Annu Rev Plant Physiol Plant Mol Biol 52:363–406CrossRefGoogle Scholar
  33. Harris EH (2009) The Chlamydomonas sourcebook, second edition. Academic Press, OxfordGoogle Scholar
  34. Hayama M, Nakada T, Hamaji T, Nozaki H (2010) Morphology, molecular phylogeny and taxonomy of Gonium maiaprilis sp. nov. (Goniaceae, Chlorophyta) from Japan. Phycologia 49:221–234CrossRefGoogle Scholar
  35. Herron MD, Michod RE (2008) Evolution of complexity in the volvocine algae: transitions in individuality through Darwin’s eye. Evolution 62:436–451CrossRefGoogle Scholar
  36. Herron MD, Hackett JD, Aylward FO, Michod RE (2009) Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci U S A 106:3254–3258CrossRefGoogle Scholar
  37. Herron MD, Desnitskiy AG, Michod RE (2010) Evolution of developmental programs in Volvox (Chlorophyta). J Phycol 46:316–324CrossRefGoogle Scholar
  38. Heylighen F (1999) Growth of complexity. In: Heylighen F, Bollen J, Riegler A (eds) The evolution of complexity. Kluwer Academic, Dordrecht, pp 17–44Google Scholar
  39. Hiraide R, Kawai-Toyooka H, Hamaji T, Matsuzaki R, Kawafune K, Abe J, Sekimoto H, Umen J, Nozaki H (2013) The evolution of male-female sexual dimorphism predates the gender-based divergence of the mating locus gene MAT3/RB. Mol Biol Evol 30:1038–1040CrossRefGoogle Scholar
  40. Hoekstra HE, Coyne JA (2007) The locus of evolution: evo devo and the genetics of adaptation. Evolution 61:995–1016CrossRefGoogle Scholar
  41. Hoham RW, Bonome TA, Martin CW, Leebens-mack JH (2002) A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-termperature habitats. J Phycol 38:1051–1064CrossRefGoogle Scholar
  42. Hull DL (1988) Progress in ideas of progress. In: Nitecki MH (ed) Evolutionary progress. The University of Chicago Press, Chicago, pp 27–48Google Scholar
  43. Iida H, Ota S, Inouye I (2013) Cleavage, incomplete inversion, and cytoplasmic bridges in Gonium pectorale (Volvocales, Chlorophyta). J Plant Res 126:699–707CrossRefGoogle Scholar
  44. Isaka N, Kawai-Toyooka H, Matsuzaki R, Nakada T, Nozaki H (2012) Description of two new monoecious species of Volvox sect. Volvox (Volvocaceae, Chlorophyceae), based on comparative morphology and molecular phylogeny of cultured material. J Phycol 48:759–767CrossRefGoogle Scholar
  45. King N (2004) The unicellular ancestry of animal development. Dev Cell 7:313–325CrossRefGoogle Scholar
  46. King N, Hittinger CT, Carroll SB (2003) Evolution of key cell signaling and adhesion protein families predates animal origins. Science 301:361–363CrossRefGoogle Scholar
  47. King N., Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, JGI Sequencing, Bork P, Lim WA, Manning G, Miller WT, McGinnis W, Shapiro H, Tjian R, Grigoriev IV, Rokhsar D (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788CrossRefGoogle Scholar
  48. Kirk DL (1998) Volvox: molecular-genetic origins of multicellularity. Cambridge University Press, CambridgeGoogle Scholar
  49. Kirk DL (2005) A twelve-step program for evolving multicellularity and a division of labor. Bioessays 27:299–310CrossRefGoogle Scholar
  50. Kirk DL, Kirk MM (1986) Heat shock elicits production of sexual inducer in Volvox. Science 231:51–54CrossRefGoogle Scholar
  51. Kirk DL, Birchem R, King N (1986) The extracellular matrix of Volvox: a comparative study and proposed system of nomenclature. J Cell Sci 80:207–231Google Scholar
  52. Kirk DL, Kaufman MR, Keeling RM, Stamer KA (1991) Genetic and cytological control of the asymmetric divisions that pattern the Volvox embryo. Dev Suppl 1:67–8Google Scholar
  53. Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239CrossRefGoogle Scholar
  54. Kofoid CA (1899) Plankton studies. III. On Platydorina, a new genus of the family Volvocidae, from the plankton of the Illinois River. Bull Illinois State Lab Nat Hist 5:419–440Google Scholar
