Macroevolution and Paleobiogeography of Jurassic-Cretaceous Ammonoids

  • Margaret M. YacobucciEmail author
Part of the Topics in Geobiology book series (TGBI, volume 44)


Jurassic-Cretaceous (J-K) ammonoids experienced remarkably rapid rates of evolution and extinction. The processes that fueled this evolutionary volatility are not well understood. Evolutionary relationships among and within the six J-K ammonoid suborders are incompletely reconstructed, in part because the homeomorphy and intraspecific variability complicates phylogenetic analysis. J-K ammonoids appear to have been developmentally flexible; heterochronic shifts in their evolution are common and taxa are often distinguishable by variations in the timing of developmental events. Changes in environmental variables are consistently correlated with both diversification and extinction in J-K ammonoids. The tectonic separation of Pangea, greenhouse warming, and sea level change drove ammonoid dispersal and the development of biogeographic provinces. A synthetic view of J-K ammonoid evolution provides the foundation for a model of ammonoid speciation in which sea level change provides new epeiric sea microhabitats into which ammonoids disperse while developmental flexibility provides the morphological and ecological variation to fuel divergence and speciation. New quantitative and geospatial approaches will allow us to integrate phylogenetic and paleobiogeographic data to better understand the macroevolution of these cephalopods.


Evolution Speciation Extinction Phylogeny Heterochrony Biogeography 



This chapter is dedicated to William A. Cobban, William J. Kennedy, Richard A. Reyment, and Gerd E. G. Westermann, pioneers in the integrative study of Jurassic-Cretaceous ammonoid evolution. The author wishes to thank the many colleagues with whom she has discussed ammonoid evolution, especially Warren D. Allmon, Kenneth De Baets, Silvain Gerber, David K. Jacobs, Susan M. Klofak, Christian Klug, Matthew J. Knauss, Dieter Korn, Björn Kröger, Isabelle Kruta, Neil H. Landman, Richard A. MacKenzie, Royal H. Mapes, Lori L. Manship, Al McGowan, Claude Monnet, Pascal Neige, Roy Plotnick, Isabelle Rouget, W. Bruce Saunders, Kazushige Tanabe, Karen J. Waggoner, Steve Wang, Ryoji Wani, and Gerd E. G. Westermann. Isabelle Rouget, Kazushige Tanabe, Christian Klug, and Tony Avruch also provided helpful feedback on the manuscript.


  1. Aguilée R, Lambert A, Claessen D (2011) Ecological speciation in dynamic landscapes. J Evol Biol 24:2663–2677Google Scholar
  2. Aguirre-Urreta MB, Mourgues FA, Rawson PF, Bulot LG, Jaillard E (2007) The Lower Cretaceous Chañarcillo and Neuquén Andean basins: ammonoid biostratigraphy and correlations. Geol J 42:143–173Google Scholar
  3. Albertson RC, Kocher TD (2006) Genetic and developmental basis of cichlid trophic diversity. Heredity 97:211–221Google Scholar
  4. Allmon WD, Smith U (2011) What, if anything, can we learn from the fossil record about speciation in marine gastropods? Biological and geological considerations. Am Malacol Bull 29:247–276Google Scholar
  5. Alroy J (2008) Dynamics of origination and extinction in the marine fossil record. Proc Natl Acad Sci U S A 105:11536–11542Google Scholar
  6. Alroy J (2010) Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology 53:1211–1235Google Scholar
  7. Alroy J, Marshall CR, Bambach RK, Bezusko K, Foote M, Fürsich FT, Hansen TA, Holland SM, Ivany LC, Jablonski D, Jacobs JK, Jones DC, Kosnik MA, Lidgard S, Low S, Miller AI, Novack-Gottshall PM, Olszewski TD, Patzkowsky ME, Raup DM, Roy K, Sepkoski, Jr JJ, Sommers MG, Wagner PJ, Webber A (2001) Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proc Natl Acad Sci U S A 98:6261–6266Google Scholar
  8. Alroy J, Aberhan M, Bottjer DJ, Foote M, Fürsich FT, Harries PJ, Hendy AJW, Holland SM, Ivany LC, Kiessling W, Kosnik MA, Marshall CR, McGowan AJ, Miller AI, Olszewski TD, Patzkowsky ME, Peters SE, Villier L, Wagner PJ, Bonuso N, Borkow PS, Brenneis B, Clapham ME, Fall LM, Ferguson CA, Hanson VL, Krug AZ, Layou KM, Leckey EH, Nürnberg S, Powers CM, Sessa JA, Simpson C, Tomašových A, Visaggi CC (2008) Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97–100Google Scholar
  9. Alsen P (2006) The Early Cretaceous (late Ryazanian-early Hauterivian) ammonite fauna of North-East Greenland: taxonomy, biostratigraphy, and biogeography. Foss Strata 53:1–229Google Scholar
  10. Arias C (2008) Palaeoceanography and biogeography in the Early Jurassic Panthalassa and Tethys oceans. Gondwana Res 14:306–315Google Scholar
  11. Arkell WJ, Furnish WM, Kummel B, Miller AK, Moore RC, Schindewolf OH, Sylvester-Bradley PC, Wright CW (1957) Treatise on invertebrate paleontology, part L, Mollusca 4, Cephalopoda Ammonoidea. GSA and University of Kansas Press, Boulder and LawrenceGoogle Scholar
  12. Atrops F, Meléndez G (1988) Palaeobiogeography and evolutionary trends in Lower Kimmeridgian ataxioceratids from Spain. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and Past. Schweizerbart, StuttgartGoogle Scholar
  13. Bardhan S, Shome S, Roy P (2007) Biogeography of Kutch ammonites during the latest Jurassic (Tithonian) and a global paleobiogeographic overview. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods––Present and Past: new insights and fresh perspectives. Springer, Dordrecht, p 375–395Google Scholar
  14. Bayer U, McGhee GR Jr (1984) Iterative evolution of Middle Jurassic ammonite faunas. Lethaia 17:1–16Google Scholar
  15. Becker RT (1993) Anoxia, eustatic changes, and Upper Devonian to lowermost Carboniferous global ammonoid diversity. In: House MR (ed) The Ammonoidea. Environment, ecology, and evolutionary change. Systematics Association special volume, vol 47. Clarendon, LondonGoogle Scholar
  16. Bengtson P, Kakabadze MV (1999) Biogeography of Cretaceous ammonites: a review of procedures and problems. N Jahrb Geol Paläontol Abh 212:221–239Google Scholar
  17. Bert D, Bersac S (2013) Evolutionary patterns-tested with cladistics-and processes in relation to palaeoenvironments of the upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous). Paleontology 56:631–646Google Scholar
  18. Bessenova NV, Mikhailova IA (1983) The evolution of the Jurassic-Cretaceous ammonoids. Dokl Akad Nauk SSSR 269:733-797 [in Russian]Google Scholar
  19. Bessenova NV, Mikhailova IA (1991) Higher taxa of Jurassic and Cretaceous Ammonitida. J Paleontol 25:1–19Google Scholar
  20. Bird CE, Fernandez-Silva I, Skillings DJ, Toonen RJ (2012) Sympatric speciation in the post “modern synthesis” era of evolutionary biology. Evol Biol 39:158–180Google Scholar
  21. Blakey RC (2011a) Mollewide plate tectonic maps of Phanerozoic. Accessed 19 Oct 2013
  22. Blakey RC (2011b) Paleogeography and geologic evolution of North America. Accessed 24 Mar 2014
  23. Blau J, Meister C, Schmidt-Effing R, Villaseñor AB (2008) A new fossiliferous site of Lower Liassic (Upper Sinemurian) marine sediments from the southern Sierra Madre Oriental (Puebla, Mexico): ammonite fauna, biostratigraphy and description of Ectocentrites hillebrandti new species. Rev Mex Cienc Geol 25:402–407Google Scholar
  24. Bourillot R, Neige P, Pierre A, Durlet C (2008) Early-Middle Jurassic lytoceratid ammonites with constructions from Morocco: palaeobiogeographical and evolutionary implications. Paleontology 51:597–609Google Scholar
  25. Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33Google Scholar
  26. Brayard A, Escarguel G, Bucher H (2007) The biogeography of Early Triassic ammonoid faunas: clusters, gradients, and networks. Geobios 40:749–765Google Scholar
