Ammonites on the Brink of Extinction: Diversity, Abundance, and Ecology of the Order Ammonoidea at the Cretaceous/Paleogene (K/Pg) Boundary

  • Neil H. Landman
  • Stijn Goolaerts
  • John W.M. Jagt
  • Elena A. Jagt-Yazykova
  • Marcin Machalski

Abstract

We examined the stratigraphic distribution of ammonites at a total of 29 sites around the world in the last 0.5 myr of the Maastrichtian. We demarcated this interval using biostratigraphy, magnetostratigraphy, cyclostratigraphy, and data on fossil occurrences in relation to the K/Pg boundary in sections without any facies change between the highest ammonites and the K/Pg boundary. The ammonites at this time represent all four Mesozoic suborders comprising six superfamilies, 31 (sub)genera, and 57 species. The distribution of ammonites is dependent on the environmental setting. Recent data suggest that ammonites persisted to the boundary and some species may have survived for several tens of thousands of years into the Paleogene. The best explanation for ammonite extinction is a brief episode of ocean acidification immediately following the Chixculub impact, which caused the decimation of the calcareous plankton including the planktic post-hatching stages of ammonites. The geographic distribution of ammonites may also have played a role in the events with more broadly distributed genera being more resistant to extinction.

Keywords

Cretaceous/Paleogene boundary Maastrichtian Extinction Paleoecology 

References

  1. Abdel-Gawad GI (1986) Maastrichtian non-cephalopod mollusks (Scaphopoda, Gastropoda and Bivalvia) of the Middle Vistula Valley, Central Poland. Acta Geol Pol 36:69–224Google Scholar
  2. Alegret L, Thomas E, Lohmann KC (2012) End-Cretaceous marine mass extinction not caused by productivity collapse. Proc Natl Acad Sci U S A 109:728–732Google Scholar
  3. Alekseev AS, Nasarovm MA, Barsukova LD, Kolesov GM, Nuzhegorodova IV, Amanniâzov KN (1988) The Cretaceous-Paleogene boundary in southern Turkmenia and its geochemical characteristics. Bûelleten Moskovskgo Obŝestva Prirody, Otdel Geologiĉeskij 63:55–69 (in Russian)Google Scholar
  4. Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208:1095–1108Google Scholar
  5. Arkhipkin A, Laptikhivsky VV (2012) Impact of ocean acidification on plankton larvae as a cause of mass extinctions in ammonites and belemnites. N Jb Geol Paläont Abh 266:39–50Google Scholar
  6. Atabekian AA, Akopian VT (1969) Late Cretaceous ammonites of the Armenian SSR (Pachydiscidae). Izvestiya AN Armyanskoj SSR, Nauki o Zemle 6:3–20 (in Russian)Google Scholar
  7. Batenburg SJ, Sprovieri M, Gale AS, Hilgen FJ, Hüsing S, Laskar J, Liebrand D, Lirer F, Orue-Etxebarria X, Pelosi N, Smit J (2012) Cyclostratigraphy and astronomical tuning of the Late Maastrichtian at Zumaia (Basque country, Northern Spain). Earth Planet Sci Lett 359/360:264–278Google Scholar
  8. Berggren WA, Ouda K (2013) Early Paleogene geohistory of Egypt: the Dababiya Quarry corehole. Stratigraphy 9(2012):183–188Google Scholar
  9. Berggren WA, Alegret L, Aubry M-P, Cramer BS, Dupuis C, Goolaerts S, Kent DV, King C, O’Knox RW, Obaidalla Nh, Ortiz S, Ouda AK, Sabour AA, Salem R, Senosy MM, Soliman MF, Soliman A (2012) The Dababiya corehole: upper Nile Valley, Egypt: preliminary results. Austrian J Earth Sci 105:161–168Google Scholar
  10. Binkhorst van den Binkhorst JT (1861–1862) Monographie des gastéropodes et des céphalopodes de la Craie supérieure du Limbourg, suivie d’une description de quelques espèces de crustacés du même dépôt crétacé, avec dix-huit planches dessinées et lithographiées par C. Hohe, de Bonn. A. Muquardt/Muller Frères, Bruxelles/MaastrichtGoogle Scholar
  11. Birkelund T (1965) Ammonites from the Upper Cretaceous of West Greenland. Meddr om Grønland, vol 179., pp 1–192Google Scholar
  12. Birkelund T (1979) The last Maastrichtian ammonites. In: Birkelund T, Bromley RG (eds) Cretaceous-Tertiary boundary events symposium 1, The Maastrichtian and Danian of Denmark. University of Copenhagen, CopenhagenGoogle Scholar
  13. Birkelund T (1993) Ammonites from the Maastrichtian White Chalk of Denmark. Bull Geol Soc Denmark 40:33–81Google Scholar
  14. Blakey R (2011) Mollewide plate tectonic maps. http://cpgeosystems.com/mollglobe/html. Accessed April 2014
  15. Boas C, Garb MP, Rovelli R, Larina E, Myers CE, Naujokaityte J, Landman NH, Phillips GE (2013a) New K/Pg localities along the eastern Gulf Coastal Plain: More evidence of impact and tsunamis: GSA Abst with Prog 45:133Google Scholar
  16. Boas C, Garb MP, Landman NH, Rovelli R, Larina E (2013b) The significance of a fossiliferous spherule bed at the K/Pg boundary in northern Mississippi. GSA Abst with Prog 45:61Google Scholar