  55. Kofoid CA (1900) Plankton Studies. II. On Pleodorina illinoisensis, a new species from the plankton of the Illinois River. Ann Mag Nat Hist 6:139–156CrossRefGoogle Scholar
  56. Koufopanou V, Bell G 1993. Soma and germ: an experimental approach using Volvox. Proc R Soc Lond B 254:107–113CrossRefGoogle Scholar
  57. Krell F-T, Cranston PS (2004) Which side of the tree is more basal? Syst Entomol 29:279–281CrossRefGoogle Scholar
  58. Lang NJ (1963) Electron microscopy of the Volvocaceae and Astrephomenaceae. Am J Bot 50:280–300CrossRefGoogle Scholar
  59. Linnaeus C 1758. Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. Editio decima revisa, vol 1. Holmiae, StockholmGoogle Scholar
  60. Lovejoy AO (1936) The great chain of being. Harvard University Press, CambridgeGoogle Scholar
  61. Lynch M, Conery JS (2003) The origins of genome complexity. Science 302:1401–1404CrossRefGoogle Scholar
  62. Marchant HJ (1977) Colony formation and inversion in the green alga Eudorina elegans. Protoplasma 93:325–339CrossRefGoogle Scholar
  63. Maynard Smith J, Szathmáry E (1997) The major transitions in evolution. Oxford University Press, New YorkGoogle Scholar
  64. McShea DW (1994) Mechanisms of large-scale evolutionary trends. Evolution 48:1747–1763CrossRefGoogle Scholar
  65. McShea DW (1996) Perspective: metazoan complexity and evolution: is there a trend? Evolution 50:477–492CrossRefGoogle Scholar
  66. McShea DW (2002) A complexity drain on cells in the evolution of multicellularity. Evolution 56:441–452CrossRefGoogle Scholar
  67. Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz-Laylin LK, Maréchal-Drouard L, Marshall WF, Qu L-H, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren Q, Ferris PJ, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen C-L, Cognat V, Croft MT, Dent R, Dutcher S, Fernández E, Fukuzawa H, González-Ballester D, González-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral J-P, Riao-Pachón DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen JG, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen C-J, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan J, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang P, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo Y, Martínez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou K, Grigoriev IV, Rokhsar DS, Grossman AR (2007) The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245–250CrossRefGoogle Scholar
  68. Michod RE (2006) The group covariance effect and fitness trade-offs during evolutionary transitions in individuality. Proc Natl Acad Sci U S A 103:9113–9117CrossRefGoogle Scholar
  69. Michod RE, Viossat Y, Solari CA, Hurand M, Nedelcu AM (2006) Life-history evolution and the origin of multicellularity. J Theor Biol 239:257–272CrossRefGoogle Scholar
  70. Müller OF (1773) Vermium Terrestrium et Fluviatilium, seuAnimalium Infusoriorum, Helminthicorum et Testaceorum, non Marinorum, Succincta Historia. Vol. 1Google Scholar
  71. Nedelcu AM (2009a) Comparative genomics of phylogenetically diverse unicellular eukaryotes provide new insights into the genetic basis for the evolution of the programmed cell death machinery. J Mol Evol 68:256–268Google Scholar
  72. Nedelcu AM (2009b) Environmentally induced responses co-opted for reproductive altruism. Biol Lett 5:805–808Google Scholar
  73. Nedelcu AM, Michod RE (2004) Evolvability, modularity, and individuality during the transition to multicellularity in Volvocalean green algae. In: Schlosser G, Wagner GP (eds) Modularity in development and evolution. Oxford University Press, Oxford, pp 466–489Google Scholar
  74. Nedelcu AM, Michod RE (2006) The evolutionary origin of an altruistic gene. Mol Biol Evol 23:1460–1464CrossRefGoogle Scholar
  75. Nedelcu AM, Borza T, Lee RW (2006) A land plant-specific multigene family in the unicellular Mesostigma argues for its close relationship to Streptophyta. Mol Bol Evol 23:1011–1105CrossRefGoogle Scholar