  27. Brosse M, Brayard A, Fara E, Neige P (2013) Ammonoid recovery after the Permo-Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. J Geol Soc Lond 170:225–236Google Scholar
  28. Bujtor L (2010) Systematics, phylogeny and homeomorphy of the Engonoceratidae HYATT, 1900 (Ammonoidea, Cretaceous) and revision of Engonoceras duboisi LATIL, 1989. Carnets Geol Article No. CG2010_A08Google Scholar
  29. Butlin RK, Galindo J, Grahame JW (2008) Sympatric, parapatric, or allopatric? The most important way to classify speciation? Philos Trans R Soc Lond B Biol Sci 363:2997–3007Google Scholar
  30. Callomon JH (1981) Dimorphism in ammonoids. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar
  31. Callomon JH (1985) The evolution of the Jurassic ammonite family Cardioceratidae. Spec Pap Paleontol 33:49–98Google Scholar
  32. Callomon JH (2003) The Middle Jurassic of western and northern Europe: its subdivisions, geochronology and correlations. Geol Surv Den Greenl Bull 1:61–73Google Scholar
  33. Cariou E, Sequeiros L (1987) Callovian Taramelliceras (Ammonitina, Taramelliceratinae): discovery of the ancestral forms and probable progenetic origin of the genus. Geobios 20:495–516Google Scholar
  34. Cariou E, Elmi S, Mangold C (1990) Securisites, new genus (Ammonitina, Jurassic) and its phylogenetic position in the family Oppeliidae: an example of iterative evolution. C R Acad Sci Ser II Mec Phys Chim Sci Univers Sci Terr 315:1267–1273Google Scholar
  35. Cecca F (1999) Palaeobiogeography of Tethyan ammonites during the Tithonian (latest Jurassic). Paleogeogr Paleoclimatol Paleoecol 147:1–37Google Scholar
  36. Cecca F, Macchioni F (2004) The two Early Toarcian (Early Jurassic) extinction events in ammonoids. Lethaia 37:35–56Google Scholar
  37. Cecca F, Pochettino M (2000) The Early Kimmeridgian genus Metastreblites Olóriz, 1978 (Ammonoidea, Oppeliidae) from Rocca Drago (western Sicily, Italy): homeomorphy and iterative evolution within the Subfamily Streblitinae. Geobios 33:97–107Google Scholar
  38. Cecca F, Rouget I (2006) Anagenetic evolution of the early Tithonian ammonite genus Semiformiceras tested with cladistic analysis. Palaeontology 49:1069–1080Google Scholar
  39. Cecca F, Martin Garin B, Marchand D, Lathuiliere B, Bartolini A (2005a) Paleoclimatic control of biogeographic and sedimentary events in Tethyan and peri-Tethyan areas during the Oxfordian (Late Jurassic). Paleogeogr Paleoclimatol Paleoecol 222:10–32Google Scholar
  40. Cecca F, Vrielynck B, Lavoyer T, Gaget H (2005b) Changes in the ammonite taxonomical diversity gradient during the Late Jurassic-Early Cretaceous. J Biogeogr 32:535–547Google Scholar
  41. Cobban WA, Obradovich JD, Walaszcyk I, McKinney KC (2006) A USGS zonal table for the Upper Cretaceous Middle Cenomanian-Maastrichtian of the Western Interior of the United States based on ammonites, inoceramids, and radiometric ages. US Geological Survey Open-File Report 2006–1250Google Scholar
  42. Cohen KM, Finney S, Gibbard PL (2013) International Chronostratigraphic Chart. International Commission on Stratigraphy. Accessed 23 July 2013
  43. Courville P (2007) Échanges et colonisations fauniques (Ammonitina) entre Téthys et Atlantique sud au Crétacé Supérieur: voies atlantiques ou sahariennes? Carnets Geol Mem 02:16–19Google Scholar
  44. Courville P, Cronier C (2003) Ontogenetic heterochronies: a tool to study both variability and phyletic relationships? Example: Nigericeras, Ammonitina of the African Upper Cretaceous. CR Palevol 2:535–546Google Scholar
  45. Courville P, Lang J, Thierry J (1998) Ammonite faunal exchanges between South Tethyan platforms and South Atlantic during the uppermost Cenomanian-Lowermost/Middle Turonian in the Benue Trough (Nigeria). Geobios 31:187–214Google Scholar
  46. Coyne JA, Orr HA (2004) Speciation. Sinauer Associates, SunderlandGoogle Scholar
  47. Davis RA, Landman NH, Dommergues J-L, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology, vol 13. Plenum Press, New YorkGoogle Scholar
  48. De Baets K, Klug C, Korn D, Landman NH (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806Google Scholar
  49. De Baets K, Bert D, Hoffmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability. In: Klug C, Korn D, De Baets K, Kruta I, Mapes R (eds) Ammonoid paleobiology: from anatomy to ecology. Topics in geobiology, vol 43. Springer, DordrechtGoogle Scholar
  50. Delanoy G, Busnardo R (2007) Anglesites gen. nov. (Ammonoidea, Ancyloceratina), a new genus of heteromorphic ammonites from the upper Barremian from South-East of France. Geobios 40:801–807Google Scholar
  51. Delanoy G, Poupon A (1992) About the genus Lytocrioceras Spath, 1924: (Ammonoidea, Ancyloceratina). Geobios 25:367–382Google Scholar
  52. Dera G, Neige P, Dommergues J-L, Fara E, Laffont R, Pellenard P (2010) High-resolution dynamics of Early Jurassic marine extinctions: the case of Pliensbachian-Toarcian ammonites (Cephalopoda). J Geol Soc 167:21–33Google Scholar
  53. Dera G, Neige P, Dommergues J-L, Brayard A (2011) Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Glob Planet Chang 78:92–105Google Scholar
  54. Doguzhaeva L, Mikhailova I (1981) The genus Luppovia and the phylogeny of Cretaceous heteromorphic ammonoids. Lethaia 15:55–65Google Scholar
  55. Dommergues J-L (1987) L’evolution chez les Ammonitina du Lias moyen (Carixian, Domerien basal) en Europe occidentale. Doc Lab Geol Fac Sci Lyon 98:1–297Google Scholar
  56. Dommergues J-L (1994) The Jurassic ammonite Coeloceras: an atypical example of dimorphic progenesis elucidated by cladistics. Lethaia 27:143–152Google Scholar
  57. Dommergues J-L (2002) Les premiers Lytoceratoidea du Nord-Ouest de l’Europe (Ammonoidea, Sinemurien inferieur, France): Exemple de convergence evolutive vers les morphologies “capricornes”. Rev Paleobiol 21:257–277Google Scholar
  58. Dommergues J-L, Marchand D (1988) Paléobiogéographie historique et ecologique: Applications aux ammonites du Jurassique. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  59. Dommergues J-L, Mouterde R (1987) The endemic trends of Liassic ammonite faunas of Portugal as the result of the opening up of a narrow epicontinental basin. Paleogeogr Paleoclimatol Paleoecol 58:129–138Google Scholar
  60. Dommergues J-L, Mouterde R, Rivas P (1984) A false polymorphism: Dubariceras, new genus of the Ammonitina from the Mesogean Carixian. Geobios 17:831–839Google Scholar
  61. Dommergues J-L, David B, Marchand D (1986) Les relations ontogenèse-phylogenèse: Applications paléontologiques. Geobios 19:335–356Google Scholar
  62. Dommergues J-L, Cariou E, Contini D, Hantzpergue P, Marchand D, Meister C, Thierry J (1989) Homéomorphies et canalisations évolutives: Le role de l’ontogenèse. Quelques exemples pris chez les ammonites du Jurassique. Geobios 22:5–48Google Scholar
  63. Dommergues J-L, Laurin B, Meister C (2001) The recovery and radiation of Early Jurassic ammonoids: Morphologic versus palaeobiogeographical patterns. Paleogeogr Paleoclimatol Paleoecol 165:195–213Google Scholar
  64. Dommergues J-L, Fara E, Meister C (2009) Ammonite diversity and its palaeobiogeographical structure during the early Pliensbachian (Jurassic) in the western Tethys and adjacent areas. Paleogeogr Paleoclimatol Paleoecol 280:64–77Google Scholar
  65. Donovan DT (1994) History of classification of Mesozoic ammonites. J Geol Soc 151:1035–1040Google Scholar
  66. Donovan DT, Callomon JH, Howarth MK (1981) Classification of the Jurassic Ammonitina. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar
  67. Dunhill AM (2012) Problems with using rock outcrop area as a paleontological sampling proxy: rock outcrop and exposure area compared with coastal proximity, topography, land use, and lithology. Paleobiol 38:126–143Google Scholar
