Biogeography of Triassic Ammonoids

  • Arnaud Brayard
  • Gilles Escarguel
  • Claude Monnet
  • James F Jenks
  • Hugo Bucher
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 44)

Abstract

After the end-Permian mass extinction, ammonoids experienced an explosive recovery followed by episodes of radiation and extinction. These events were associated with sudden biogeographic changes often closely related to major climatic and oceanographic changes. Previous biogeographic studies of Triassic ammonoids have rarely focused on a specific time-interval and were rarely based on quantitative methods. Thus, we will first review biogeographical methods and the biogeographical signals known from Triassic ammonoids. Secondly, we will focus on quantitative approaches that improve our knowledge of ammonoid biogeographical structuring and dynamics during the Triassic, and we will discuss controlling factors such as Sea Surface Temperature and oceanic circulation. We show that a biogeographical latitudinal structuring of faunas persisted along the eastern Panthalassa during the Ladinian, as a marked differentiation between Tethys and Panthalassic realms. Biogeographical configurations of the Carnian, Norian and Rhaetian appear more homogeneous, although a weak latitudinal structuring may have continued up to the late Carnian.

Keywords

Triassic Ammonoids Biogeography Macroecological patterns Quantitative methods 

Notes

Acknowledgments

We thank M. Balini and D. Korn for their constructive comments and suggestions. The CNRS INSU Interrvie and the Région Bourgogne supported A.B. and G.E. for this study. This is also a contribution to the ANR project AFTER (ANR-13-JS06–0001). HB acknowledges the support of the Swiss National Science Foundation (project 200021_135446).

