Independent Emergence of Complex Multicellularity in the Brown and Red Algae

Part of the Advances in Marine Genomics book series (AMGE, volume 2)


Brown and red macroalgae represent two of only five eukaryotic groups that have independently evolved complex multicellularity. Compared with animals and land plants, very little is known about the molecular mechanisms underlying multicellular development in the two macroalgal groups, but the recent publication of complete genome sequences for both of these lineages has been a first step towards changing this situation. Comparisons of these genomes with those of other multicellular and unicellular organisms have identified a number of features that may be related to the transitions to complex multicellularity in these macroalgal lineages. One particularly striking feature of the brown algae, for example, is the emergence of a family of membrane-spanning receptor kinases, a class of molecules that is also thought to have been important for the transition to complex multicellularity in animals and land plants. Surprisingly, the genomes of the brown alga Ectocarpus and the red alga Chondrus are remarkably different at the structural level, despite the fact that both organisms represent lineages that have evolved multicellularity as sedentary organisms in the seashore environment. Current efforts to identify and characterise developmental regulators in macroalgae are expected to enrich comparisons with other complex multicellular lineages.


Chondrus crispus Complex multicellularity Developmental regulators Ectocarpus Genome sequence Genome structure Macroalgae Phylogeny Receptor kinase Small RNAs 


  1. Adl SM, Simpson AG, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EA, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59(5):429–493CrossRefGoogle Scholar
  2. Bell G, Mooers AO (1997) Size and complexity among multicellular organisms. Biol J Linn Soc 60:345–363CrossRefGoogle Scholar
  3. Bold HC, Wynne MJ (1978) Introduction to the algae. Prentice-Hall, Englewood CliffsGoogle Scholar
  4. Bouck G (1965) Fine structure and organelle association in brown algae. J Cell Biol 26(2):523–537CrossRefGoogle Scholar
  5. Brighouse A, Dacks JB, Field MC (2010) Rab protein evolution and the history of the eukaryotic endomembrane system. Cell Mol Life Sci 67(20):3449–3465CrossRefGoogle Scholar
  6. Buggeln RG (1983) Photoassimilate translocation in brown algae. Progr Phycol Res 2:283–332Google Scholar
  7. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the mesoproterozoic/neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404CrossRefGoogle Scholar
  8. Carroll SB (2005) Evolution at two levels: on genes and form. PLoS Biol 3(7):e245CrossRefGoogle Scholar
  9. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99CrossRefGoogle Scholar
  10. Chan CX, Yang EC, Banerjee T, Yoon HS, Martone PT, Estevez JM, Bhattacharya D (2011) Red and green algal monophyly and extensive gene sharing found in a rich repertoire of red algal genes. Curr Biol 21(4):328–333CrossRefGoogle Scholar
  11. Charrier B, Coelho S, Le Bail A, Tonon T, Michel G, Potin P, Kloareg B, Boyen C, Peters A, Cock J (2008) Development and physiology of the brown alga Ectocarpus siliculosus: two centuries of research. New Phytol 177(2):319–332CrossRefGoogle Scholar
  12. Charrier B, Le Bail A, de Reviers B (2012) Plant Proteus: brown algal morphological plasticity and underlying developmental mechanisms. Trends Plant Sci 17(8):468–477CrossRefGoogle Scholar
  13. Cock J, Vanoosthuyse V, Gaude T (2002) Receptor kinase signalling in plants and animals: distinct molecular systems with mechanistic similarities. Curr Opin Cell Biol 14(2):230–236CrossRefGoogle Scholar
