Ammonoid Intraspecific Variability

  • Kenneth De BaetsEmail author
  • Didier Bert
  • René Hoffmann
  • Claude Monnet
  • Margaret M. Yacobucci
  • Christian Klug
Part of the Topics in Geobiology book series (TGBI, volume 43)


Two main types of intraspecific variation can be distinguished in ammonoids, which are not mutually exclusive: continuous and discontinuous variation. Although many authors acknowledge or implicitly assume a large intraspecific variability is possible in shell shape, ornamentation and suture line, it has only been rarely studied quantitatively. Several potential biases need to be taken into account when studying intraspecific variation of fossil populations including paleoecological, taphonomic and collection biases. Intraspecific variation might be controlled both by genetic and environmental parameters, although both are difficult to separate in fossil samples. In ammonoids, a large part of intraspecific variation in morphology and size has been attributed to differences in growth rates and development. Taking intraspecific variation properly into account is not only of prime importance for taxonomy, but also for studies on biostratigraphy, paleobiogeography, ecology, paleobiology and evolution of ammonoids.


Intraspecific variability Unimodal variation Polymorphism Ecophenotypic variation Covariation Quantification 



Some of the insights described in this chapter grew during the course of research projects 200021-113956⁄1, 200020-25029, and 200020-132870 funded by the Swiss National Science Foundation SNF. David Ware (Zürich) and Isabelle Rouget (Paris) helped with obtaining some of the literature. Markus Wilmsen (Senckenberg Natural History Collections, Dresden), Gene Hunt (Smithsonian Institution, Washington, USA) and Michał Zatoń (University of Silesia, Sosnowiec) kindly put figures at our disposal. Jerzy Dzik (Institute of Paleobiology, Polish Academy of Sciences, Warsaw), Helga Weitschat on behalf of Wolfgang Weitschat (Geological–Paleontological Institute and Museum, University of Hamburg, retired), Vasily Mitta (Paleontological Institute, Russian Academy of Sciences, Moscow), Lionel Cavin (Natural History Museum of Geneva) on behalf of the journal Revue de Paléobiologie, and Jim Kennedy (University of Oxford, retired) gave permission to use their figures. We thank the reviewers Michał Zatoń (University of Silesia, Sosnowiec) and Sonny A. Walton (Naturkunde Museum, Berlin) for the constructive comments and suggestions. We would like to dedicate this chapter to the inspiring work of Algirdas Dagys and Wolfgang Weitschat on intraspecific variation in Triassic ammonoids.