References

  1. Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46Google Scholar
  2. Balini M, Lucas SG, Jenks JF, Spielmann JA (2010) Triassic ammonoid biostratigraphy: an overview. In: Lucas SG (ed) The Triassic timescale. The Geological Society of London, LondonGoogle Scholar
  3. Balini M, Jenks JF, Martin R (2012a) Taxonomy and stratigraphic significance of Trachyceras silberlingi n. sp., from the lower Carnian of South Canyon (New Pass Range, Central Nevada, USA). Boll Soc Paleont Ital 51:127–136Google Scholar
  4. Balini M, Krystyn L, Levera M, Tripodo A (2012b) Late Carnian-Early Norian ammonoids from the GSSP candidate section Pizzo Mondello (Sicani Moutains, Sicily). Riv Ital Paleont Strat 118:47–84Google Scholar
  5. Beaugrand G, Rombouts I, Kirby R (2013) Towards an understanding of the pattern of biodiversity in the oceans. Global Ecol Biogeogr 22:440–449CrossRefGoogle Scholar
  6. Brayard A, Bucher H (2008) Smithian (early Triassic) ammonoid faunas from northwestern Guangxi (South China): taxonomy and biochronology. Foss Strata 55:1–179Google Scholar
  7. Brayard A, Bucher H (2015) Permian-Triassic extinctions and rediversifications. This volumeGoogle Scholar
  8. Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33Google Scholar
  9. Brayard A, Héran M-A, Costeur L, Escarguel G (2004) Triassic and Cenozoic palaeobiogeography: two case studies in quantitative modeling using IDL. Palaeontol Electron 7:22.Google Scholar
  10. Brayard A, Escarguel G, Bucher H (2005) Latitudinal gradient of taxonomic richness: combined outcome of temperature and geographic mid-domains effects? J Zool Syst Evol Res 43:178–188CrossRefGoogle Scholar
  11. Brayard A, Bucher H, Escarguel G, Fluteau F, Bourquin S, Galfetti T (2006) The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeogr Palaeoclim Palaeoecol 239:374–395CrossRefGoogle Scholar
  12. Brayard A, Bucher H, Brühwiler T, Galfetti T, Goudemand N, Guodun K, Escarguel G, Jenks J (2007a) Proharpoceras Chao: a new ammonoid lineage surviving the end-Permian mass extinction. Lethaia 40:175–181CrossRefGoogle Scholar
  13. Brayard A, Escarguel G, Bucher H (2007b) The biogeography of Early Triassic ammonoid faunas: clusters, gradients and networks. Geobios 40:749–765CrossRefGoogle Scholar
  14. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009a) Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325:1118–1121CrossRefGoogle Scholar
  15. Brayard A, Brühwiler T, Bucher H, Jenks J (2009b) Guodunites, a low-palaeolatitude and trans-Panthalassic Smithian (Early Triassic) ammonoid genus. Palaeontology 52:471–481CrossRefGoogle Scholar
  16. Brayard A, Escarguel G, Bucher H, Brühwiler T (2009c) Smithian and Spathian (Early Triassic) ammonoid assemblages from terranes: paleoceanographic and paleogeographic implications. J Asian Earth Sci 36:420–433CrossRefGoogle Scholar
  17. Brayard A, Bylund KG, Jenks JF, Stephen D, Olivier N, Escarguel G, Fara E, Vennin E (2013) Smithian ammonoid faunas from Utah: implications for Early Triassic biostratigraphy, correlation and basinal paleogeography. Swiss J Palaeontol 132:141–219CrossRefGoogle Scholar
  18. Brosse M, Brayard A, Fara E, Neige P (2013) Ammonoid recovery after the Permian–Triassic mass extinction: a re-exploration of morphological and phylogenetic diversity patterns. J Geol Soc (London) 170:225–236CrossRefGoogle Scholar
  19. Brühwiler T, Bucher H, Goudemand N, Galfetti T (2012a) Smithian (Early Triassic) ammonoid faunas from Exotic Blocks from Oman: taxonomy and biochronology. Palaeontogr A 296:3–107Google Scholar
  20. Brühwiler T, Bucher H, Krystyn L (2012b) Middle and late Smithian (Early Triassic) ammonoids from Spiti (India). Spec Pap Palaeontol 88:115–174Google Scholar
  21. Brühwiler T, Bucher H, Ware D, Hermann E, Hochuli PA, Roohi G, Rehman K, Yassen A (2012c) Smithian (Early Triassic) ammonoids from the Salt Range. Spec Pap Palaeontol 88:1–114Google Scholar
  22. Čech E (1966) Topological spaces. Wiley, LondonGoogle Scholar
  23. Chao A (1984) Nonparametric estimation of the number of classes in a population. Scand J Stat 11:265–270Google Scholar
  24. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791CrossRefGoogle Scholar
  25. Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547CrossRefGoogle Scholar
  26. Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143CrossRefGoogle Scholar
  27. Colwell RK, Rahbek C, Gotelli NJ (2005) The mid-domain effect: there’s a baby in the bathwater. Am Nat 166:E149–E154CrossRefGoogle Scholar