  17. Böhm J (1898) Ueber Ammonites pedernalis v. Buch, Zeitschr Deut Geol Ges. pp 183–201 (50)Google Scholar
  18. Brunnschweiler RO (1966) Upper Cretaceous ammonites from the Carnarvon Basin of Western Australia. 1. The heteromorph Lytoceratina, Bulletin Bureau of Mineral Resources Geology and Geophysics no 58. Bureau of Mineral Resources Geology and Geophysics, Capital of Australia, 58:1–158Google Scholar
  19. Burnett JA (= Lees JA) (1998) Upper Cretaceous. In: Bown PR (ed) Calcareous nannofossil biostratigraphy. Chapman & Hall, Kluwer Academic, LondonGoogle Scholar
  20. Campbell CE, Oboh-Ikuenobe FE, Eifert TL (2008) Megatsunami deposit in Cretaceous-Paleogene boundary interval of southeastern Missouri. In: Evans KR, Horton JR Jr, King DT Jr, Morrow JR (eds) The sedimentary record of meteorite impacts. The Geological Society of America Special Paper 437, pp 189–198Google Scholar
  21. Cobban WA, Kennedy WJ (1995) Maastrichtian ammonites chiefly from the Prairie Bluff Chalk in Alabama and Mississippi. Paleontol Soc Mem 44:1–40Google Scholar
  22. Collignon M (1952) Ammonites néocrétacés du Menabe (Madagascar). II.–Les Pachydiscidae. Travaux du Bureau géologique de Madagascar 41:1–114Google Scholar
  23. Conrad TA (1857) Descriptions of Cretaceous and Tertiary fossils. In: Emory WH (ed) Report on the United States and Mexican boundary survey. US 34th Congress, 1st Session, Senate Ex Documents 108 and House Ex Document 135, 1(2)Google Scholar
  24. Conrad TA (1858) Observations on a group of Cretaceous fossil shells found in Tippah County, Mississippi, with descriptions of fifty-six new species. J Acad Natl Sci Phila 3:323–336Google Scholar
  25. Damholt T, Surlyk F (2012) Nomination of Stevns Klint for inclusion in the World Heritage List. Østsjaellands Museum, St. HeddingeGoogle Scholar
  26. Defrance MJL (1816) In: Dictionnaire des Sciences naturelles, dans lequel on traite méthodiquement des differents Etres de la Nature 3. Levrault, ParisGoogle Scholar
  27. Dinarès-Turell J, Pujalte V, Stoykova K, Elorza J (2013) Detailed correlation and astronomical forcing within the Upper Maastrichtian succession in the Basque Basin. Boletín Geológico Minero 124:253–282Google Scholar
  28. Elliot DH, Askin RA, Kyte FT, Zinsmeister WJ (1994) Iridium and dinocysts at the Cretaceous-Tertiary boundary on Seymour Island, Antarctica: implications for the K-T event. Geology 22:675–678Google Scholar
  29. Engeser T, Keupp H (2002) Phylogeny of aptychi-possessing Neoammonoidea (Aptychophora nov., Cephalopoda). Lethaia 24:79–96Google Scholar
  30. Fatmi A, Kennedy WJ (1999) Maastrichtian ammonites from Balochistan, Pakistan. J Paleontol 73:641–662Google Scholar
  31. Forbes E (1846) Report on the fossil Invertebrata from southern India, collected by Mr. Kaye and Mr. Cunliffe. Trans Geol Soc Lond 7:97–174Google Scholar
  32. Gardin S, Galbrun B, Thibault N, Coccioni R, Premoli Silva I (2012) Bio-magnetostratigraphy for the upper Campanian-Maastrichtian from the Gubbio area, Italy: new results from the Contessa Highway and Bottaccione sections. Newsl Stratigr 45:75–103Google Scholar
  33. Goolaerts S (2010a) Late Cretaceous ammonites from Tunisia: chronology and causes of their extinction and extrapolation to other areas. Aardkundige Mededelingen 21:1–220Google Scholar
  34. Goolaerts S (2010b) Late Cretaceous ammonites from Tunisia: chronology and causes of their extinction and extrapolation to other areas. PhD manuscript. Arenberg Doctoral School Katholieke Universiteit Leuven, Part 1: xii + 220 pp; Part 2: 317 pp (PhD thesis, in english)Google Scholar
  35. Goolaerts S, Dupuis C (2012) Ammonites from the Dababiya corehole: taxonomic notes and age assessment. In: Berggren WA, Ouda K, Aubry MP (eds) The Paleocene-Eocene succession of the upper Nile Valley and southwestern Desert (southern Egypt): Part 2: Biostratigraphy and paleoecology, A. Dababiya Core. Stratigraphy 9:261–266Google Scholar
  36. Goolaerts S, Kennedy WJ, Dupuis C, Steurbaut E (2004) Terminal Maastrichtian ammonites from the Cretaceous-Paleogene Global Stratotype Section and Point, El Kef, Tunisia. Cretaceous Research, vol 25. Academic press ltd elsevier science ltd, pp 313–328Google Scholar
  37. Gould SJ (1995) Dinosaur in a haystack: reflections in natural history. Harmony Books, New YorkGoogle Scholar
  38. Gravesen P, Jakobsen SL (2013) Skrivekridtets Fossiler. Gyldendal Fakta, KobenhavnGoogle Scholar
  39. Håkansson E, Hansen JM (1979) Guide to Maastrichtian and Danian boundary strata in Jylland. In: Birkelund T, Bromley RG (eds) Cretaceous-Tertiary Boundary Events Symposium I, CopenhagenGoogle Scholar