  68. El Hariri K, Neige P, Dommergues J-L (1996) Rib morphometrics of Pliensbachian Harpoceratinae (Ammonitina) from the High Atlas (Morocco). Comparison with specimens from the Central Apennines (Italy). C R Acad Sci Ser II A Sci Terre Planet 322:693–700Google Scholar
  69. Enay R, Cariou E (1997) Ammonite faunas and palaeobiogeography of the Himalayan belt during the Jurassic: Initiation of a Late Jurassic austral ammonite fauna. Paleogeogr Paleoclimatol Paleoecol 134:1–38Google Scholar
  70. Enay R, Cariou E (1999) Jurassic ammonite faunas from Nepal and their bearing on the palaeobiogeography of the Himalayan belt. J Asian Earth Sci 17:829–848Google Scholar
  71. Enay R, Gygi RA (2001) Les ammonites de la zone à Bifurcatus (Jurassique Supérieur, Oxfordien) de Hinterstein, près de Oberehrendingen (canton d’Argovie, Suisse). Eclogae Geol Helv 94:447–487Google Scholar
  72. Engeser T, Keupp H (2002) Phylogeny of the aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 34:79–96Google Scholar
  73. Fernández-López SR, Chong Diaz GB (2011) Dimorphinites (Ammonoidea, Jurassic, Upper Bajocian) in the Precordillera of northern Chile. J Paleontol 85:395–405Google Scholar
  74. Fitzpatrick BM, Fordyce JA, Gavrilets S (2008) What, if anything, is sympatric speciation? J Evol Biol 21:1452–1459Google Scholar
  75. Fitzpatrick BM, Fordyce JA, Gavrilets S (2009) Pattern, process and geographic modes of speciation. J Evol Biol 22:2342–2347Google Scholar
  76. Foote M (2000) Origination and extinction components of taxonomic diversity: General Problems. In: Erwin DH, Wing SL (eds) Deep time: paleobiology’s perspective. Allen Press, LawrenceGoogle Scholar
  77. Foote M (2003) Origination and extinction through the Phanerozoic: a new approach. J Geol 111:125–148Google Scholar
  78. Foote M, Sepkoski JJ Jr (1999) Absolute measures of the completeness of the fossil record. Nature 398:415–417Google Scholar
  79. Futakami M, Obata I (1988) Distribution of some Turonian and Coniacian collignoniceratid ammonites. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart.Google Scholar
  80. Galácz A (2012) Early perisphinctid ammonites from the early/late Bajocian boundary interval (Middle Jurassic) from Lókút, Hungary. Geobios 45:285–295Google Scholar
  81. Gangopadhyay TK, Bardhan S (2007) Ornamental polymorphism in Placenticeras kaffrarium (Ammonoidea; Upper Cretaceous of India): Evolutionary implications. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past: new insights and fresh perspectives. Springer, AmsterdamGoogle Scholar
  82. Gavrilets S (2003) Perspective: Models of speciation: What have we learned in 40 years? Evolution 57:2197–2215Google Scholar
  83. Gavrilets S (2004) Fitness landscapes and the origin of species. Princeton University, PrincetonGoogle Scholar
  84. Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737Google Scholar
  85. Geraldes MC, Motoki A, Costa A, Mota CE, Mohriak WU (2013) Geochronology (Ar/Ar and K-Ar) of the South Atlantic post-break-up magmatism. Geol Soc Lond Spec Pub 369:41–74Google Scholar
  86. Gerber S (2011) Comparing the differential filling of morphospace and allometric space through time: the morphological and developmental dynamics of Early Jurassic ammonoids. Paleobiology 37:369–382Google Scholar
  87. Gerber S, Neige P, Eble GJ (2007) Combining ontogenetic and evolutionary scales of morphological disparity: a study of Early Jurassic ammonites. Evol Dev 9:472–482Google Scholar
  88. Gerber S, Eble GJ, Neige P (2008) Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 62:1450–1457Google Scholar
  89. Geyssant JR (1988) Diversity in mode and tempo of evolution within one Tithonian ammonite family, the simoceratids. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  90. Gilinsky NL (1994) Volatility and the Phanerozoic decline of background extinction. Paleobiol 20:445–458Google Scholar
  91. Gilinsky NL (1998) Evolutionary turnover and volatility in higher taxa. In: McKinney ML, Drake JA (eds) Biodiversity dynamics: turnover of populations, taxa, and communities. Columbia University, New YorkGoogle Scholar
  92. Gordon WA (1976) Ammonoid provincialism in space and time. J Paleontol 50:521–535Google Scholar
  93. Gould SJ (1977) Ontogeny and phylogeny. Harvard University, CambridgeGoogle Scholar
  94. Grant PR, Grant BR (2008) How and why species multiply: the radiation of Darwin’s finches. Princeton University, PrincetonGoogle Scholar
  95. Grant PR, Grant BR, Abzhanov A (2006) A developing paradigm for the development of bird beaks. Biol J Linn Soc 88:17–22Google Scholar
  96. Guex J (1981) Quelques cas de dimorphisme chez les ammonidés du Lias Inférieur. Bull Soc Vaudoise des Sci Nat 360:239–248Google Scholar
  97. Guex J (1987) Sur la phylogenèse des ammonites du Lias Inférieur. Bull Geol Lausanne 292:455–469Google Scholar
  98. Guex J (1995) Ammonites Hettangiennes de la Gabbs Valley Range (Nevada, USA). Mémoires de géologie, vol 27. Lausanne, Switzerland, pp 1–131Google Scholar
  99. Guex J (2000) Paronychoceras gen. n., un nouveau genre d’ammonites (Cephalopoda) du Lias Superieur. Bull Soc Vaudoise des Sci Nat 87:115–124Google Scholar
  100. Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclogae Geol Helv 94:321–328Google Scholar
  101. Guex J, Schoene B, Bartolini A, Spangenberg J, Schaltegger U, O’Dogherty L, Taylor D, Bucher H, Atudorei V (2012) Geochronological constraints on post-extinction recovery of the ammonoids and carbon cycle perturbations during the Early Jurassic. Paleogeogr Paleoclimatol Paleoecol 346–347:1–11Google Scholar
  102. Haas O (1942) Recurrence of morphologic types and evolutionary cycles in Mesozoic ammonites. J Paleontol 16:643–650Google Scholar
  103. Hallam A (1989) The case for sea-level change as a dominant causal factor in mass extinction of marine invertebrates. Philos Trans R Soc Lond B Biol Sci 325:437–455Google Scholar
  104. Hallam A (1990) Biotic and abiotic factors in the evolution of early Mesozoic marine molluscs. In: Ross RM, Allmon WD (eds) Causes of evolution: a paleontological perspective. University of Chicago, ChicagoGoogle Scholar
  105. Hancock JM, Kennedy WJ (1981) Upper Cretaceous ammonite stratigraphy: Some current problems. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar
  106. Hannisdal B, Peters SE (2011) Phanerozoic earth system evolution and marine biodiversity. Science 334:1121–1124Google Scholar
  107. Hantzpergue P (1991) Biogéographie des ammonites et variations du niveau marin: Apport de la stratigraphie séquentielle dans l’analyse des peuplements du Kimméridgien Nord-Aquitain. Geobios 24:59–64Google Scholar
  108. Hantzpergue P (1995) Faunal trends and sea-level changes: Biogeographic patterns of Kimmeridgian ammonites on the Western European Shelf. Geol Rundsch 84:245–254Google Scholar
  109. Haq BU, Hardenbol J, Vail PR (1987) Chronology of fluctuating sea levels since the Triassic. Science 235:1156–1167Google Scholar
  110. Haq BU, Hardenbol J, Vail PR (1988) Mesozoic and Cenozoic chronostratigraphy and cycles of sea-level change, vol 42. Society for Sedimentary Geology Special Publication, Tulsa, Oklahoma, USA, pp 71–108Google Scholar
  111. Harada K, Tanabe K (2005) Paedomorphosis in the Turonian (Late Cretaceous) collignoniceratine ammonite lineage from the north Pacific region. Lethaia 38:47–57Google Scholar
  112. Hardy C, Fara E, Laffont R, Dommergues J-L, Meister C, Neige P (2012) Deep-time phylogenetic clustering of extinctions in an evolutionarily dynamic clade (Early Jurassic ammonites). PLoS ONE 7(5):e37977Google Scholar