  76. Nedelcu AM, Driscoll WW, Durand PM, Herron MD, Rashidi A (2011) On the paradigm of altruistic suicide in the unicellular world. Evolution 65:3–20CrossRefGoogle Scholar
  77. Nishii I, Ogihara S, Kirk DL (2003) A kinesin, invA, plays an essential role in Volvox morphogenesis. Cell 113:743–753CrossRefGoogle Scholar
  78. Nozaki H (1983) Morphology and taxonomy of two species of Astrephomene in Japan. Jpn J Phycol 58:345–352Google Scholar
  79. Nozaki H (1996) Morphology and evolution of sexual reproduction in the Volvocaceae (Chlorophyta). J Plant Res 109:353–361CrossRefGoogle Scholar
  80. Nozaki H (2003) Origin and evolution of the genera Pleodorina and Volvox. Biologia 58:425–431Google Scholar
  81. Nozaki H (2014). Sexual Reproduction in animals and plants. In: Sawada H, Inoue N, Iwano M (eds) Sexual reproduction in animals and plants. Springer Japan, Tokyo, pp 215–227Google Scholar
  82. Nozaki H, Coleman AW (2011) A new species of Volvox sect. Merrillosphaera (Volvocaceae, Chlorophyceae) from Texas. J Phycol 47:673–679CrossRefGoogle Scholar
  83. Nozaki H, Itoh M (1994) Phylogenetic relationships within the colonial Volvocales (Chlorophyta) inferred from cladistic analysis based on morphological data. J Phycol 30:353–365CrossRefGoogle Scholar
  84. Nozaki H, Krienitz L (2001) Morphology and phylogeny of Eudorina minodii (Chodat) Nozaki et Krienitz, comb. nov. (Volvocales, Chlorophyta) from Germany. Eur J Phycol 36:23–28CrossRefGoogle Scholar
  85. Nozaki H, Kuroiwa T (1992) Ultrastructure of the extracellular matrix and taxonomy of Eudorina, Pleodorina and Yamagishiella gen. nov. (Volvocaceae, Chlorophyta). Phycologia 31:529–541CrossRefGoogle Scholar
  86. Nozaki H, Ohtani S (1992) Gonium sociale (Volvocales, Chlorophyta) from Antarctica. Jpn J Phycol 40:267–271Google Scholar
  87. Nozaki H, Itoh M, Watanabe MM, Kuroiwa T (1996) Ultrastructure of the vegetative colonies and systematic position of Basichlamys (Volvocales, Chlorophyta). Eur J Phycol 31:67–72CrossRefGoogle Scholar
  88. Nozaki H, Ott FD, Coleman AW (2006) Morphology, molecular phylogeny and taxonomy of two new species of Pleodorina (Volvocaceae, Chlorophyceae). J Phycol 42:1072–1080CrossRefGoogle Scholar
  89. Nozaki H, Yamada TK, Takahashi F, Matsuzaki R, Nakada T (2014) New “missing link” genus of the colonial volvocine green algae gives insights into the evolution of oogamy. BMC Evol Biol 14:37Google Scholar
  90. Otsuka J (2008) A theoretical approach to the large-scale evolution of multicellularity and cell differentiation. J Theor Biol 255:129–136CrossRefGoogle Scholar
  91. Pickett-Heaps JD (1975) Green algae: structure, reproduction and evolution in selected genera. Sinauer Associates, Inc, SunderlandGoogle Scholar
  92. Playfair GI (1915) Freshwater algae of the Lismore District: with an appendix on the algal fungi and Schizomycetes. Proc Linn Soc N SW 40:310–362Google Scholar
  93. Pocock MA (1954) Two multicellular motile green algae, Volvulina Playfair and Astrephomene, a new genus. Trans R Soc S Afr 34:103–127CrossRefGoogle Scholar
  94. Pringsheim EG, Wiessner W (1960) Photoassimilation of acetate by green organisms. Nature 919–921Google Scholar
  95. Prochnik SE, Umen J, Nedelcu AM, Hallmann A., Miller SM, Nishii I, Ferris PJ, Kuo A, Mitros T, Fritz-Laylin LK, Hellsten U, Chapman J, Simakov O, Rensing SA, Terry A, Pangilinan J, Kapitonov V, Jurka J, Salamov A, Shapiro H, Schmutz J, Grimwood J, Lindquist E, Lucas S, Grigoriev IV, Schmitt R, Kirk DL, Rokhsar DS (2010) Genomic analysis of organismal complexity in the multicellular green alga Volvox carteri. Science 329:223–226CrossRefGoogle Scholar
  96. Ratcliff WC, Denison RF, Borrello M, Travisano M (2012) Experimental evolution of multicellularity. Proc Natl Acad Sci U S A 109:1595–1600CrossRefGoogle Scholar
  97. Ratcliff WC, Herron MD, Howell K, Pentz JT, Rosenzweig F, Travisano M (2013) Experimental evolution of an alternating uni- and multicellular life cycle in Chlamydomonas reinhardtii. Nat Commun 4:2742CrossRefGoogle Scholar