  40. Hansen JM (1977) Dinoflagellate stratigraphy and echinoid distribution in upper Maastrichtian and Danian deposits from Denmark. Bull Geol Soc Denmark 26:1–26Google Scholar
  41. Hansen HJ (1990) Diachronous extinctions at the Cretaceous-Tertiary boundary: a scenario. In: Sharpton VL, Ward PD (eds) Global catastrophes in Earth history; an interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America Special Paper 247: 417–423Google Scholar
  42. Hansen T, Farrand RB, Montgomery HA, Billman HG, Blechschmidt G (1987) Sedimentology and extinction patterns across the Cretaceous-Tertiary boundary interval in east Texas. Cretac Res 8:229–252Google Scholar
  43. Hansen HJ, Rasmussen KL, Gwozdz R, Hansen JM, Radwański A (1989) The Cretaceous/Tertiary boundary in Central Poland. Acta Geol Pol 39:1–12Google Scholar
  44. Hart MB, Searle SR, Feist SE, Leighton AD, Price GD, Smart CW, Twitchett RJ (2011) The ­distribution of benthic foraminifera across the Cretaceous-Paleogene boundary in Texas (Brazos River) and Denmark (Stevns Klint). In: Keller G, Adatte T (eds) End-Cretaceous mass extinction and the Chixculub impact in Texas: SEPM Special Publication no 100:179–196Google Scholar
  45. Hart MB, Yancey TE, Leighton AD, Miller B, Liu C, Smart CW, Twitchett RJ (2012) The Cretaceous-Paleogene Boundary on the Brazos River, Texas: new stratigraphic sections and revised interpretations. Gulf Coast Assoc Geol Sci J 1:69–80Google Scholar
  46. Hasegawa T, Pratt LM, Maeda H, Shigeta Y, Okamoto T, Kae T, Uemura K (2003) Upper Creta- ceous stable carbon isotope stratigraphy of terrestrial organic matter from Sakhalin, Russian Far East: a proxy for the isotopic composition of paleoatmospheric CO2. Palaeogeogr Palaeo- climatol Palaeoecol 189:97–115Google Scholar
  47. Hauer F von (1858) Über die Cephalopoden der Gosauschichten. Beitr Paläont Österr 1:7–14Google Scholar
  48. Henderson RA, McNamara KA (1985) Maastrichtian non-heteromorph ammonites from the Miria Formation. Palaeontology 28:35–88Google Scholar
  49. Hennebert M (2012) Hunting for the 405-kyr eccentricity cycle phase at the Cretaceous-Paleogene boundary in the Aïn Settara section (Kalaat Senan, central Tunisia). Carnets de Géol 2012/5:93–116Google Scholar
  50. Hennebert M, Dupuis C (2003) Proposition d’une échelle chronométrique autour de la limite Crétacé-Paléogène par cyclostratigraphie: coupe de l’Aïn Settara (Kalaat Senan, Tunisie centrale). Geobios 36:707–718Google Scholar
  51. Herman Y, Bhattacharya SK, Perch-Nielsen K, Kopaevitch LF, Naidin DP, Frolov VT, Jeffers JD, Sarkar A (1988) Cretaceous-Tertiary boundary marine extinctions: the Russian platform record. Rev Española Paleont, n° Extraord “Palaeontology and Evolution: Extinction Events”: 31–40Google Scholar
  52. Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  53. Hönisch B, Ridgwell A, Schmidt D, Thomas E, Gibbs SJ, Sluijs A, Zeebe R, Kump L, Martindale RC, Greene SE, Kiessling W, Ries J, Zachos JC, Royer DL, Barker S, Marchitto TM Jr, Moyer R, Pelejero C, Ziveri P, Foster GL, Williams B (2012) The geological record of ocean acidification. Science 335:1058–1063Google Scholar
  54. Hupé P (1854) Malacología y conquiliología. In: Gay C (ed) Historia fisica y politica de Chile. Zoología 8:5–385Google Scholar
  55. Husson D, Galbrun B, Laskar J, Hinnov LA, Thibault N, Gardin S, Locklair RE (2011) Astronomical calibration of the Maastrichtian (Late Cretaceous). Earth Planet Sci Lett 305:328–340Google Scholar
  56. Ifrim C, Stinnesbeck W (2010) Migration pathways of the late Campanian and Maastrichtian shallow facies ammonite Sphenodiscus in North America. Palaeogeogr Palaeoclimatol Palaeoecol 292:96–102Google Scholar
  57. Ivanov M (1995) Upper Maastrichtian ammonites from the sections around the town of Bjala (eastern Bulgaria). Rev Bulg Geol Soc 56:57–73 (in Bulgarian)Google Scholar
  58. Ivanov MI, Stoykova KH (1994) Cretaceous/Tertiary boundary in the area of Bjala, eastern Bulgaria—biostratigraphical results. Geol Balc 24(6):3–22Google Scholar
  59. Jablonski D (2008) Extinction and the spatial dynamics of biodiversity. Proc Natl Acad of Sci U S A 105:11528–11535Google Scholar
  60. Jagt JWM (1995) A Late Maastrichtian ammonite faunule in flint preservation from northeastern Belgium. Meded Rijks Geol Dienst 53:21–47Google Scholar
  61. Jagt JWM (1996) Late Maastrichtian and early Palaeocene index macrofossils in the Maastrichtian type area (SE Netherlands, NE Belgium). In: Brinkhuis H, Smit J (eds) The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geol Mijnbouw 75:153–162Google Scholar