  14. Cock JM, Sterck L, Rouzé P, Scornet D, Allen AE, Amoutzias G, Anthouard V, Artiguenave F, Aury J, Badger J, Beszteri B, Billiau K, Bonnet E, Bothwell J, Bowler C, Boyen C, Brownlee C, Carrano C, Charrier B, Cho G, Coelho S, Collén J, Corre E, Da Silva C, Delage L, Delaroque N, Dittami S, Doulbeau S, Elias M, Farnham G, Gachon C, Gschloessl B, Heesch S, Jabbari K, Jubin C, Kawai H, Kimura K, Kloareg B, Küpper F, Lang D, Le Bail A, Leblanc C, Lerouge P, Lohr M, Lopez P, Martens C, Maumus F, Michel G, Miranda-Saavedra D, Morales J, Moreau H, Motomura T, Nagasato C, Napoli C, Nelson D, Nyvall-Collén P, Peters A, Pommier C, Potin P, Poulain J, Quesneville H, Read B, Rensing S, Ritter A, Rousvoal S, Samanta M, Samson G, Schroeder D, Ségurens B, Strittmatter M, Tonon T, Tregear J, Valentin K, von Dassow P, Yamagishi T, Van de Peer Y, Wincker P (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465(7298):617–621CrossRefGoogle Scholar
  15. Cock JM, Peters AF, Coelho SM (2011) Brown algae. Curr Biol 21(15):R573–R575CrossRefGoogle Scholar
  16. Cock JM, Arun A, Godfroy O, Macaisne N, Strittmatter M, Peters AF, Coelho SM (2012) Genomics of brown algae: current advances and future prospects. Genes Genomics 34:1–5CrossRefGoogle Scholar
  17. Coelho SM, Scornet D, Rousvoal S, Peters N, Dartevelle L, Peters AF, Cock JM (2012) Ectocarpus: a model system for the brown algae. Cold Spring Harb Protoc 2012(2):193–198Google Scholar
  18. Coelho SM, Godfroy O, Arun A, Le Corguillé G, Peters AF, Cock JM (2011) Ouroboros is a master regulator of the gametophyte to sporophyte life cycle transition in the brown alga Ectocarpus. Proc Natl Acad Sci U S A 108:11518–11523CrossRefGoogle Scholar
  19. Collén J, Porcel B, Carré W, Ball SG, Chaparro C, Tonon T, Barbeyron T, Michel G, Noel B, Valentin K, Elias M, Artiguenave F, Arun A, Aury JM, Barbosa-Neto JF, Bothwell JH, Bouget FY, Brillet L, Cabello-Hurtado F, Capella-Gutiérrez S, Charrier B, Cladière L, Cock JM, Coelho SM, Colleoni C, Czjzek M, Da Silva C, Delage L, Denoeud F, Deschamps P, Dittami SM, Gabaldón T, Gachon CM, Groisillier A, Hervé C, Jabbari K, Katinka M, Kloareg B, Kowalczyk N, Labadie K, Leblanc C, Lopez PJ, McLachlan DH, Meslet-Cladiere L, Moustafa A, Nehr Z, Nyvall Collén P, Panaud O, Partensky F, Poulain J, Rensing SA, Rousvoal S, Samson G, Symeonidi A, Weissenbach J, Zambounis A, Wincker P, Boyen C (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110(13):5247–5252CrossRefGoogle Scholar
  20. Dawes CJ (1981) Marine botany. Wiley, New YorkGoogle Scholar
  21. De Smet I, Voss U, Jürgens G, Beeckman T (2009) Receptor-like kinases shape the plant. Nat Cell Biol 11(10):1166–1173CrossRefGoogle Scholar
  22. Diévart A, Gilbert N, Droc G, Attard A, Gourgues M, Guiderdoni E, Périn C (2011) Leucine-rich repeat receptor kinases are sporadically distributed in eukaryotic genomes. BMC Evol Biol 11:367CrossRefGoogle Scholar
  23. Drew KM (1949) Conchocelis-phase in the life-history of Porphyra umbilicalis (L.) Kütz. Nature 164:748–749CrossRefGoogle Scholar
  24. Elias M, Brighouse A, Gabernet-Castello C, Field MC, Dacks JB (2012) Sculpting the endomembrane system in deep time: high resolution phylogenetics of Rab GTPases. J Cell Sci 125:2500–2508CrossRefGoogle Scholar
  25. Gerstein M, Levitt M (1997) A structural census of the current population of protein sequences. Proc Natl Acad Sci U S A 94(22):11911–11916CrossRefGoogle Scholar
  26. Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10(2):94–108CrossRefGoogle Scholar
  27. Grosberg RK, Strathmann RR (2007) The evolution of multicellularity: a minor major transition? Annu Rev Ecol Evol Syst 38:621–654CrossRefGoogle Scholar