  28. Colwell RK, Chao A, Gotelli NJ, Lin S-Y, Mao CX, Chazdon RL, Longino JT (2012) Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J Plant Ecol 5:3–21CrossRefGoogle Scholar
  29. Connolly SR, Bellwood DR, Hughes TP (2003) Indo-Pacific biodiversity of coral reefs: deviations from a mid-domain model. Ecology 84:2178–2190CrossRefGoogle Scholar
  30. Dagys AS (1988) Major features of the geographic differentiation of Triassic ammonoids. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, StuttgartGoogle Scholar
  31. Dagys AS (1997) A new late Olenekian (Triassic) ammonoid of low paleolatitude affinity from Arctic Asia (Eastern Taimyr). Paläontol Z 71:217–220CrossRefGoogle Scholar
  32. Dagys AS, Ermakova SV (1990) Early Olenekian ammonoids of Siberia. Nauka, MoscowGoogle Scholar
  33. Dagys AS, Arkhipov YV, Bychkov YM (1979) Stratigraphy of the Triassic System of the Northeastern Asia. Nauka, MoscowGoogle Scholar
  34. Dera G, Neige P, Dommergues J-L, Brayard A (2011) Ammonite paleobiogeography during the Pliensbachian–Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Global Planet Change 78:92–105CrossRefGoogle Scholar
  35. Dommergues J-L, Fara E, Meister C (2009) Ammonite diversity and its palaeobiogeographical structure during the early Pliensbachian (Jurassic) in the western Tethys and adjacent areas. Palaeogeogr Palaeoclim Palaeoecol 280:64–77CrossRefGoogle Scholar
  36. Emerson BC, Gillespie RG (2008) Phylogenetic analysis of community assembly and structure over space and time. Trends Ecol Evol 23:19–630CrossRefGoogle Scholar
  37. Escarguel G, Bucher H (2004) Counting taxonomic richness from discrete biochronozones of unknown duration: a simulation. Palaeogeogr Palaeoclim Palaeoecol 202:181–208CrossRefGoogle Scholar
  38. Escarguel G, Brayard A, Bucher H (2008) Evolutionary rates do not drive latitudinal diversity gradients. J Zool Syst Evol Res 46:82–86CrossRefGoogle Scholar
  39. Escarguel G, Fara E, Brayard A, Legendre S (2011) Biodiversity is not (and never has been) a bed of roses! C R Biol 334:351–359CrossRefGoogle Scholar
  40. Excoffier L, Smouse PE (1994) Using allele frequencies and geographic subdivision to reconstruct gene trees within a species: molecular variance parsimony. Genetics 136:343–359Google Scholar
  41. Foote M (1992) Rarefaction analysis of morphological and taxonomic diversity. Paleobiology 18:1–16Google Scholar
  42. Foote M (1997) The evolution of morphological diversity. Annu Rev Ecol Syst 28:129–152.CrossRefGoogle Scholar
  43. Galfetti T, Bucher H, Ovtcharova M, Schaltegger U, Brayard A, Brühwiler T, Goudemand N, Weissert H, Hochuli PA, Cordey F, Guodun KA (2007a) Timing of the Early Triassic carbon cycle perturbations inferred from new U-Pb ages and ammonoid biochronozones. Earth Planet Sci Lett 258:593–604CrossRefGoogle Scholar
  44. Galfetti T, Bucher H, Brayard A, Hochuli PA, Weissert H, Guodun K, Atudorei V, Guex J (2007b) Late Early Triassic climate change: insights from carbonate carbon isotopes, sedimentary evolution and ammonoid paleobiogeography. Palaeogeogr Palaeoclim Palaeoecol 243:394–411CrossRefGoogle Scholar
  45. Galfetti T, Hochuli PA, Brayard A, Bucher H, Weissert H, Vigran JO (2007c) The Smithian/Spathian boundary event: evidence for global climatic change in the wake of the end-Permian biotic crisis. Geology 35:291–294CrossRefGoogle Scholar
  46. Gaston KJ (1994) Rarity. Chapman and Hall, LondonCrossRefGoogle Scholar
  47. Gaston KJ (2000) Global patterns in biodiversity. Nature 405:220–227CrossRefGoogle Scholar
  48. Gaston KJ (2003) The structure and dynamics of geographic ranges. Oxford University Press, OxfordGoogle Scholar
  49. Glenister BF, Furnish WM (1981) Permian ammonoids. In: House MR, Senior JR (eds) The ammonoidea. The Systematics Association, LondonGoogle Scholar
  50. Gotelli N, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391CrossRefGoogle Scholar
  51. Gotelli N, Colwell RK (2011) Estimating species richness. In: Magurran AE, McGill BJ (eds) Frontiers in measuring biodiversity. Oxford University Press, New YorkGoogle Scholar
  52. Gotelli NJ, Anderson MJ, Arita HT, Chao A, Colwell RK, Connolly SR, Currie DJ, Dunn RR, Graves GR, Green JL, Grytnes JA, Jiang YH, Jetz W, Lyons SK, McCain CM, Magurran AE, Rahbek C, Rangel T, Soberon J, Webb CO, Willig MR (2009) Patterns and causes of species richness: a general simulation model for macroecology. Ecol Lett 12:873–886CrossRefGoogle Scholar
  53. Guex J, Hungerbühler A, Jenks J, O'Dogherty L, Atudorei V, Taylor DG, Bucher H, Bartolini, A (2010) Spathian (Lower Triassic) ammonoids from western USA (Idaho, California, Utah and Nevada). Mém Géol (Lausanne) 49:1–81Google Scholar