  62. Jagt JWM (2002) Late Cretaceous ammonite faunas of the Maastrichtian type area. In: Summesberger H, Histon K, Dauer A (eds) Cephalopods—Present and past. Abh Geol B-A Wien 57:509–522Google Scholar
  63. Jagt JWM (2005) Stratigraphic ranges of mosasaurs in Belgium and the Netherlands (Late Cretaceous) and cephalopod-based correlations with North America. In: Schulp AS, Jagt JWM (eds) Proceedings of the First Mosasaur Meeting. Netherlands J Geosci 84:283–301Google Scholar
  64. Jagt JWM (2012) Ammonieten uit het Laat-Krijt en Vroeg-Paleogeen van Limburg. Staringia 13:154–183Google Scholar
  65. Jagt JWM, Jagt-Yazykova EA (2012) Stratigraphy of the type Maastrichtian—a synthesis. In: Jagt JWM, Donovan SK, Jagt-Yazykova EA (eds) Fossils of the type Maastrichtian (Part 1). Ser Geol Spec issue 8:5–32Google Scholar
  66. Jagt JWM, Smit J, Schulp A (2003) Early Paleocene ammonites and other molluscan taxa from the Ankerpoort-Curfs quarry (Geulhem, southern Limburg, the Netherlands). In: Lamolda MA (ed) Bioevents: their stratigraphical records, patterns and causes. Caravaca, 3rd–8th June 2003, Ayuntamiento de Caravaca de la CruzGoogle Scholar
  67. Jagt JWM, Goolaerts S, Jagt-Yazykova EA, Cremers G, Verhesen W (2006) First record of Phylloptychoceras (Ammonoidea) from the Maastrichtian type area, The Netherlands. Bull Inst Roy Sci nat Belg, Sci Terre 76:97–103Google Scholar
  68. Jagt-Yazykova EA (2011) Palaeobiogeographical and palaeobiological aspects of mid- and Late Cretaceous ammonite evolution and bio-events in the Russian Pacific. Scr Geol 143:15–122Google Scholar
  69. Jagt-Yazykova EA (2012) Ammonite faunal dynamics across bio-events during the mid- and Late Cretaceous along the Russian Pacific coast. Acta Palaeontol Pol 57:737–748Google Scholar
  70. Jeffrey CH (1997) All change at the Cretaceous-Tertiary boundary? Echinoids from the Maastrichtian and Danian of the Mangyshlak Peninsula, Kazakhstan. Palaeontology 40:659–712Google Scholar
  71. Keller G, Abramovich S, Berner Z, Adatte T (2009) Biotic effects of the Chicxulub impact, K-T catastrophe and sea level change in Texas. Palaeogeogr Palaeoclimatol Palaeoecol 271:52–68Google Scholar
  72. Kennedy WJ (1986) The Campanian-Maastrichtian ammonite sequence in the environs of Maastricht (Limburg, the Netherlands), Limburg and Liège provinces (Belgium). Newsl Stratigr 16:149–168Google Scholar
  73. Kennedy WJ (1987) The ammonite faunas of the type Maastrichtian, with a revision of Ammonites colligatus Binkhorst, 1861. Bull de l’Inst Roy des Sci Nat de Belgique 56:151–267Google Scholar
  74. Kennedy WJ (1993) Ammonite faunas of the European Maastrichtian; diversity and extinction. In: House MR (ed) The ammonoidea: environment ecology evolutionary change, Systematics Association Spec. vol 47. Clarendon Press, Oxford, pp 285–326Google Scholar
  75. Kennedy WJ, Cobban WA (2000) Maastrichtian (Late Cretaceous) ammonites from the Owl Creek Formation in northeastern Mississippi, U.S.A. Acta Geol Pol 50:175–190Google Scholar
  76. Kennedy WJ, Jagt JWM (1998) Additional Late Cretaceous ammonite records from the Maastrichtian type area. Bull Inst Roy des Sci de Belgique 68:155–174Google Scholar
  77. Kennedy WJ, Gale AS, Hansen TA (2001) The last Maastrichtian ammonites from the Brazos River sections in Falls County, Texas. Cretac Res 22:163–171Google Scholar
  78. Kiessling W, Claeys P (2002) A geographic database approach to the KT Boundary. In: Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Springer, BerlinGoogle Scholar
  79. Kilian W, Reboul P (1909) Les céphalopodes néocrétacés des îles Seymour et Snow Hill. Wissenschaftliche Ergebnisse der Schwedischen Südpolar-Expedition 3:1–75Google Scholar
  80. Klinger HC (1981) Speculations on buoyancy control and ecology in some heteromorph ammonites. In: House MR, Senior JR (eds) The Ammonoidea. Systematics Association Special vol 18. Academic , New YorkGoogle Scholar
  81. Kodama K (2003) Magnetostratigraphic correlation of the Upper Cretaceous System in the North Pacific. J Asian Earth Sci 21:949–956Google Scholar
  82. Kodama K, Maeda H, Shigeta Y, Kase T, Takeuchi T (2000) Magetostratigraphy of Upper Cretaceous strata in South Sakhalin, Russian Far East. Cretac Res 21:469–478Google Scholar
  83. Kossmat F (1895–1898) Untersuchungen über die Südindische Kreideformation. Beitr Paläont Österr. Ungarns Orients 9(1895):97–203; 11(1897):1–46; 11(1898):89–152Google Scholar
  84. Kruta I, Landman NH, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the marine Mesozoic food web revealed by jaw preservation. Science 311:70–72Google Scholar