  28. Gschloessl B, Guermeur Y, Cock J (2008) Hectar: a method to predict subcellular targeting in heterokonts. BMC Bioinform 9:393CrossRefGoogle Scholar
  29. Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL-d, Vaulot D (1999) Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol 35:368–381CrossRefGoogle Scholar
  30. Guruharsha KG, Kankel MW, Artavanis-Tsakonas S (2012) The Notch signalling system: recent insights into the complexity of a conserved pathway. Nat Rev Genet 13(9):654–666CrossRefGoogle Scholar
  31. Gutiérrez RA, Green PJ, Keegstra K, Ohlrogge JB (2004) Phylogenetic profiling of the Arabidopsis thaliana proteome: what proteins distinguish plants from other organisms? Genome Biol 5(8):R53CrossRefGoogle Scholar
  32. Hazkani-Covo E, Levanon E, Rotman G, Graur D, Novik A (2004) Evolution of multicellularity in Metazoa: comparative analysis of the subcellular localization of proteins in Saccharomyces, Drosophila and Caenorhabditis. Cell Biol Int 28(3):171–178CrossRefGoogle Scholar
  33. Hervé C, Tonon T, Collén J, Corre E, Boyen C (2006) NADPH oxidases in Eukaryotes: red algae provide new hints! Curr Genet 49(3):190–204CrossRefGoogle Scholar
  34. Hsia CC, McGinnis W (2003) Evolution of transcription factor function. Curr Opin Genet Dev 13(2):199–206CrossRefGoogle Scholar
  35. Kapraun DF (2005) Nuclear DNA content estimates in multicellular green, red and brown algae: phylogenetic considerations. Ann Bot 95:7–44CrossRefGoogle Scholar
  36. Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607CrossRefGoogle Scholar
  37. King N, Carroll SB (2001) A receptor tyrosine kinase from choanoflagellates: molecular insights into early animal evolution. Proc Natl Acad Sci U S A 98(26):15032–15037CrossRefGoogle Scholar
  38. Klöpper TH, Kienle N, Fasshauer D, Munro S (2012) Untangling the evolution of Rab G proteins: implications of a comprehensive genomic analysis. BMC Biol 10:71CrossRefGoogle Scholar
  39. Knoll AH (2011) The multiple origins of complex multicellularity. Annu Rev Earth Planet Sci 39:217–239CrossRefGoogle Scholar
  40. Kornmann P (1956) Über die Entwicklung einer Ectocarpus confervoides-Form. Pubblicazioni Della Stazione Zoologica di Napoli 28:32–43Google Scholar
  41. Lalucque H, Silar P (2003) NADPH oxidase: an enzyme for multicellularity? Trends Microbiol 11(1):9–12CrossRefGoogle Scholar
  42. Lang D, Weiche B, Timmerhaus G, Richardt S, Riaño-Pachón DM, Corrêa LG, Reski R, Mueller-Roeber B, Rensing SA (2010) Genome-wide phylogenetic comparative analysis of plant transcriptional regulation: a timeline of loss, gain, expansion, and correlation with complexity. Genome Biol Evol 2:488–503CrossRefGoogle Scholar
  43. Le Bail A Billoud B Le Panse S Chenivesse S Charrier B (2011) Etoile regulates developmental patterning in the filamentous brown alga Ectocarpus siliculosus. Plant Cell 23:1666–1678CrossRefGoogle Scholar
  44. Lehti-Shiu MD, Zou C, Hanada K, Shiu SH (2009) Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 150(1):12–26CrossRefGoogle Scholar
  45. Lemmon MA, Schlessinger J (2010) Cell signaling by receptor tyrosine kinases. Cell 141(7):1117–1134CrossRefGoogle Scholar
  46. Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424(6945):147–151CrossRefGoogle Scholar
  47. Lin Z, Kong H, Nei M, Ma H (2006) Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer. Proc Natl Acad Sci U S A 103(27):10328–10333CrossRefGoogle Scholar
  48. Lin YC, Campbell T, Chung CC, Gong GC, Chiang KP, Worden AZ (2012) Distribution patterns and phylogeny of marine stramenopiles in the North Pacific Ocean. Appl Environ Microbiol 78(9):3387–3399CrossRefGoogle Scholar
  49. Lohse MB, Hernday AD, Fordyce PM, Noiman L, Sorrells TR, Hanson-Smith V, Nobile CJ, DeRisi JL, Johnson AD (2013) Identification and characterization of a previously undescribed family of sequence-specific DNA-binding domains. Proc Natl Acad Sci U S A 110(19):7660–7665CrossRefGoogle Scholar