  113. Hay WW, Floegel S (2012) New thoughts about the Cretaceous climate and oceans. Earth-Sci Rev 115:262–272Google Scholar
  114. Hendy AJW (2009) Quantitative analysis of global Cretaceous ammonoid paleobiogeography. 9th North American Paleontological Convention, Abstracts p. 243Google Scholar
  115. Hirano H (1988) Evolutionary mode of some Late Cretaceous ammonites in offshore waters. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  116. Hirano H, Toshimitsu S, Matsumoto T, Takahashi K (2000) Changes in Cretaceous ammonoid diversity and marine environments of the Japanese Islands. In: Okada H, Mateer NJ (eds) Cretaceous environments of Asia. Developments in palaeontology and stratigraphy, vol 17. Elsevier, AmsterdamGoogle Scholar
  117. Hoffmann E (2010) New insights on the phylogeny of the Lytoceratoidea (Ammonitina) from the septal lobe and its functions interpretation. Rev Paléobiologie Genève 29(1):1–156Google Scholar
  118. Holland SM (2012) Sea level change and the area of shallow-marine habitat: implications for marine biodiversity. Paleobiol 38:205–217Google Scholar
  119. Houša V (1965) Sexual dimorphism and the system of Jurassic and Cretaceous Ammonoidea (preliminary note). Cas Nar Muz 134(7):33–35Google Scholar
  120. House MR (1985) Correlation of mid-Palaeozoic ammonoid evolutionary events with global sedimentary perturbations. Nature 213:17–22Google Scholar
  121. House MR (1987) Geographic distribution of Nautilus shells. In: Saunders WB, Landman NH (eds) Nautilus, the biology and paleobiology of a living fossil. Plenum Press, New YorkGoogle Scholar
  122. House MR (1988) Major features of cephalopod evolution. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, StuttgartGoogle Scholar
  123. House MR (1989) Ammonoid extinction events. Philos Trans R Soc Lond B Biol Sci 325:307–326Google Scholar
  124. House MR (1993) Fluctuations in ammonoid evolution and possible environmental controls. In: House MR (ed) The Ammonoidea: Environment, ecology, and evolutionary change. Systematics association special volume, vol 47. Clarendon, LondonGoogle Scholar
  125. Howarth MK (1978) The stratigraphy and ammonite fauna of the Upper Lias of Northamptonshire. Bull Brit Mus (Nat Hist) 29:235–288Google Scholar
  126. Howarth MK (2013) Treatise on invertebrate paleontology, part l, revised, volume 3b, chap. 4: Psiloceratoidea, Eoderoceratoidea, Hildoceratoidea. Treatise Online 57:1–139Google Scholar
  127. Iba Y (2009) An Early Albian Arctic-type ammonite Arcthoplites from Hokkaido, northern Japan, and its paleobiogeographic and paleoclimatological implications. J Asian Earth Sci 34:46–50Google Scholar
  128. Iba Y, Sano S (2007) Mid-Cretaceous step-wise demise of the carbonate platform biota in the Northwest Pacific and establishment of the North Pacific biotic province. Paleogeogr Paleoclimatol Paleoecol 245:462–482Google Scholar
  129. Ifrim C, Stinnesbeck W (2010) Migration pathways of the late Campanian and Maastrichtian shallow facies ammonite Sphenodiscus in North America. Paleogeogr Paleoclimatol Paleoecol 292:96–102Google Scholar
  130. Ikeda Y, Wani R (2012) Different modes of migration among Late Cretaceous ammonoids in northwestern Hokkaido, Japan: evidence from the analyses of shell whorls. J Paleontol 86:605–615Google Scholar
  131. Jablonski D (1986) Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231:129–133Google Scholar
  132. Jablonski D (2005) Mass extinctions and macroevolution. Paleobiology 31(suppl 2):192–210Google Scholar
  133. Jablonski D (2008) Extinction and the spatial dynamics of biodiversity. Proc Natl Acad Sci U S A 105(suppl 1):11528–11535Google Scholar
  134. Jablonski D, Roy K (2003) Geographical range and speciation in fossil and living molluscs. Proc Biol Sci 270:401–406Google Scholar
  135. Jacobs DK, Landman NH, Chamberlain JA Jr (1994) Ammonite shell shape covaries with facies and hydrodynamics: Iterative evolution as a response to changes in basinal environment. Geol 22:905–908Google Scholar
  136. Jagt-Yazykova EA (2011) Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scr Geol 143:15–121Google Scholar
  137. Jagt-Yazykova EA, Zonova TD (2012) Paleogeography of Cretaceous ammonoids of the Pacific Coast of Russia. Stratigrafiya, Geologicheskaya Korrelyatsiya 20:295–315Google Scholar
  138. Janevski GA, Baumiller TK (2009) Evidence for extinction selectivity throughout the marine invertebrate fossil record. Paleobiology 35:553–564Google Scholar
  139. Jeletzky JA, Stelck CR (1981) Pachygrycia, a new Sonneratia like ammonite from the Lower Cretaceous (Earliest Albian?) of Northern Canada. Geological Survey of Canada Paper 80–25, Ottawa, CanadaGoogle Scholar
  140. Johannesson K (2001) Parallel speciation: a key to sympatric divergence. Trends Ecol Evol 16:148–153Google Scholar
  141. Kakabadze MV (2004) Intraspecific and intrageneric variabilities and their implications for the systematics of Cretaceous heteromorph ammonites: a review. Scr Geol 128:17–37Google Scholar
  142. Kauffman EG (1984) Paleobiogeography and evolutionary response dynamic in the Cretaceous Western Interior Seaway of North America. In: Westermann GEG (ed) Jurassic-Cretaceous biochronology and paleogeography of North America. Geological Association of Canada Special Papers, vol 27, p 273–306. St Johns, NewfoundlandGoogle Scholar
  143. Keller I, Seehausen O (2012) Thermal adaptation and ecological speciation. Mol Ecol 21:782–799Google Scholar
  144. Kennedy WJ (1977) Ammonite evolution. In: Hallam A (ed) Patterns of evolution, as illustrated by the fossil record. Elsevier, AmsterdamGoogle Scholar
  145. Kennedy WJ (1988) Mid-Turonian ammonite faunas from northern Mexico. Geol Mag 125:593–612Google Scholar
  146. Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Palaeontological Association. Special papers in palaeontology, vol 17:1–94. Palaeontological Association, LondonGoogle Scholar
  147. Kennedy WJ, Cobban WA (1990a) Cenomanian ammonite faunas from the Woodbine Formation and lower part of the Eagle Ford Group, Texas. J Paleontol 33:75–154Google Scholar
  148. Kennedy WJ, Cobban WA (1990b) Cenomanian micromorph ammonites from the Western Interior of the USA. J Paleontol 33:379–422Google Scholar
  149. Kennedy WJ, Wright CW (1985) Evolutionary patterns in Late Cretaceous ammonites. Spec Pap Palaeontol 33:131–143Google Scholar
  150. Kennedy WJ, Wright CW (1994) The affinities of Nigericeras Schneegans, 1943 (Cretaceous, Ammonoidea). Geobios 27:583–589Google Scholar
  151. Kennedy WJ, Landman NH, Christensen WK, Cobban WA, Hancock JM (1998) Marine connections in North America during the late Maastrichtian: Palaeogeographic and palaeobiogeographic significance of Jeletzkytes nebrascensis Zone cephalopod fauna from the Elk Butte Member of the Pierre Shale, SE South Dakota and NE Nebraska. Cretac Res 19:745–775Google Scholar
  152. Kennedy WJ, Cobban WA, Landman NH (2001) A revision of the Turonian members of the ammonite subfamily Collignoniceratinae from the United States Western Interior and Gulf Coast. Bull Amer Mus Nat Hist 267:1–148Google Scholar
  153. Kidder DL, Worsley TR (2010) Phanerozoic Large Igneous Provinces (LIPs), HEATT (Haline Euxinic Acidic Thermal Transgression) episodes, and mass extinctions. Paleogeogr Paleoclimatol Paleoecol 295:162–191Google Scholar
  154. Kidder DL, Worsley TR (2012) A human-induced hothouse climate? GSA Today 22:4–11Google Scholar
  155. Kiessling W (2008) Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record 11:7–18Google Scholar
  156. Knauss MJ, Yacobucci MM (2014) Geographic information systems as a morphometric tool for quantifying morphological variability in an ammonoid clade. Palaeontol Electronica 17(1), 19A, 27p.