  85. Lamarck JP (1801) Système des animaux sans vertèbres. Verdière, ParisGoogle Scholar
  86. Lamarck JP (1822) Histoire naturelle des animaux sans vertèbres. Verdière, ParisGoogle Scholar
  87. Landman NH (1988) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, StuttgartGoogle Scholar
  88. Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills Formation in South Dakota and Wyoming. Am Mus Natl Hist Bull 215:1–257Google Scholar
  89. Landman NH, Tanabe K, Shigeta Y (1996) Ammonoid embryonic development. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  90. Landman NH, Johnson RO, Edwards LE (2004a) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 1. Maryland and North Carolina. Amer Mus Novatites 3454:1–66Google Scholar
  91. Landman NH, Johnson RO, Edwards LE (2004b) Cephalopods from the Cretaceous/Tertiary Boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part 2. Northeastern Monmouth County, New Jersey. Bull Amer Mus Natl Hist 287:1–107Google Scholar
  92. Landman NH, Johnson RO, Garb MP, Edwards LE, Kyte FT (2007) Cephalopods from the Cretaceous/Tertiary boundary interval on the Atlantic Coastal Plain, with a description of the highest ammonite zones in North America. Part III. Manasquan River Basin, Monmouth County, New New Jersey. Bull Amer Mus Natl Hist 303:1–122Google Scholar
  93. Landman NH, Cobban WA, Larson NL (2012a) Mode of life and habitat of scaphitid ammonites. Geobios 45:87–98Google Scholar
  94. Landman NH, Garb MP, Rovelli R, Ebel DS, Edwards LE (2012b) Short-term survival of ammonites in New Jersey after the end-Cretaceous bolide impact. Acta Palaeontol Pol 57:703–715Google Scholar
  95. Landman NH, Goolaerts S, Jagt JWM, Jagt-Yazykova EA, Machalski M, Yacobucci MM (2014) Ammonite extinction and nautilid survival at the end of the Cretaceous. Geology 42:707–710Google Scholar
  96. Larina E, Landman NH, Cochran K, Thibault N, Garb MP, Edwards LE (2012) Insights into climatic and faunal changes at the end of the Maastrictian at the type locality of the Owl Creek Formation, Mississippi. GSA Abstracts with Programs, 44:398Google Scholar
  97. Macellari CE (1986) Late Campanian-Maastrichtian ammonite fauna from Seymour Island (Antarctic Peninsula). Paleontol Soc Mem 18:1–55Google Scholar
  98. Macellari CE (1988) Stratigraphy, sedimentology, and paleontology of Upper Cretaceous/Paleocene shelf sediments of Seymour Island. In: Feldmann RM, Woodburne MO (eds) Geology and paleontology of Seymour Island, Antarctic Peninsula. GSA Mem. 169, pp 25–53Google Scholar
  99. Machalski M (1998) Granica kreda-trzeciorzęd w przełomie Wisy. Prz Geologiczny 46:1153–1161 (in Polish)Google Scholar
  100. Machalski M (2002) Danian ammonites: a discussion. Bull Geol Soc Den 49:49–52Google Scholar
  101. Machalski M (2005a) The youngest Maastrichtian ammonite faunas from Poland and their dating by scaphitids. Cretac Res 26:813–836Google Scholar
  102. Machalski M (2005b) Late Maastrichtian and earliest Danian scaphitid ammonites from central Europe: taxonomy, evolution, and extinction. Acta Palaeontol Pol 50:653–696Google Scholar
  103. Machalski M (2012) Stratigraphically important ammonites from the Campanian-Maastrichtian boundary interval of the Middle Vistula River section, central Poland. Acta Geol Pol 61:91–116Google Scholar
  104. Machalski M, Walaszczyk I (1987) Faunal condensation and mixing in the uppermost Maastrichtian/Danian greensand (Middle Vistula Valley, central Poland). Acta Geol Pol 37:75–91Google Scholar
  105. Machalski M, Walaszczyk I (1988) The youngest (uppermost Maastrichtian) ammonites in the Middle Vistula Valley, central Poland. Bull Polish Acad Sci Earth Sci 36:67–70Google Scholar
  106. Machalski M, Heinberg C (2005) Evidence for ammonite survival into the Danian (Paleogene) from the Cerithium Limestone at Stevns Klint, Denmark. Bull Geol Soc Den 52:97–111Google Scholar
  107. Machalski M, Jagt JWM, Heinberg C, Landman NH, Håkansson E (2009) Dańskie amonity—obecny stan wiedzy i perspektywy badań. Prz Geol 57:486–493 [in Polish]Google Scholar
  108. Machalski M, Jagt JWM, Alekseev AS, Jagt-Yazykova EA (2012) Terminal Maastrichtian ammonites from Turkmenistan, Central Asia. Acta Palaeontol Pol 57:729–735Google Scholar
  109. Mai H (1998) Paleocene coccoliths and coccospheres in deposits of the Maastrichtian stage and the “type locality” and type area in SE Limburg, The Netherlands. Mar Micropaleontol 36:1–12Google Scholar
  110. Marshall CR, Ward PD (1996) Sudden and gradual molluscan extinctions in the latest Cretaceous in western European Tethys. Science 274:1360–1363Google Scholar