  50. Lozada-Chávez I, Stadler PF, Prohaska SJ (2011) “Hypothesis for the modern RNA world”: a pervasive non-coding RNA-based genetic regulation is a prerequisite for the emergence of multicellular complexity. Orig Life Evol Biosph 41(6):587–607CrossRefGoogle Scholar
  51. Martin F, Aerts A, Ahrén D, Brun A, Danchin EG, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Grimwood J, Hoegger PJ, Jain P, Kilaru S, Labbé J, Lin YC, Legué V, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila GK, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders IR, Stajich JE, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452(7183):88–92CrossRefGoogle Scholar
  52. Matsuzaki M, Misumi O, Shin-I T, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428(6983):653–657CrossRefGoogle Scholar
  53. Mattick JS (2004) RNA regulation: a new genetics? Nat Rev Genet 5(4):316–323CrossRefGoogle Scholar
  54. Michel G, Tonon T, Scornet D, Cock JM, Kloareg B (2010) The cell wall polysaccharide metabolism of the brown alga Ectocarpus siliculosus. Insights into the evolution of extracellular matrix polysaccharides in eukaryotes. New Phytol 188(1):82–97CrossRefGoogle Scholar
  55. Miller WT (2012) Tyrosine kinase signaling and the emergence of multicellularity. Biochim Biophys Acta 1823:1053–1057CrossRefGoogle Scholar
  56. Müller DG (1964) Life-cycle of Ectocarpus siliculosus from Naples, Italy. Nature 26:1402CrossRefGoogle Scholar
  57. Nakamura Y, Sasaki N, Kobayashi M, Ojima N, Yasuike M, Shigenobu Y, Satomi M, Fukuma Y, Shiwaku K, Tsujimoto A, Kobayashi T, Nakayama I, Ito F, Nakajima K, Sano M, Wada T, Kuhara S, Inouye K, Gojobori T, Ikeo K (2013) The first symbiont-free genome sequence of marine red alga, Susabi-nori (Pyropia yezoensis). PLoS One 8(3):e57122CrossRefGoogle Scholar
  58. Niklas KJ, Newman SA (2013) The origins of multicellular organisms. Evol Dev 15(1):41–52CrossRefGoogle Scholar
  59. Nozaki H, Takano H, Misumi O, Terasawa K, Matsuzaki M, Maruyama S, Nishida K, Yagisawa F, Yoshida Y, Fujiwara T, Takio S, Tamura K, Chung SJ, Nakamura S, Kuroiwa H, Tanaka K, Sato N, Kuroiwa T (2007) A 100 %-complete sequence reveals unusually simple genomic features in the hot-spring red alga Cyanidioschyzon merolae. BMC Biol 5:28CrossRefGoogle Scholar
  60. Oliveira L, Bisalputra T (1973) Studies in the brown alga Ectocarpus in culture. J Submicrosc Cytol 5:107–120Google Scholar
  61. Peters AF, Marie D, Scornet D, Kloareg B, Cock JM (2004) Proposal of Ectocarpus siliculosus (Ectocarpales, Phaeophyceae) as a model organism for brown algal genetics and genomics. J Phycol 40(6):1079–1088CrossRefGoogle Scholar
  62. Peters AF, Scornet D, Ratin M, Charrier B, Monnier A, Merrien Y, Corre E, Coelho SM, Cock JM (2008) Life-cycle-generation-specific developmental processes are modified in the immediate upright mutant of the brown alga Ectocarpus siliculosus. Development 135(8):1503–1512CrossRefGoogle Scholar
  63. Peterson KJ, Dietrich MR, McPeek MA (2009) MicroRNAs and metazoan macroevolution: insights into canalization, complexity, and the Cambrian explosion. Bioessays 31(7):736–747CrossRefGoogle Scholar
  64. Popper ZA, Michel G, Hervé C, Domozych DS, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590CrossRefGoogle Scholar
  65. Reuther G, Der C (2000) The Ras branch of small GTPases: ras family members don’t fall far from the tree. Curr Opin Cell Biol 12(2):157–165CrossRefGoogle Scholar
  66. Richardt S, Lang D, Reski R, Frank W, Rensing S (2007) PlanTAPDB, a phylogeny-based resource of plant transcription-associated proteins. Plant Physiol 143(4):1452–1466CrossRefGoogle Scholar