  98. Richards RJ (1988) The moral foundations of the idea of evolutionary progress: Darwin, Spencer, and the neo-darwinians. In: Nitecki MH (ed) Evolutionary progress. University of Chicago Press, Chicago, pp 129–148Google Scholar
  99. Rokas A (2008) The origins of multicellularity and the early history of the genetic toolkit for animal development. Annu Rev Genet 42:235–251CrossRefGoogle Scholar
  100. Schaap P (2011) Evolutionary crossroads in developmental biology: Dictyostelium discoideum. Development 138:387–396CrossRefGoogle Scholar
  101. Schaap P, Winckler T, Nelson M, Alvarez-Curto E, Elgie B, Hagiwara H, Cavender J, Milano-Curto A, Rozen DE, Dingermann T, Mutzel R, Baldauf SL (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663CrossRefGoogle Scholar
  102. Schlichting CD (2003) Origins of differentiation via phenotypic plasticity. Evol Dev 5:98–105CrossRefGoogle Scholar
  103. Sebé-pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 107:10142–10147CrossRefGoogle Scholar
  104. Sebé-Pedrós A, Mendoza A de, Lang BF, Degnan BM, Ruiz-Trillo I (2011) Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 28:1241–1254CrossRefGoogle Scholar
  105. Shaw WR (1894) Pleodorina, a new genus of the Volvocineæ. Bot Gaz 19:279–283CrossRefGoogle Scholar
  106. Sleigh MA (1989) Protozoa and other protists. Edward Arnold Limited, NewYorkGoogle Scholar
  107. Starr RC (1970) Control of differentiation in Volvox. Dev Biol 4:S59–S100Google Scholar
  108. Stein JR (1959) The four-celled species of Gonium. Am J Bot 46:366–371CrossRefGoogle Scholar
  109. Stein JR (1965) On cytoplasmic strands in Gonium pectorale (Volvocales). J Phycol 1:1–5CrossRefGoogle Scholar
  110. Suga H, Chen Z, Mendoza A de, Sebé-Pedrós A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sánchez-Pons N, Torruella G, Derelle R, Manning G, Lang BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I (2013) The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun 4:2325CrossRefGoogle Scholar
  111. Szathmáry E, Jordan F, Pál C (2001) Can genes explain biological complexity? Science 292:1315–1316CrossRefGoogle Scholar
  112. Ueki N, Nishii I (2009) Controlled enlargement of the glycoprotein vesicle surrounding a Volvox embryo requires the InvB nucleotide-sugar transporter and is required for normal morphogenesis. Plant Cell 21:1166–1181CrossRefGoogle Scholar
  113. Umen JG, Olson BJSC (2012) Genomics of volvocine algae. Adv Bot Res 64:185–243CrossRefGoogle Scholar
  114. van Leeuwenhoek A (1700) Part of a letter from Mr Antony van Leeuwenhoek, concerning the worms in sheeps livers, gnats, and animalcula in the excrements of frogs. Philos Trans R Soc London 22:509–518Google Scholar
  115. Van Valen L (1973) A new evolutionary law. Evol Theory 1:1–30Google Scholar
  116. Van de Berg WJ, Starr RC (1971) Structure, reproduction, and differentiation in Volvox gigas and Volvox powersii. Arch Protistenkd 113:195–219.Google Scholar
  117. Velicer GJ, Vos M (2009) Sociobiology of the myxobacteria. Annu Rev Microbiol 63:599–623CrossRefGoogle Scholar
  118. Waddington CH (1969) Paradigm for an evolutionary process. In: Waddington CH (ed) Sketching theoretical biology: toward a theoretical biology, vol 2. Aldine Transaction, Chicago, pp 106–128Google Scholar
  119. Wolpert L, Szathmáry E (2002) Multicellularity: evolution and the egg. Nature 420:745CrossRefGoogle Scholar
  120. Znachor P, Jezberová J (2005) The occurrence of a bloom-forming green alga Pleodorina indica (Volvocales) in the downstream reach of the River Malše (Czech Republic). Hydrobiologia 541:221–228CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Division of Biological SciencesUniversity of MontanaMissoulaUSA
  2. 2.Department of BiologyUniversity of New BrunswickFrederictonCanada

Personalised recommendations