  111. Mathey B (1982) El Cretácico superior de Arco Vasco. In: El Cretácico de España. Universidad Complutense de Madrid, MadridGoogle Scholar
  112. Matsumoto T (1938) Zelandites, a genus of Cretaceous ammonite. Jpn J Geogr Geol 15:137–148Google Scholar
  113. Matsumoto T (1942) A short note on the Japanese Cretaceous Phylloceratidae. Proc Imp Acad Jpn 18:674–676Google Scholar
  114. Matsumoto T (1979a) Some new species of Pachydiscus from the Tobetsu and the Hobetsu valleys. In: Matsumoto T, Kanie Y, Yoshida S (eds) Notes on Pachydiscus from Hokkaido, vol 24. Mem Fac Sci Kyushu Univ, Series D, Geology. pp 47–73, 50–64Google Scholar
  115. Matsumoto T (1984) Some gaudryceratid ammonites from the Campanian and Maastrichtian of Hokkaido, Part 1. Sci Rep Yokosuka City Mus 32:1–10Google Scholar
  116. Matsumoto T Yoshida S (1979b) A new gaudryceratid ammonite from the Cretaceous of Hokkaido and Saghalien (Studies of the Cretaceous ammonites from Hokkaido and Saghalien XXXVII). Trans Proc Palaeontol Soc Jpn 114:65–76Google Scholar
  117. Meek FB (1858) Descriptions of new organic remains from the Cretaceous rocks of Vancouver’s Island. Transactions of Albany Institute 4, pp 37–49Google Scholar
  118. Miller KG, Sherrell RM, Browning JV, Field MP, Gallagher W, Olsson RK, Sugarman PJ, Tuorto S, Wahyudi H (2010) Relationship between mass extinction and iridium across the Cretaceous-Paleogene boundary in New Jersey. Geology 38:867–870Google Scholar
  119. Molina E, Alegret L, Arenilas I, Arz JA, Gallala N, Hardenbol J von, Salis K, Steurbaut E, Vandenberghe N, Zaghbib-Turki D (2006) The global boundary stratotype section and point for the base of the Danian stage (Paleocene, Paleogene, “Tertiary”, Cenozoic) at El Kef, Tunisia—original definition and revision. Episodes 29:263–273Google Scholar
  120. Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170Google Scholar
  121. Morozumi Y (1985) Late Cretaceous (Campanian and Maastrichtian) ammonites from Awaji Island, southwest Japan, vol 39. Osaka Mus Nat Hist 39:1–58Google Scholar
  122. Morton SG (1834) Synopsis of the organic remains of the Cretaceous groups of the United States. Illustrated by nineteen plates, to which is added an appendix containing a tabular view of the Tertiary fossils discovered in America. Key and Biddle, PhiladelphiaGoogle Scholar
  123. Moskvin MM (ed) (1959) Atlas of Upper Cretaceous fauna from northern Caucasus and Crimea. Trudy VNIIGAZ, Gostoptechizdat, Moscow (in Russian)Google Scholar
  124. Naidin DP (1987) The Cretaceous-Tertiary boundary in Mangyshlak, U.S.S.R. Geol Mag 124:13–19Google Scholar
  125. Olivero EB (2012) Sedimentary cycles, ammonite diversity and palaeoenvironmental changes in the Upper Cretaceous Marambio Group, Antarctica. Cretac Res 34:348–366Google Scholar
  126. Orbigny AD d’ (1850) Prodrome de paléontologie stratigraphique universelle des animaux mollusques et rayonnés 2. Masson, ParisGoogle Scholar
  127. Perch-Nielsen K (1985) Mesozoic calcareous nannofossils. In: Bolli HM, Saunders JB, Perch-Nielsen K (eds) Plankton stratigraphy. Cambridge University, CambridgeGoogle Scholar
  128. Peryt D (1980) Planktic foraminifera zonation of the Upper Cretaceous in the Middle Vistula Valley, Poland. Palaeontol Pol 41:3–101Google Scholar
  129. Pervinquière L (1907) Études de paléontologie tunisienne. 1. Céphalopodes des terrains secondaires. Carte Géologique de la Tunisie, Direction Générale des Travaux Publics, De Rudeval, ParisGoogle Scholar
  130. Preisinger A, Aslanian S, Stoykova K, Grass F, Mauritsch HJ, Scholger R (1993) Cretaceous/Tertiary boundary sections on the coast of the Black Sea near Bjala (Bulgaria). Palaeogeogr Palaeoclimatol Palaeoecol 104:219–228Google Scholar
  131. Racki G, Machalski M, Koeberl C, Harasimiuk M (2011) The weathering-modified iridium record of a new Cretaceous-Paleogene site at Lechówka near Chelm, SE Poland, and its palaeobiologic implications. Acta Palaeontol Pol 56:205–215Google Scholar
  132. Rasmussen JA, Heinberg C, Håkansson E (2005) Planktonic foraminifers, biostratigraphy and the diachronous deposition of the lowermost Danian Cerithium Limestone at Stevns Klint, Denmark. Bull Geol Soc Den 52:113–131Google Scholar
  133. Redtenbacher A (1873) Die Cephalopodenfauna der Gosauschichten in den nordöstlichen Alpen. Abh der KK Geol Reichsanst 5:91–114Google Scholar
  134. Rocchia R, Robin E, Smit J, Pierrard O, Lefevre I (2002) K/T impact remains in an ammonite from the uppermost Maastrichtian of Bidart section (French Basque Country). In: Buffetaut E, Koeberl C (eds) Geological and biological effects of impact events. Springer, BerlinGoogle Scholar