  157. Kotetichvili E (1988) Distribution globale des Ammonites éocrétacés du Caucase. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  158. Korn D (1992) Heterochrony in the evolution of Late Devonian ammonoids. Acta Palaeont Pol 37:21–36Google Scholar
  159. Korn D (1995) Paedomorphosis of ammonoids as a result of sealevel fluctuations in the Late Devonian Wocklumeria Stufe. Lethaia 28:155–165Google Scholar
  160. Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14:501–514Google Scholar
  161. Krug PJ (2011) Patterns of speciation in marine gastropods: a review of the phylogenetic evidence for localized radiations in the sea. Am Malacol Bull 29:169–186Google Scholar
  162. Kruta I, Landman N, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by jaw preservation. Science 331:70–72Google Scholar
  163. Labails C, Olivet J-L, Aslanian D, Roest WR (2010) An alternative early opening scenario for the Central Atlantic Ocean. Earth Planet Sci Lett 297:355–368Google Scholar
  164. Landman NH (1988a) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  165. Landman NH (1988b) Heterochrony in ammonites. In: McKinney ML (ed) Heterochrony in evolution. Plenum Press, New YorkGoogle Scholar
  166. Landman NH (1989) Iterative progenesis in Upper Cretaceous ammonites. Paleobiology 15:95–117Google Scholar
  167. Landman NH, Geyssant JR (1993) Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 15:247–255Google Scholar
  168. Landman NH, Dommergues J-L, Marchand D (1991) The complex nature of progenetic species: examples from Mesozoic ammonites. Lethaia 24:409–421Google Scholar
  169. Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in Geobiology, vol 13. Plenum Press, New YorkGoogle Scholar
  170. Landman NH, Garb MP, Rovelli R, Ebel DS, Edwards LE (2012) Short-term survival of ammonites in New Jersey after the end-Cretaceous bolide impact. Acta Palaeont Pol 57:703–715Google Scholar
  171. Laptikhovsky VL, Rogov MA, Nikolaeva SE, Arkhipkin AI (2013) Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bull Geosci 88:83–93Google Scholar
  172. Lehmann J, Herbig H-G (2009) Late Cretaceous ammonites from the Bou Angueur syncline (Middle Atlas, Morocco)—Stratigraphic and palaeobiogeographic implications. Palaeontogr A 289:45–87Google Scholar
  173. Lieberman BS (2000) Paleobiogeography: using fossils to study global change, plate tectonics, and evolution. Kluwer Academic, Plenum Press, New YorkGoogle Scholar
  174. Linares A, Sandoval J (1996) The genus Haplopleuroceras (Erycitidae, Ammonitina) in the Betic Cordillera, southern Spain. Geobios 29:287–305Google Scholar
  175. Lindgren AR, Pankey MS, Hochberg FG, Oakley TH (2012) A multi-gene phylogeny of Cephalopoda supports convergent morphological evolution in association with multiple habitat shifts in the marine environment. BMC Evol Biol 12:129Google Scholar
  176. Lockwood R (2008) Beyond the big five: Extinctions as experiments in the history of life. In: Kelley PH, Bambach RK (eds) From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontology Society Papers, vol 14. Paleontological Society, BoulderGoogle Scholar
  177. Longridge LM, Smith PL, Pálfy J, Tipper HW (2008) Three new species of the Hettangian (Early Jurassic) ammonite Sunrisites from British Columbia, Canada. J Paleontol 82:128–139Google Scholar
  178. Lukeneder A (2012) New biostratigraphic data on an Upper Hauterivian-Upper Barremian ammonite assemblage from the Dolomites (Southern Alps, Italy). Cretac Res 32:1–21Google Scholar
  179. Macchioni F, Cecca F (2002) Biodiversity and biogeography of middle-late Liassic ammonoids: implications for the Early Toarcian mass extinction. Geobios Mem Spec 24:165–175Google Scholar
  180. Machalski M, Heinberg C (2005) Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Geol Surv Den Bull 52:97–111Google Scholar
  181. MacKenzie RA, Yacobucci MM (2008) Exploring minimum geographic ranges and diversity dynamics of Western Interior ammonoids (Late Cretaceous) using geographic information systems (GIS), paleoGIS, spreadsheets, and recreational topographic mapping software. Abstracts, Annual Meeting of the American Association of Petroleum GeologistsGoogle Scholar
  182. Maeda H (1993) Dimorphism of Late Cretaceous false-puzosiine ammonites, Yokoyamaoceras Wright and Matsumoto, 1954 and Neopuzosia Matsumoto, 1954. Trans Proc Palaeontol Soc Japan New Ser 169:97–128Google Scholar
  183. Maeda H, Seilacher A (1996) Ammonoid taphonomy. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Topics in geobiology, vol 13. Plenum Press, New YorkGoogle Scholar
  184. Mahler DL, Ingram T, Revell LJ, Losos JB (2013) Exceptional convergence on the macroevolutionary landscape in island lizard radiations. Science 341:292–295Google Scholar
  185. Mallet J (2008) Hybridization, ecological races, and the nature of species: empirical evidence for the ease of speciation. Philos Trans R Soc Lond B Biol Sci 363:2971–2986Google Scholar
  186. Mallet J, Meyer A, Nosil P, Feder JL (2009) Space, sympatry and speciation. J Evol Biol 22:2332–2341Google Scholar
  187. Mancini EA (1978) Origin of the Grayson micromorph fauna, Upper Cretaceous of North Central Texas, USA. J Paleontol 52:1294–1314Google Scholar
  188. Mapes RH, Landman NH, Cochran K, Goiran C, De Forges BR, Renfro A (2010a) Early taphonomy and significance of naturally submerged Nautilus shells from the New Caledonia region. Palaios 25:597–610Google Scholar
  189. Mapes RH, Hembree DI, Rasor BA, Stigall A, Goirand C, De Forges BR (2010b) Modern Nautilus (Cephalopoda) taphonomy in a subtidal to backshore environment, Lifou (Loyalty Islands). Palaios 25:656–670Google Scholar
  190. Marchand D, Dommergues J-L (1988) Rythmes évolutifs et hétérochronies du développement: Exemples pris parmi les Ammonites Jurassiques. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  191. Marcinowski R, Wiedmann J (1988) Paleogeographic implications of the Albian ammonite faunas of Poland. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  192. Marie Curie SPECIATION Network (2012) What do we need to know about speciation? Trends Ecol Evol 27:27–39Google Scholar
  193. Matsukawa M, Sendon SV, Mateer FT, Sato T, Obata I (2012) Early Cretaceous ammonite fauna of Catanduanes Island, Philippines. Cretac Res 37:261–271Google Scholar
  194. Mayr E (1942) Systematics and the origin of species. Columbia University, New YorkGoogle Scholar
  195. Mayr E (1963) Animal species and evolution. Belknap, CambridgeGoogle Scholar
  196. Mayr E (1995) Species, classification, and evolution. In: Arai R, Kato M, Doi Y (eds) Biodiversity and evolution. National Science Museum Foundation, TokyoGoogle Scholar
  197. McGowan AJ, Smith AB (2008) Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 42:80–103Google Scholar
  198. McKinney ML, McNamara KJ (1991) Heterochrony: the evolution of ontogeny. Plenum Press, New YorkGoogle Scholar
  199. Meister C (1993) L’évolution parallèle des Juraphyllitidae euroboréaux et téthysiens au Pliensbachien: Le rôle des contraintes internes et externes. Lethaia 26:123–132Google Scholar
  200. Meister C, Alzouma K, Lang J, Mathey B (1992) Les ammonites du Niger (Afrique occidentale) et la transgression transsaharienne au cours du Cénomanien-Turonien. Geobios 25:55–100Google Scholar
  201. Meister C, Alzouma K, Lang J, Mathey B, Pascal A (1994) Nouvelles données sur les ammonites du Niger Oriental (Ténéré, Afrique Occidentale) dans le cadre de la transgression du Cénomanien-Turonien. Geobios 27:189–219Google Scholar
  202. Meléndez G, Fontana B (1993) Intraspecific variability, sexual dimorphism, and non-sexual polymorphism in the ammonite Larcheria Tintant (Perisphinctidae) from the Middle Oxfordian of western Europe. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Systematics Association special volume, vol 47. Clarendon, LondonGoogle Scholar
  203. Meléndez G, Sequeiros L, Brochwich-Lewiński W, Myczyński R, Chong G (1988) Paleobiogeographic relationships between Oxfordian ammonite faunas from the Mediterranean, Caribbean, and Andean provinces. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  204. Meyer CP, Geller JB, Paulay G (2005) Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution 59:113–125Google Scholar