  67. Roeder V, Collén J, Rousvoal S, Corre E, Leblanc C, Boyen C (2005) Identification of stress gene transcripts in Laminaria digitata (Phaeophyceae) protoplast cultures by expressed sequence tag analysis. J Phycol 41:1227–1235CrossRefGoogle Scholar
  68. Rokas A (2008) The molecular origins of multicellular transitions. Curr Opin Genet Dev 18(6):472–478CrossRefGoogle Scholar
  69. Schönknecht G, Chen WH, Ternes CM, Barbier GG, Shrestha RP, Stanke M, Bräutigam A, Baker BJ, Banfield JF, Garavito RM, Carr K, Wilkerson C, Rensing SA, Gagneul D, Dickenson NE, Oesterhelt C, Lercher MJ, Weber AP (2013) Gene transfer from bacteria and archaea facilitated evolution of an extremophilic eukaryote. Science 339(6124):1207–1210CrossRefGoogle Scholar
  70. Scott J, Yang EC, West JA, Yokoyama A, Kim HJ, Loideaux de Goër S, O'Kelly CJ, Orlova E, Kim SY, Park JK, Yoon HS (2011) On the genus Rhodella, the emended orders Dixoniellales and Rhodellales with a new order Glaucosphaerales (Rhodellophyceae, Rhodophyta). Algae 26:277–288CrossRefGoogle Scholar
  71. Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I (2010) Ancient origin of the integrin-mediated adhesion and signaling machinery. Proc Natl Acad Sci U S A 107(22):10142–10147CrossRefGoogle Scholar
  72. Sempere LF, Cole CN, McPeek MA, Peterson KJ (2006) The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. J Exp Zool B Mol Dev Evol 306(6):575–588CrossRefGoogle Scholar
  73. Shiu SH, Bleecker AB (2001) Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98(19):10763–10768CrossRefGoogle Scholar
  74. Silberfeld T, Leigh JW, Verbruggen H, Cruaud C, de Reviers B, Rousseau F (2010) A multi-locus time-calibrated phylogeny of the brown algae (Heterokonta, Ochrophyta, Phaeophyceae): investigating the evolutionary nature of the “brown algal crown radiation”. Mol Phylogenet Evol 56(2):659–674CrossRefGoogle Scholar
  75. Simon C, Ar Gall E, Deslandes E (2001) Expansion of the red alga Grateloupia doryphora along the coasts of Brittany (France). Hydrobiologia 443:23–29CrossRefGoogle Scholar
  76. Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I (2012) Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 5(222):ra35CrossRefGoogle Scholar
  77. Tarver JE, Donoghue PC, Peterson KJ (2012) Do miRNAs have a deep evolutionary history? Bioessays 34(10):857–866CrossRefGoogle Scholar
  78. Tonon T, Rousvoal S, Roeder V, Boyen C (2008) Expression profiling of the mannuronan C5-epimerase multigenic family in the brown alga Laminaria digitata (Phaeophyceae) under biotic stress conditions. J Phycol 44:1250–1256CrossRefGoogle Scholar
  79. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417CrossRefGoogle Scholar
  80. Woelkerling WJ (1990) An introduction. In: Cole KM, Sheath RG (eds) Biology of the red algae. Cambridge University Press, Cambridge, pp 1–6Google Scholar
  81. Xiao S, Knoll AH, Yuan X, Pueschel CM (2004) Phosphatized multicellular algae in the neoproterozoic Doushantuo formation, China, and the early evolution of florideophyte red algae. Am J Bot 91(2):214–227CrossRefGoogle Scholar
  82. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21(5):809–818CrossRefGoogle Scholar
  83. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492CrossRefGoogle Scholar
  84. Yoon HS, Zuccarello GC, Bhattacharya D (2010) Evolutionary history and taxonomy of red algae. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 25–42CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.UMR 8227, Integrative Biology of Marine ModelsStation Biologique de Roscoff, Sorbonne Universités, UPMC Univ Paris 06Roscoff cedexFrance
  2. 2.CNRS, UMR 8227, Integrative Biology of Marine ModelsStation Biologique de RoscoffRoscoff cedexFrance

Personalised recommendations