  135. Salazar C, Stinnesbeck W, Quinzio-Sinn LA (2010) Ammonites from the Maastrichtian (Upper Cretaceous) Quiriquina Formation in central Chile. N Jb Geol Paläontol Abh 257:181–236Google Scholar
  136. Say T (1821) Observations on some species of zoophytes, shells, & etc. principally fossil. Am J Sci 2:34–45Google Scholar
  137. Schiøler P, Brinkhuis H, Roncaglia L, Wilson GJ (1997) Dinoflagellate biostratigraphy and sequence stratigraphy of the Type Maastrichtian (Upper Cretaceous), ENCI Quarry, The Netherlands. Mar Micropaleontol 31:65–95Google Scholar
  138. Schlüter C (1871–1876) Cephalopoden der oberen deutschen Kreide. Palaeontographica 21:1–120; 24:1–144Google Scholar
  139. Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR, Bralower TJ, Christeson GL, Claeys P, Cockell CS, Collins GS, Deutsch A, Goldin TJ, Goto K, Grajales-Nishimura JM, Grieve RAF, Gulick SPS, Johnson KR, Kiessling W, Koeberl C, Kring DA, MacLeod KG, Matsui T, Melosh J, Montanari A, Morgan JV, Neal CR, Nichols DJ, Norris RD, Pierazzo E, Ravizza G, Rebolledo-Vieyra M, Reimold WU, Robin E, Salge T, Speijer RP, Sweet AR, Urrutia-Fucugauchi J, Vajda V, Whalen MT, Willumsen PS (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327:1214–1218Google Scholar
  140. Seki K, Tanabe K, Landman NH, Jacobs DK (2000) Hydrodynamic analysis of late Cretaceous desmoceratine ammonites. Rev Paléobiol Vol spéc 8:141–155Google Scholar
  141. Seunes J (1890) Contributions à l’étude des cephalopods du Crétacé supérieur de France, 1. Ammonites du Calcaire à Baculites du Cotentin. Mém Soc géol de France. Paléont 1:1–7Google Scholar
  142. Seunes J (1891) Contributions à l’étude des cephalopods du Crétacé supérieur de France, 1. Ammonites du Calcaire à Baculites du Cotentin (Suite). II. Ammonites du Campanien de la region sous-pyrénéenne, Département de Landes. Mém Soc géol de France. Paléont 2:8–22Google Scholar
  143. Smit J, Brinkhuis H (1996) The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands); summary of results and a scenario of events. In: Brinkhuis H, Smit J (eds) The Geulhemmerberg Cretaceous/Tertiary boundary section (Maastrichtian type area, SE Netherlands). Geol Mijnbouw 75(2–3):293–307Google Scholar
  144. Smit J, Keller G, Zargouni F, Razgallah S, Shimi M, Ben Abdelkader O, Ben Haj Ali N, Ben Salem H (1997) The El Kef sections and sampling procedures. Mar Micropaleontol 29:65–103Google Scholar
  145. Sowerby J (1812–1822) The mineral conchology of Great Britain. The author, LondonGoogle Scholar
  146. Spath LF (1953) The Upper Cretaceous cephalopod fauna of Grahamland. Scientific Reports of the British Antarctic Survey 3:1–60Google Scholar
  147. Stephenson LW (1941) The larger invertebrates of the Navarro Group of Texas (exclusive of corals and crustaceans and exclusive of the fauna of the Escondido Formation). Univ Texas Bull 4101:1–641Google Scholar
  148. Stephenson LW (1955) Owl Creek (Upper Cretaceous) fossils from Crowley’s Ridge, southeastern Missouri. USGS Professional Paper 274, 97–140Google Scholar
  149. Stinnesbeck W, Keller G (1996) Environmental changes across the Cretaceous-Tertiary boundary in northeastern Brazil. In: McLeod N, Keller G (eds) Cretaceous-Tertiary mass extinctions: biotic and environmental changes. WW Norton & Co, New YorkGoogle Scholar
  150. Stinnesbeck W, Ifrim C, Salazar C (2012) The last Cretaceous ammonites in Latin America. Acta Palaeontol Pol 57:717–728Google Scholar
  151. Stoykova K, Ivanov M (2004) Calcareous nannofossils and sequence stratigraphy of the Cretaceous/Tertiary transition in Bulgaria. J Nannoplankton Res 26:47–61Google Scholar
  152. Stoykova K, Ivanov M (2005) Calcareous nannofossils and sequence stratigraphy of the Cretaceous/Tertiary transition in Bulgaria (Errata). J Nannoplankton Res 27:99–106Google Scholar
  153. Surlyk F (1997) A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin. In: James NP, Clarke JDA (eds) Cool-water carbonates, vol 56. SEPM Special Publications, pp 293–307Google Scholar
  154. Surlyk F, Nielsen JM (1999) The last ammonite? Bull Geol Soc Den 46:115–119Google Scholar
  155. Surlyk F, Damholt T, Bjerager M (2006) Stevns Klint, Denmark: uppermost Maastrichtian chalk, Cretaceous-Tertiary boundary, and lower Danian bryozoan mound complex. Bull Geol Soc Den 54:1–48Google Scholar
  156. Tanabe K (1989) Endocochliate embryo model in the Mesozoic Ammonitida. Hist Biol 2:183–196Google Scholar
  157. Tanabe K, Landman NH (2002) Morphological diversity of the jaws of Cretaceous Ammonoidea. In: Summesberger H, Histon K, Daurer A (eds) Cephalopods-present and past. Abh Geol B-A 57:157–165Google Scholar