  1. Adams DC, Collyer ML (2009) A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution Int J org Evolution 63:1143–1154Google Scholar
  2. Ager DV (1963) Principles of paleoecology. McGraw Hill, New YorkGoogle Scholar
  3. Aguirre-Urreta MB (1998) The ammonites Karakaschiceras and Neohoploceras (Valanginian Neocomitidae) from the Neuquen basin, west-central Argentina. J Paleontol 72:39–59Google Scholar
  4. Aguirre-Urreta MB, Riccardi AC (1988) Albian heteromorph ammonoids from southern Patagonia, Argentina. J Paleontol 62:598–614Google Scholar
  5. Andrew C, Howe P, Paul CRC, Donovan SK (2011) Epifaunal worm tubes on Lower Jurassic (Lower Lias) ammonites from Dorset. Proc Geol Assoc 122:34–46Google Scholar
  6. Arkell WJ (1957) Introduction to Mesozoic Ammonoidea. In: Moore RC (ed) Treatise on invertebrate paleontology, Part L, Mollusca 4, Cephalopoda-Ammonoidea. GSA and University of Kansas Press, L80–L100Google Scholar
  7. Arkhipkin A (1992) Reproductive system structure, development and function in cephalopods with a new general scale for maturity stages. J Northw Atl Fish Sci 12:63–74Google Scholar
  8. Arkhipkin AI (2004) Diversity in growth and longevity in short-lived animals: squid of the suborder Oegopsina. Mar Freshw Res 55:341–355Google Scholar
  9. Arkhipkin A, Laptikhovsky V (1994) Seasonal and interannual variability in growth and maturation of winter-spawning Illex argentinus (Cephalopoda, Ommastrephidae) in the Southwest Atlantic. Aquat Living Resour 7:221–232Google Scholar
  10. Arvesen JN, Schmitz TH (1970) Robust procedures for variance component problems using the jackknife. Biometrics 26:677–686Google Scholar
  11. Atrops F, Mélendez G (1993) Current trends in systematics of Jurassic Ammonoidea: the case of Oxfordian-Kimmeridgian perisphinctids from southern Europe. Geobios 26(Suppl 1):19–31. doi: Scholar
  12. Aubrecht R, Schlögl J (2011) Jurassic submarine troglobites: is there any link to the recent submarine cave fauna? Hydrobiologia 677:3–14Google Scholar
  13. Bailey RC, Byrnes J (1990) A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Syst Biol 39:124–130Google Scholar
  14. Barber WM (1957) The Lower Turonian ammonites of northeastern Nigeria. Bull Geol Surv Nigeria 26:1–86Google Scholar
  15. Bardhan S, Jana SK, Datta K (1993) Preserved color pattern of a phylloceratid ammonoid from the Jurassic Chari Formation, Kutch, India, and its functional significance. J Paleontol 67:140–143Google Scholar
  16. Bardhan S, Jana SK, Roy P (2010) Sexual dimorphism and polymorphism in a Callovian Phlycticeras (Ammonoidea) assemblage of Kutch, India. Geobios 43:269–281Google Scholar
  17. Baudouin C, Boselli P, Bert D (2011) The Oppeliidae of the Acanthicum zone (Upper Kimmeridgian) from Mount Crussol (Ardèche, France): ontogeny, variability and dimorphism of the genera Taramelliceras and Streblites (Ammonoidea). Rev Paleobiol 30:619–684Google Scholar
  18. Baudouin C, Bert D, Boselli P (2012) Preview on the ontogeny, variability and dimorphism of the genera Taramelliceras and Streblites (Ammonoidea) of the Acanthicum zone (Upper Kimmeridgian) from Mount Crussol (Ardèche, France). Bol Inst Fisiog Geol 82:19–21Google Scholar
  19. Bayer U, McGhee GR Jr (1984) Iterative evolution of middle Jurassic ammonite faunas. Lethaia 17:1–16Google Scholar
  20. Bayer U, McGhee GR Jr (1985) Evolution in marginal epicontinental basins: the role of phylogenetic and ecological factors. Ammonite replacements in the German Lower and Middle Jurassic. In: Bayer U, Seilacher A (eds) Sedimentary and evolutionary cycles. Springer, BerlinGoogle Scholar
  21. Bert D (2004) Révision, etude systématique et evolution du genre Gregoryceras Spath, 1924 (Ammonoidea, Oxfordien). Ann Mus Hist Nat Nice 19:1–184Google Scholar
  22. Bert D (2009) Discussion, evolution and new interpretation of the Tornquistes Lemoine, 1910 (Pachyceratidae, Ammonitina) with the exemple of the verte-brale subzone sample (Middle Oxfordian) of southeastern France. Rev Paleobiol 28:471–489Google Scholar
  23. Bert D (2012) Phylogenetic relationships among the Hemihoplitidae Spath 1924 (Ammonoidea, Upper Barremian). Boletin del Instituto de Fisiografia y. Geologia 82:17–18Google Scholar