  205. Mignot Y, Elmi S, Dommergues J-L (1993) Croissance et miniaturization de quelques Hildoceras (Cephalopoda) en liaison avec des environnments contraignant de la Téthys toarcianne. Geobios Mem Spec 15:305–312Google Scholar
  206. Mikhailova IA, Baraboshkin EY (2009) The evolution of the heteromorph and monomorph early Cretaceous ammonites of the suborder Ancyloceratina Wiedmann. J Palaeontol 43:527–536Google Scholar
  207. Miller AI, Aberhan M, Buick DP, Bulinski KV, Ferguson CA, Hendy AJW, Kiessling W (2009) Phanerozoic trends in the global geographic disparity of marine biotas. Paleobiol 35:612–630Google Scholar
  208. Minelli A, Fusco G (2012) On the evolutionary developmental biology of speciation. Evol Biol 39:242–254Google Scholar
  209. Mitta VV (2008) The genus Kepplerites Neumayr et Uhlig (Kosmoceratidae, Ammonoidea) in the Bathonian-Callovian beds (Middle Jurassic) of the Russian Platform. J Paleontol 42:5–14Google Scholar
  210. Monnet C (2009) The Cenomanian-Turonian boundary mass extinction (Late Cretaceous): new insights from ammonoid biodiversity patterns of Europe, Tunisia and the Western Interior (North America). Paleogeogr Paleoclimatol Paleoecol 282:88–104Google Scholar
  211. Monnet C, Bucher H (2007) European ammonoid diversity questions the spreading of anoxia as primary cause for the Cenomanian/Turonian (Late Cretaceous) mass extinction. Swiss J Geosci 100:137–144Google Scholar
  212. Monnet C, Bucher H, Escarguel G, Guex J (2003) Cenomanian (early Late Cretaceous) ammonoid faunas of Western Europe. Part II: diversity patterns and the end-Cenomanian anoxic event. Eclogae Geol Helv 96:381–398Google Scholar
  213. Monnet C, De Baets K, Klug C (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11(115)Google Scholar
  214. Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s Rule. J Paleontol 55:87–107Google Scholar
  215. Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperlioceras (Ammonoidea). Bull Soc Geol Fr 174:607–615Google Scholar
  216. Morton N (1988) Segregation and migration patterns in some Graphoceras populations (Middle Jurassic). In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  217. Moyne S, Neige P (2007) The space-time relationship of taxonomic diversity and morphological disparity in the Middle Jurassic ammonite radiation. Paleogeogr Paleoclimatol Paleoecol 248:82–95Google Scholar
  218. Moyne S, Neige P, Marchand D, Thierry J (2004) Répartition mondiale des faunes d'ammonites au Jurassique moyen (Aalénien supérieur à Bathonien moyen): relations entre biodiversité et paléogéographie. Bull Soc Geol Fr 175:513–523Google Scholar
  219. Myers CE, MacKenzie RA III, Lieberman BS (2013) Greenhouse biogeography: the relationship of geographic range to invasion and extinction in the Cretaceous Western Interior Seaway. Paleobiol 39:135–148Google Scholar
  220. Nagm E, Wilmsen M (2012) Late Cenomanian-Turonian (Cretaceous) ammonites from Wadi Qena, central Eastern Desert, Egypt: taxonomy, biostratigraphy and palaeobiogeographic implications. Acta Geol Pol 62:63–89Google Scholar
  221. Nagm E, Wilmsen M, Aly MF, Hewaidy A-G (2010) Upper Cenomanian-Turonian (Upper Cretaceous) ammonoids from the western Wadi Araba, Eastern Desert, Egypt. Cretac Res 31:473–499Google Scholar
  222. Naisbit RE, Jiggins CD, Mallet J (2003) Mimicry: developmental genes that contribute to speciation. Evol Dev 5(3):269–280Google Scholar
  223. Nardin E, Rouget I, Neige P (2005) Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology 33:969–972Google Scholar
  224. Navarro N, Neige P, Marchand D (2005) Faunal invasions as a source of morphological constraints and innovations? The diversification of the early Cardioceratidae (Ammonoidea; Middle Jurassic). Paleobiology 31:98–116Google Scholar
  225. Neige P (1992) Mise en place du dimorphisme (sexuel) chez les Ammonoides: Approche ontogénétique et interpretation hétérochronique. Diplome D’Etudes Approfondies (D.E.A.), Université de Bourgogne, France (unpublished thesis)Google Scholar
  226. Neige P, Marchand D, Laurin B (1997) Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia 30:145–155Google Scholar
  227. Neige P, Rouget I, Moyne S (2007) Phylogenetic practices among scholars of fossil cephalopods, with special reference to cladistics. In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods—Present and past: new insights and fresh perspectives. Springer, BerlinGoogle Scholar
  228. Neige P, Dera G, Dommergues J-L (2013) Adaptive radiation in the fossil record: a case study among Jurassic ammonoids. J Paleontol 56:1247–1261Google Scholar
  229. Norris RD, Hull PM (2012) The temporal dimension of marine speciation. Evol Ecol 26:393–415Google Scholar
  230. Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106Google Scholar
  231. Nosil P (2012) Ecological Speciation. Oxford series in ecology and evolution. Oxford University, OxfordGoogle Scholar
  232. Nürnberg S, Aberhan M (2013) Habitat breadth and geographic range predict diversity dynamics in marine Mesozoic bivalves. Paleobiology 39:360–372Google Scholar
  233. Obata I (1975) Lower Cretaceous ammonites from the Miyako Group; Diadochoceras from the Miyako Group. Bull Natl Sci Mus Ser C (Geol) 1:1–10Google Scholar
  234. Obata I, Matsukawa M (2007) Barremian-Aptian (Early Cretaceous) ammonoids from the Choshi Group, Honshu (Japan). Cretac Res 28:363–391Google Scholar
  235. O’Dogherty L, Sandoval J, Bartolini A, Bruchez S, Bill M, Guex J (2006) Carbon-isotope stratigraphy and ammonite faunal turnover for the Middle Jurassic in the Southern Iberian palaeomargin. Paleogeogr Paleoclimatol Paleoecol 239:311–333Google Scholar
  236. Ohkouchi N, Tsuda R, Chikaraishi Y, Tanabe K (2013) A preliminary estimate of the trophic position of the deep-water ram’s horn squid Spirula spirula based on the nitrogen isotopic composition of amino acids. Mar Biol 160:773–779Google Scholar
  237. Olivero EB, Medina FA (2000) Patterns of Late Cretaceous ammonite biogeography in southern high latitudes: the family Kossmaticeratidae in Antarctica. Cretac Res 21:269–279Google Scholar
  238. Olóriz F, Villaseñor AB (2006) Ceratosphinctes (Ammonitina, Kimmeridgian) in Mexico: from rare but typical inhabitant of west-Tethyan epioceanic and epicontinental waters to a geographically widespread ammonite genus. Geobios 39:255–266Google Scholar
  239. Owen HG, Mutterlose J (2006) Late Albian ammonites from offshore Suriname: implications for biostratigraphy and palaeobiogeography. Cretac Res 27:717–727Google Scholar
  240. Page KN (1996) Mesozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology, vol 13. Plenum Press, New YorkGoogle Scholar
  241. Page KN (2008) The evolution and geography of Jurassic ammonoids. Proc Geol Assoc 119:35–57Google Scholar
  242. Pardo JD, Huttenlocker AK, Marcot JD (2008) Stratocladistics and evaluation of evolutionary modes in the fossil record: An example from the ammonite genus Semiformiceras. J Paleontol 51:767–773Google Scholar
  243. Parent H (1997) Ontogeny and sexual dimorphism of Eurycephalites gottschei (Tornquist) (Ammonoidea) of the Andean Lower Callovian (Argentine-Chile). Geobios 30:407–419Google Scholar
  244. Parent H (1998) Upper Bathonian and lower Callovian ammonites from Chacay Melehué (Argentina). Acta Palaeontol Pol 43:69–130Google Scholar
  245. Payne JL, Finnegan S (2007) The effect of geographic range on extinction risk during background and mass extinction. Proc Natl Acad Sci U S A 104:10506–10511Google Scholar
  246. Peters SE (2005) Geological constraints on the macroevolutionary history of marine animals. Proc Natl Acad Sci U S A 102:12326–12331Google Scholar
  247. Peters SE, Foote M (2001) Biodiversity in the Phanerozoic: A reinterpretation. Paleobiology 27:583–601Google Scholar
  248. Peters SE, Heim NA (2010) The geological completeness of paleontological sampling in North America. Paleobiology 36:61–79Google Scholar
  249. Peters SE, Heim NA (2011) Macrostratigraphy and macroevolution in marine environments: Testing the common-cause hypothesis. In: McGowan AJ, Smith AB (eds) Comparing the geological and fossil records: implications for biodiversity studies. Special Publication, vol 358. Geological Society, LondonGoogle Scholar