  158. Tanabe K, Misaki A, Landman NH, Kato T (2013) The jaw apparatuses of Cretaceous Phylloceratina (Ammonoidea). Lethaia 46:399–408Google Scholar
  159. Ten Kate WGHZ, Sprenger A (1993) Orbital cyclicities above and below the Cretaceous/Paleogene boundary at Zumaya (N Spain), Agost and Relleu (SE Spain). Sediment Geol 87:69–101Google Scholar
  160. Tobin TS, Ward PD, Steig EJ, Olivero EB, Hilburn IA, Mitchell RN, Diamond MR, Raub TD, Kirschvink JL (2012) Extinction patterns, δ18O trends, and magnetostratigraphy from a southern high-latitude Cretaceous-Paleogene section: links with Deccan volcanism. Palaeogeogr Palaeoclimatol Palaeoecol 350–352:180–188Google Scholar
  161. Tuomey M (1856) Description of some new fossils from the Cretaceous rocks of the southern States. Proc Acad of Natl Sci Phila 7(1854):167–172Google Scholar
  162. Van der Tuuk LA, Zijlstra JJP (1979) Eerste vondst van een Nostoceras [sic] (orde Ammonoidea) in Nederland. Grondboor Hamer 33:116–120Google Scholar
  163. Vellekoop J, Sluijs A, Smit J, Schouten S, Weijers JWH, Sinninghe Damste JS, Brinkhuis H (2014) Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. Proc Natl Acad of Sci U S A 111:7531–7541Google Scholar
  164. Wang SC, Marshall CR (2004) Improved confidence intervals for estimating the position of a mass extinction boundary. Paleobiology 30:5–18Google Scholar
  165. Ward PD (1996) Ammonoid extinction. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  166. Ward PD, Kennedy WJ (1993) Maastrichtian ammonites from the Biscay region (France, Spain). Paleontol Soc Mem 34:1–58Google Scholar
  167. Ward PD, Signor PW III (1983) Evolutionary tempo in Jurassic and Cretaceous ammonites. Paleobiology 9:183–198Google Scholar
  168. Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  169. Wiedmann J (1987) The K/T Boundary section of Zumaya, Guipuzcoa. In: Lamolda MA (ed) Field excursion to the K/T boundary at Zumaya and Biarritz. Paleontología et Evolutío: exstinctionis phaenomina III. Journados de Paleontología. Keia (Vizcaya), Octobre de 1987, Univ de Païs Vasco, BilbaoGoogle Scholar
  170. Wiedmann J (1988a) Ammonite extinction and the “Cretaceous-Tertiary Boundary Event”. In: Wiedmann J, Kullmann J (eds) Cephalopods—present and past. Schweizerbart, StuttgartGoogle Scholar
  171. Wiedmann J (1988b) The Basque coastal sections of the K/T Boundary—a key for understanding “mass extinction” in the fossil record. Rev Esp Paleont, no. extraord 1988:127–140Google Scholar
  172. Yazykova EA (1991) Maastrichtian ammonoids of the eastern USSR and their stratigraphical significance. Bull MOIP Geol 66:68–73 [In Russian]Google Scholar
  173. Yazikova EA (1994) Maastrichtian ammonites and biostratigraphy of the Sakhalin and Shikotan islands, Far Eastern Russia. Acta Geol Pol 44:277–303Google Scholar
  174. Yazykova EA (2004) Ammonite biozonation and litho-chronostratigraphy of the Cretaceous in Sakhalin and adjacent territories of Far East Russia. Acta Geol Pol 54:273–312Google Scholar
  175. Zijlstra JJP (1994) Sedimentology of the Late Cretaceous and Early Tertiary (tuffaceous) chalk of northwest Europe. Geol Ultraiect 119:1–192Google Scholar
  176. Zinsmeister WJ (1998) Discovery of fish mortality horizon at the K-T boundary on Seymour Island: re-evaluation of events at the end of the Cretaceous. J Paleontol 72:556–571Google Scholar
  177. Zinsmeister WJ, Feldmann RM (1996) Late Cretaceous faunal changes in the high southern latitudes: a harbinger of global biotic catastrophe? In: MacLeod N, Keller G (eds) Cretaceous-Tertiary mass extinctions: biotic and environmental changes. WW Norton, New YorkGoogle Scholar
  178. Zinsmeister WJ, Woodburne O, Elliot DH (1989) Latest Cretaceous/earliest Tertiary transition on Seymour Island, Antarctica. J Paleontol 63:731–738Google Scholar
  179. Zonova TD, Kazintsova LT, Yazykova EA (1993) Atlas of the main groups of the Cretaceous fauna from Sakhalin. Nedra, Sankt Peterburg (In Russian)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Neil H. Landman
    • 1
  • Stijn Goolaerts
    • 2
  • John W.M. Jagt
    • 3
  • Elena A. Jagt-Yazykova
    • 4
    • 5
  • Marcin Machalski
    • 6
  1. 1.Division of Paleontology (Invertebrates)American Museum of Natural History, New YorkNew YorkUSA
  2. 2.Department of Paleontology, OD Earth & History of LifeRoyal Belgian Institute of Natural Sciences (IRSNB-KBIN)BrusselsBelgium
  3. 3.Natuurhistorisch Museum MaastrichtMaastrichtThe Netherlands
  4. 4.Zakład PaleobiologiiUniwersytet OpolskiOpolePoland
  5. 5.St. Petersburg State University (SPbGU)St. PetersburgRussia
  6. 6.Instytut PaleobiologiiPolska Akademia NaukWarsawPoland

Personalised recommendations