  54. Jablonski D, Roy K, Valentine JW (2006) Out of the Tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102–106CrossRefGoogle Scholar
  55. Jenks J (2007) Smithian (Early Triassic) ammonoid biostratigraphy at Crittenden Springs, Elko County, Nevada and a new ammonoid from the Meekoceras gracilitatis Zone. New Mexico Mus Nat Hist Sci Bull 40:81–90Google Scholar
  56. Jenks JF, Brayard A, Brühwiler T, Bucher H (2010) New Smitian (Early Triassic) ammonoids from Crittenden Springs, Elko County, Nevada: Implications for taxonomy, biostratigraphy and biogeography. New Mexico Mus Nat Hist Sci Bull 48:1–41Google Scholar
  57. Jenks JF, Monnet C, Balini M, Brayard A, Meier M (2015) Biostratigraphy of Triassic ammonoids. This volumeGoogle Scholar
  58. Klug C, Schatz W, Korn D, Reisdorf AG (2005) Morphological fluctuations of ammonoid assemblages from the Muschelkalk (middle Triassic) of the Germanic Basin indicators of their ecology, extinctions, and immigrations. Palaeogeogr Palaeoclim Palaeoecol 221:7–34CrossRefGoogle Scholar
  59. Konstantinov AG (2008) Triassic ammonoids of Northeast Asia: diversity and evolutionary stages. Stratigr Geol Correl 16:490–502CrossRefGoogle Scholar
  60. Konstantinov AG, Sobolev ES (2004) Specific geographic differentiation of Boreal cephalopods of Carnian age. Russ Geol Geophys 45:956–962Google Scholar
  61. Korn D, Ilg A (2007) AMMON. www.wahre-staerke.com/ammon/. Accessed Dec 2012
  62. Korn D, Titus AL, Ebbighausen V, Mapes RH, Sudar MN (2012) Early Carboniferous (Mississippian) ammonoid biogeography. Geobios 45:67–77CrossRefGoogle Scholar
  63. Kummel B (1972) The Lower Triassic (Scythian) ammonoid Otoceras. Bull Mus Comp Zool 143:365–417Google Scholar
  64. Kummel B (1973a) Lower Triassic (Scythian) molluscs. In: Hallam A. (ed) Atlas of paleobiogeography. Elsevier, Amsterdam.Google Scholar
  65. Kummel B (1973b) Aspects of the Lower Triassic (Scythian) stage. In: Logan A, Hills LV (eds) The Permian and the Triassic systems and their mutual boundary. Canadian Society of Petroleum Geologists, CalgaryGoogle Scholar
  66. Kummel B, Steele G (1962) Ammonites from the Meekoceras gracilitatus zone at Crittenden Spring, Elko County, Nevada. J Paleont 36:638–703Google Scholar
  67. Kunin WE, Gaston (1997) The biology of rarity: causes and consequences of rare-common differences. Chapman and Hall, LondonGoogle Scholar
  68. Legendre P, Legendre L (2012) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  69. Legendre P, Galzin R, Harmelin-Vivien ML (1997) Relating behavior to habitat: solutions to the fourth-corner problem. Ecology 78:547–562Google Scholar
  70. Leonova TB (2011) Permian ammonoids: biostratigraphic, biogeographical, and ecological analysis. Pal J 45:1206–1312Google Scholar
  71. McCain CM (2004) The mid-domain effect applied to elevational gradients: species richness of small mammals in Costa Rica. J Biogeogr 31:19–31CrossRefGoogle Scholar
  72. McGowan AJ (2004) Ammonoid taxonomic and morphologic recovery patterns after the Permian–Triassic. Geology 32:665–668CrossRefGoogle Scholar
  73. McGowan AJ (2005) Ammonoid recovery from the Late Permian mass extinction event. C R Palevol 4:517–530CrossRefGoogle Scholar
  74. McGowan AJ, Smith AB (2007) Ammonoids across the Permian⁄Triassic boundary: a cladistic perspective. Palaeontology 50:573–590CrossRefGoogle Scholar
  75. Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Foss Strata 52:1–121Google Scholar
  76. Monnet C, Bucher H (2006a) Anisian (Middle Triassic) ammonoids from North America: quantitative biochronology and biodiversity. Stratigraphy 2:311–326 (281–296)Google Scholar
  77. Monnet C, Bucher H (2006b) Anisian ammonoids from North America: quantitative biochronology and biodiversity. NGF Abstracts and Proceedings, 3, 108–111Google Scholar
  78. Monnet C, Brack P, Bucher H, Rieber H (2007) Ammonite-based correlation of the middle/late Anisian boundary (Middle Triassic) between Nevada and the Southern Alps. New Mexico Mus Nat Hist Sci Bull 41:312–313Google Scholar
  79. Monnet C, Brack P, Bucher H, Rieber H (2008) Ammonoids of the middle/late Anisian boundary (Middle Triassic) and the transgression of the Prezzo Limestone in eastern Lombardy-Giudicarie (Italy). Swiss J Geosci 101:61–84CrossRefGoogle Scholar
  80. Monnet C, Bucher H, Brayard A, Jenks JF (2013) Globacrochordiceras gen. nov. (Acrochordiceratidae, late early Triassic) and its significance for stress-induced evolutionary jumps in ammonoid lineages (cephalopods). Foss Rec 16:197–215CrossRefGoogle Scholar