  250. Pinho C, Hey J (2010) Divergence with gene flow: models and data. Ann Rev Ecol Evol Syst 41:215–230Google Scholar
  251. Poe S, Wiens JJ (2000) Character selection and the methodology of morphological phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, DCGoogle Scholar
  252. Raup DM (1976) Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289–297Google Scholar
  253. Raup DM, Stanley SM (1978) Principles of paleontology, 2nd edn. W.H. Freeman and Company, New YorkGoogle Scholar
  254. Rawson PF (1981) Early Cretaceous ammonite biostratigraphy and biogeography. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar
  255. Rawson PF (1993) The influence of sea-level changes on the migration and evolution of Early Cretaceous (pre-Aptian) ammonites. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Systematics Association. Special volume, vol 47. Clarendon, LondonGoogle Scholar
  256. Rawson PF (2007) Global relationships of Argentine (Neuquén Basin) Early Cretaceous ammonite faunas. Geol J 42:175–183Google Scholar
  257. Reboulet S (2001) Limiting factors on shell growth, mode of life and segregation of Valanginian ammonoid populations: Evidence from adult-size variations. Geobios 34:423–435Google Scholar
  258. Reeside JB Jr, Cobban WA (1960) Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. US Geological Survey Professional Paper 335, Washington, DC, p 1–126Google Scholar
  259. Reyment RA (1955) Some examples of homeomorphy in Nigerian Cretaceous ammonites. Geol Foren Stockholm Forh 77:567–594Google Scholar
  260. Reyment RA (1958) Some factors in the distribution of fossil cephalopods. Stockholm contributions in geology, vol 1, 6 Almqvist & Wiksell, Stockholm, pp 97–184Google Scholar
  261. Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3. Experiments with exact models of certain shell type. Bull Geol Inst Univ Uppsala N S 4:7–41Google Scholar
  262. Reyment RA (1980) Biogeography of the Saharan Cretaceous and Paleocene epicontinental transgressions. Cretac Res 1:299–327Google Scholar
  263. Reyment RA (2008) A review of the post-mortem dispersal of cephalopod shells. Palaeontol Electron 11(3):12A, 13Google Scholar
  264. Reyment RA (2011) Morphometric analysis of polyphenism in Lower Cretaceous ammonite genus Knemiceras. In: Elewa AMT (ed) Computational paleontology. Springer, BerlinGoogle Scholar
  265. Rogov MA (2012) Latitudinal gradient of taxonomic richness of ammonites in the Kimmeridgian-Volgian in the northern hemisphere. Paleontol J 46:148–156Google Scholar
  266. Ross CA, Moore GT, Hayashida DN (1992) Late Jurassic paleoclimate simulation—Palaeoecological implications for ammonoid provinciality. Palaios 7:487–507Google Scholar
  267. Rouget I, Neige P, Dommergues J-L (2004) L’analyse phylogénétique chez les ammonites: État des lieux et perspectives. Bull Soc Geol France 175:507–512Google Scholar
  268. Ruban DA (2013) Spatial heterogeneity of the Early-Middle Toarcian (Jurassic) ammonite diversity and basin geometry in the Northwestern Caucasus (southwestern Russia; northern Neo-Tethys). Paleogeogr Paleoclimatol Paleoecol 386:225–232Google Scholar
  269. Ruiz-Martínez VC, Torsvik TH, van Hinsbergen DJJ, Gaina C (2012) Earth at 200 Ma: Global palaeogeography refined from CAMP palaeomagnetic data. Earth Planet Sci Lett 331-332:67–79Google Scholar
  270. Rulleau L, Bécaud M, Neige P (2003) Les ammonites traditionnellement regroupées dans la sous-famille des Bouleiceratinae (Hildoceratidae, Toarcien): aspects phylogénétiques, biogéographiques et systématiques. Geobios 36:317–348Google Scholar
  271. Rundle HD, Nosil P (2005) Ecological speciation. Ecol Lett 8:336–352Google Scholar
  272. Rundle HD, Schluter D (2004) Natural selection and ecological speciation in sticklebacks. In: Dieckmann U, Doebeli M, Metz JAJ, Tautz D (eds) Adaptive speciation. Cambridge studies in adaptive dynamics. Cambridge University Press, CambridgeGoogle Scholar
  273. Sandoval J, O’Dogherty L, Guex J (2001) Evolutionary rates of Jurassic ammonites in relation to sea-level fluctuations. Palaios 16:311–335Google Scholar
  274. Sandoval J, Henriques MH, Chandler RB, Ureta S (2013) Latest Toarcian-earliest Bajocian (Jurassic) Grammoceratinae (Hildoceratidae, Ammonitina) of the western Tethys: their palaeobiogeographic and phylogenetic significance. Geobios 45:109–119Google Scholar
  275. Sarih S, Dommergues J-L, El Hariri K, Garcia J-P, Quiquerez A (2007) Pseudoskirroceras, a remarkable but poorly known Early Pliensbachian Tethyan ammonite genus: new data from the High Atlas (Morocco). J Afr Earth Sci 49:90–102Google Scholar
  276. Saunders WB, Swan ARH (1984) Morphology and morphological diversity of mid-Carboniferous Namurian ammonoids in time and space. Paleobiology 10:195–228Google Scholar
  277. Schander C, Sundberg P (2001) Useful characters in gastropod phylogeny: soft information or hard facts? Syst Biol 50:136–141Google Scholar
  278. Schindewolf OH (1940) Konvergenz bei Korallen und Ammoniten. Fortschr Geol Paläont 12:387–491Google Scholar
  279. Schindewolf OH (1962) Studien zur Stammesgeschichte der Ammoniten: Lief. 2. Abh Math-Naturwiss Kl Akad Wiss Lit Mainz 8:425–572Google Scholar
  280. Schlögl J, Elmi S, Rakús M, Mangold C, Ouahhabi M (2006) Specialization and iterative evolution of some Western Tethyan Bathonian ammonites [Benatinites (B. ) nov., B. (Lugariceras) nov. and Hemigarantia]. Geobios 39:113–124Google Scholar
  281. Schneider JA (2001) Bivalve systematics during the 20th century. J Paleontol 75:1119–1127Google Scholar
  282. Schweigert G, Zeiss A, Westermann GEG (2012) The Gravesia homeomorphs from the latest Kimmeridgian of Mombasa, Kenya. Rev Paleobiol 11:13–25Google Scholar
  283. Seilacher A, Gunji PY (1993) Morphogenetic countdowns in heteromorph shells. N Jahrb Geol Paläontol Abh 190:237–265Google Scholar
  284. Shigeta Y (1993) Post-hatching early life history of Cretaceous ammonoids. Lethaia 26:133–145Google Scholar
  285. Smith AB (2007) Marine diversity through the Phanerozoic: problems and prospects. J Geol Soc Lond 164:731–745Google Scholar
  286. Smith AB, McGowan AJ (2005) Cyclicity in the fossil record mirrors rock outcrop area. Biol Lett 1:443–445Google Scholar
  287. Smith PL, Tipper HW (1986) Plate tectonics and paleobiogeography: Early Jurassic (Pliensbachian) endemism and diversity. Palaios 1:399–412Google Scholar
  288. Smith AB, Gale AS, Monks NEA (2001) Sea-level change and rock-record bias in the Cretaceous: a problem for extinction and biodiversity studies. Paleobiology 27:241–253Google Scholar
  289. Stevens GR (1988) Giant ammonites, a review. In: Wiedmann J, Kullmann J (eds) Cephalopods: present and past. Schweizerbart, StuttgartGoogle Scholar
  290. Stevens GR (2012) The Early Jurassic of New Zealand: refinements of the ammonite biostratigraphy and palaeobiogeography. Rev Paléobiologie 11:187–204Google Scholar
  291. Stigall AL (2011) Integrating GIS and phylogenetic biogeography to assess species-level biogeographic patterns: A case study of Late Devonian faunal dynamics. In: Upchurch P, McGowan AJ, Slater CSC (eds) Palaeogeography and palaeobiogeography: biodiversity in space and time. Systematics association special volume, vol 77. CRC, Boca RatonGoogle Scholar
  292. Tajika A, Wani R (2011) Intraspecific variation of hatchling size in Late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287–298Google Scholar
  293. Takashima R, Nishi H, Yamanaka T, Tomosugi T, Fernando AG, Tanabe K, Moriya K, Kawabe F, Hayashi K (2011) Prevailing oxic environments in the Pacific Ocean during the mid-Cretaceous Oceanic Anoxic Event 2. Nat Commun 2:234Google Scholar
  294. Tanabe K, Landman NH, Yoshioka Y (2003) Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids. J Paleontol 77:876–887Google Scholar
  295. Tanabe K, Misaki A, Landman NH, Kato T (2013) The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia 46:399–408Google Scholar
  296. Tanabe K, Kruta I, Landman NH (2015) Ammonoid buccal mass and jaw apparatus. In: Klug C, Korn D, De Baets K, Kruta I, Mapes R (eds) Ammonoid paleobiology: from anatomy to ecology. Topics in geobiology, vol 44. Springer, DordrechtGoogle Scholar