  81. Page KN (1996) Mesozoic ammonoids in space and time. In: Landman NH, Tanabe K, Davies RA (eds) Ammonoid paleobiology. Plenum Press, New YorkGoogle Scholar
  82. Petchey OL, Gaston KJ (2006) Functional diversity: back to basics and looking forward. Ecol Lett 9:741–758CrossRefGoogle Scholar
  83. Pineda J, Caswell H (1998) Bathymetric species-diversity patterns and boundary constraints on vertical range distributions. Deep-Sea Res II 45:83–101CrossRefGoogle Scholar
  84. Powell MG (2007) Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Global Ecol Biogeogr 16:519–528CrossRefGoogle Scholar
  85. Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J 36:1389–1401CrossRefGoogle Scholar
  86. Romano C, Goudemand N, Vennemann TW, Ware D, Schneebeli-Hermann E, Hochuli PA, Brühwiler T, Brinkmann W, Bucher H (2013) Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geosci 6:57–60CrossRefGoogle Scholar
  87. Roy K, Jablonski D, Valentine JW (2001) Climate change, species range limits and body size in marine bivalves. Ecol Lett 4:366–370CrossRefGoogle Scholar
  88. Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharova M (2008) Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267:266–275CrossRefGoogle Scholar
  89. Shi GR (1993) Multivariate data analysis in palaeocology and palaeobiogeography—a review. Palaeogeogr Palaeoclim Palaeoecol 105:199–234CrossRefGoogle Scholar
  90. Shigeta Y, Zakharov YD (2009) Systematic palaeontology—cephalopods. In: Shigeta Y, Zakharov YD, Maeda H, Popov AM (eds) The lower Triassic system in the Abrek Bay area, South Primorye, Russia. National Museum of Nature and Science, TokyoGoogle Scholar
  91. Smith EP, van Belle G (1984) Nonparametric estimation of species richness. Biometrics 40:119–129CrossRefGoogle Scholar
  92. Spinosa C, Furnish WM, Glenister BF (1975) The Xenodiscidae, Permian ceratitoid ammonoids. J Paleont 49:239–283Google Scholar
  93. Stehli FG, Douglas RG, Newell ND (1969) Generation and maintenance of gradients in taxonomic diversity. Science 164:947–949CrossRefGoogle Scholar
  94. Tozer ET (1981a) Triassic Ammonoidea: classification, evolution and relationship with Permian and Jurassic forms. In: House MR, Senior JR (eds) The Ammonoidea. The Systematics Association, LondonGoogle Scholar
  95. Tozer ET (1981b) Triassic Ammonoidea: geographic and stratigraphic distribution. In: House MR, Senior JR (eds) The Ammonoidea. The Systematics Association, LondonGoogle Scholar
  96. Tozer ET (1982) Marine Triassic faunas of North America: their significance for assessing plate and terrane movements. Geol Rundsch 71:1077–1104CrossRefGoogle Scholar
  97. Tozer ET (1994) Canadian Triassic ammonoid faunas. Geol Surv Can Bull 467:1–663Google Scholar
  98. Urlichs M, Mundlos R (1985) Immigrations of cephalopods into the Germanic Muschelkalk basin and its influence on their suture line. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles. Springer-Verlag, BerlinGoogle Scholar
  99. Villier L, Korn D (2004) Morphological disparity of ammonoids and the mark of Permian mass extinctions. Science 306:264–266CrossRefGoogle Scholar
  100. Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829CrossRefGoogle Scholar
  101. Ware D, Jenks J, Hautmann M, Bucher H (2011) Dienerian (Early Triassic) ammonoids from the Candelaria Hills (Nevada, USA) and their significance for palaeobiogeography and palaeoceanography. Swiss J Geosci 104:161–181CrossRefGoogle Scholar
  102. Zakharov YD, Moussavi Abnavi N (2013) The ammonoid recovery after the end-Permian mass extinction: evidence from the Iran-Transcaucasia area, Siberia, Primorye, and Kazakhstan. Acta Palaeont Pol 58:127–147Google Scholar
  103. Zakharov YD, Popov AM, Biakov AS (2008) Late Permian to Middle Triassic palaeogeographic differentiation of key ammonoid groups: evidence from the former USSR. Polar Res 27:441–468CrossRefGoogle Scholar
  104. Zhang Y, Payne JL (2012) Size-frequency distributions along a latitudinal gradient in Middle Permian fusulinoideans. Plos One 7:e38603CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Arnaud Brayard
    • 1
  • Gilles Escarguel
    • 2
  • Claude Monnet
    • 3
  • James F Jenks
    • 4
  • Hugo Bucher
    • 5
  1. 1.UMR CNRS 6282 BiogéosciencesUniversité de BourgogneDijonFrance
  2. 2.UMR CNRS 5276, Laboratoire de Géologie de Lyon: Terre, Planètes, EnvironnementUniversité Claude Bernard Lyon 1Villeurbanne CedexFrance
  3. 3.UMR CNRS 8217 Géosystèmes, UFR des Sciences de la Terre—Bât. SN5Université de Lille 1Villeneuve dAscq cedexFrance
  4. 4.West JordanUSA
  5. 5.Paläontologisches Institut und Museum, Universität ZürichZürichSwitzerland

Personalised recommendations