  297. Thierry J (1976) Paléobiogéographie de quelques Stephanocerataceae (Ammonitina) du Jurassique Moyen et Supérieur: Une confrontation avec la théorie mobiliste. Geobios 9:291–331Google Scholar
  298. Thierry J (1988) Provincialisme et/ou ecologie des ammonites du Callovien en France. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart, pp 387–402Google Scholar
  299. Thierry J (2003) Les ammonites du Bathonien-Callovien du Boulonnais: Biodiversité, biostratigraphie, et biogéographie. Geobios 36:93–126Google Scholar
  300. Tintant H (1963) Les Kosmoceratides du Callovien inférieur et moyen d’Europe occidentale. University of Dijon, FranceGoogle Scholar
  301. Toriyama R, Sato T, Hamada T, Komolarhun P (1965) Nautilus pompilius drift on the west coast of Thailand. Jpn J Geol Geogr 36:149–161Google Scholar
  302. Torsvik TH, Rousse S, Labails C, Smethurst MA (2009) A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophys J Int 177:1315–1333Google Scholar
  303. Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Paleogeogr Paleoclimatol Paleoecol 144:135–160Google Scholar
  304. Valentine JW, Foin TC, Peart D (1978) A provincial model of Phanerozoic marine diversity. Paleobiology 4:55–66Google Scholar
  305. Vinarski MV, Bondarev AA, Markov AV (2011) Mollusks in Phanerozoic marine communities: implications from the analysis of global paleontological databases. J Paleontol 45:358–369Google Scholar
  306. Wagner PJ (2000) The quality of the fossil record and the accuracy of phylogenetic inferences about sampling and diversity. Syst Biol 49:65–86Google Scholar
  307. Wagner PJ (2001) Gastropod phylogenetics: progress, problems, and implications. J Paleontol 75:1128–1140Google Scholar
  308. Wagner CE, Harmon LJ, Seehausen O (2012) Ecological opportunity and sexual selection together predict adaptive radiation. Nature 487:366–369Google Scholar
  309. Wall PD, Ivany LC, Wilkinson BH (2009) Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35:146–167Google Scholar
  310. Wani R (2004) Experimental fragmentation patterns of modern Nautilus shells and the implications for fossil cephalopod taphonomy. Lethaia 37:113–123Google Scholar
  311. Wani R (2007) How to recognize in situ fossil cephalopods: evidence from experiments with modern Nautilus. Lethaia 40:305–311Google Scholar
  312. Wani R (2011) Sympatric speciation drove the macroevolution of fossil cephalopods. Geology 39:1079–1082Google Scholar
  313. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University, OxfordGoogle Scholar
  314. West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci U S A 102:6543-6549Google Scholar
  315. Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). N Jahrb Geol Paläontol Abh 124:289–312Google Scholar
  316. Westermann GEG (1981) Ammonite biochronology and biogeography of the circum-Pacific Middle Jurassic. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar
  317. Westermann GEG (2000) Marine faunal realms of the Mesozoic: review and revision under the new guidelines for biogeographic classification and nomenclature. Paleogeogr Paleoclimatol Paleoecol 163:49–68Google Scholar
  318. Wiedmann J (1966) Stammesgeschichte und System der posttriadischen Ammonoideen. N Jahrb Geol Paläontol Abh 125:49–79Google Scholar
  319. Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602Google Scholar
  320. Wiedmann J (1973) Evolution or revolution of ammonoids at Mesozoic system boundaries. Biol Rev 48:159–194Google Scholar
  321. Wiedmann J (1988) Plate tectonics, sea level changes, climate, and the relationship to ammonite evolution, provincialism, and mode of life. In: Wiedmann J, Kullmann J (eds) Cephalopods—Present and past. Schweizerbart, StuttgartGoogle Scholar
  322. Wiedmann J, Kullmann J (1996) Crises in ammonoid evolution. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology, vol 13. Plenum Press, New YorkGoogle Scholar
  323. Wierzbowski H, Rogov M (2011) Reconstructing the palaeoenvironment of the Middle Russian Sea during the Middle-Late Jurassic transition using stable isotope ratios of cephalopod shells and variations in faunal assemblages. Paleogeogr Paleoclimatol Paleoecol 299:250–264Google Scholar
  324. Wright CW (1981) Cretaceous Ammonoidea. In: House MR, Senior JR (eds) The Ammonoidea: The evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar
  325. Wright CW, Kennedy WJ (1980) Origin, evolution and systematics of the dwarf acanthoceratid Protacanthoceras Spath, 1923 (Cretaceous Ammonoidea). Bull Brit Mus Nat Hist Geol 34:65–108Google Scholar
  326. Wright CW, Callomon JH, Howarth MK (1996) Treatise on Invertebrate Paleontology, part l, Mollusca 4, revised, volume 4: Cretaceous Ammonoidea. GSA and University of Kansas Press, Boulder and LawrenceGoogle Scholar
  327. Yacobucci MM (1999) Plasticity of developmental timing as the underlying cause of high speciation rates in ammonoids: an example from the Cenomanian Western Interior Seaway of North America. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Proceedings, IV international symposium Cephalopods—Present and past. Plenum Press, New YorkGoogle Scholar
  328. Yacobucci MM (2003) Controls on shell shape in acanthoceratid ammonites from the Cenomanian-Turonian Western Interior Seaway of North America. In: Harries P, Geary DH (eds) High-resolution approaches in stratigraphic paleontology. Topics in Geobiology, vol 21. Plenum Press, New YorkGoogle Scholar
  329. Yacobucci MM (2004a) Buckman’s paradox: constraints on ammonoid ornament and shell shape. Lethaia 37:59–71Google Scholar
  330. Yacobucci MM (2004b) Neogastroplites meets Metengonoceras: Morphological response of an endemic hoplitid ammonite to a new invader in the mid-Cretaceous Mowry Sea of North America. Cretac Res 25:927–944Google Scholar
  331. Yacobucci MM (2005) Multifractal and white noise evolutionary dynamics in Jurassic-Cretaceous Ammonoidea. Geol 33:97–100Google Scholar
  332. Yacobucci MM (2012) Meta-analysis of character utility and phylogenetic information content in cladistic studies of ammonoids. Geobios 45:139–143Google Scholar
  333. Yacobucci MM (in press (2015) Towards a model for speciation in ammonoids. In: Allmon WD, Yacobucci MM (eds) Species and speciation in the fossil record. University of Chicago, ChicagoGoogle Scholar
  334. Yacobucci MM, MacKenzie RA III (2007a) Applications of a new GIS database of cephalopod occurrences in the Cretaceous Western Interior Seaway of North America: The Cenomanian-Turonian Ocean Anoxic Event (OAE2), sea level rise, and ammonoid turnover. Seventh international symposium, Cephalopods—Present and Past, AbstractsGoogle Scholar
  335. Yacobucci MM, MacKenzie RA III (2007b) Moving on up: latitudinal diversity patterns of ammonoids within the Cretaceous Western Interior Seaway of North America. Abstracts with programs. GSA 39(6):92Google Scholar
  336. Yacobucci MM, MacKenzie RA III (2008) Ammonoid paleobiogeography in the Cenomanian Western Interior Seaway. Abstracts with Programs. GSA 40(6):377Google Scholar
  337. Yahada H, Wani R (2013) Limited migration of scaphitid ammonoids: Evidence from the analyses of shell whorls. J Paleontology 87:406–412Google Scholar
  338. Zakharov YD, Melnikov ME, Popov AM, Pletnev SP, Khudik VD, Punina TA (2012) Cephalopod and brachiopod fossils from the Pacific: evidence from the Upper Cretaceous of the Magellan Seamounts. Geobios 45:145–156Google Scholar
  339. Zatoń M (2008) Taxonomy and palaeobiology of the Bathonian (Middle Jurassic) tulitid ammonite Morrisiceras. Geobios 41:699–717Google Scholar
  340. Ziegler B (1967) Ammoniten-Ökologie am Beispiel des OberJura. Geol Rundsch 56:439–464Google Scholar
  341. Ziegler B (1981) Ammonoid biostratigraphy and provincialism: Jurassic-Old World. In: House MR, Senior JR (eds) The Ammonoidea: the evolution, classification, mode of life, and geological usefulness of a major fossil group. Systematics Association special volume, vol 18. Academic Press, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of GeologyBowling Green State UniversityBowling GreenUSA

Personalised recommendations