  24. Bert D (2013). Factors of intraspecific variability in ammonites, the example of Gassendiceras alpinum (d’Orbigny, 1850) (Hemihoplitidae, Upper Barremian). Annales de Paléontologie doi:10.1016/j.annpal.2013.11.007Google Scholar
  25. Bersac S, Bert D (2012a) Ontogenesis, variability and evolution of the Lower Greensand Deshayesitidae (Ammonoidea, Lower Cretaceous, Southern England): reinterpretation of literature data; taxonomic and biostratigraphic implications. Ann Mus Hist Nat Nice 27:197–270Google Scholar
  26. Bersac S, Bert D (2012b) Variability and evolution of the Deshayesitidae (Ammonoidea, Lower Aptian, Lower Cretaceous) from southern England. Bol Inst Fisiog Geol 82:27–30Google Scholar
  27. Bert D, Bersac S (2013) Evolutionary patterns-tested with cladistics-and pro-cesses in relation to palaeoenvironments of the Upper Barremian genus Gassendiceras (Ammonitina, Lower Cretaceous). Palaeontology 56:631–646Google Scholar
  28. Bert D, Delanoy G, Bersac S (2011) The dichotomus horizon: a new biochronologic unit of the Giraudi zone of the Upper Barremian of southeastern France, and considerations regarding the genus Imerites Rouchadze (Ammonoidea, Gassendiceratinae). Carnets Geol 2011/01:
  29. Beznosov NV, Mitta VV (1995) Polymorphism in the Jurassic ammonoids. Paleontol J 29:46–57Google Scholar
  30. Bhaumik D, Datta K, Jana-Sudipta K, Bardhan S (1993) Taxonomy and intraspecific variation of Macrocephalites formosus (Sowerby) from the Jurassic Chari Formation, Kutch, western India. J Geol Soc India 42:163–179Google Scholar
  31. Bissell A, Ferguson R (1975) The jackknife-toy, tool or two-edged weapon? The Statistician:79–100Google Scholar
  32. Blake JF (1878) On the measurements of curves formed by cephalopods and other mollusks. Philsoph Mag 5:241–262Google Scholar
  33. Boletzky Sv (1974) Effets de la sous-nutrition prolongée sur le développement de la coquille de Sepia officinalis L. (Mollusca, Cephalopoda). Bull Soc Zool Fr 99:667–673Google Scholar
  34. Boletzky Sv (2003) Biology of early life stages in cephalopod molluscs. Adv Mar Biol 44:143–203Google Scholar
  35. Bonnot A, Marchand D, Neige P (1999) Les Oppeliidae (Ammonitina) de l’horizon à Collotiformis (Callovien supérieur, zone à Athleta) de la région Dijonnaise (Côte-d’Or, France). Annales de Paléontologie 85:241–263Google Scholar
  36. Bookstein FL, Ward PD (2013) A modified procrustes analysis for bilaterally symmetrical outlines, with an application to microevolution in Baculites. Paleobiology 39:214–234Google Scholar
  37. Boyle P, Ngoile M (1993) Population variation and growth in Loligo forbesi (Cephalopoda: Loliginidae) from Scottish waters. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, TokyoGoogle Scholar
  38. Boyle PR, von Boletzky S (1996) Cephalopod populations: definition and dynamics. Philos Trans R Soc B-Biol Sci 351(1343):985–1002. doi:10.2307/56291Google Scholar
  39. Brayard A, Escarguel G (2013) Untangling phylogenetic, geometric and ornamental imprints on Early Triassic ammonoid biogeography: a similarity-distance decay study. Lethaia 46:19–33Google Scholar
  40. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galfetti T, Guex J (2009) Good genes and good luck: ammonoid diversity and the end-permian mass extinction. Science 325:1118–1121Google Scholar
  41. Brochwicz-Lewiński W, Rózak Z (1976) Some difficulties in recognition of sexual dimorphism in Jurassic perisphinctids (Ammonoidea). Acta Palaeontol Polonica 21:115–124Google Scholar
  42. Bucher H (1997) Caractères périodiques etmode de croissance des ammonites: Comparaison avec les gastéropodes. Geobios 30(Suppl 1):85–99Google Scholar
  43. Bucher H, Landman NH, Klofak SM, Guex J (1996) Mode and rate of growth in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  44. Buckman SS (1887-1907) A monograph of the ammonites of the inferior oolite series. Palaeontogr Soc 40-61:1–456Google Scholar
  45. Bulmer MG (1980) The mathematical theory of quantitative genetics. Oxford Science Publications, OxfordGoogle Scholar
  46. Callomon JH (1963) Sexual dimorphism in Jurassic ammonites. Trans Leicester Lit Philos Soc 57:21–56Google Scholar
  47. Callomon J (1985) The evolution of the Jurassic ammonite family Cardioceratidae. Spec Pap Palaeontol 33:49–90Google Scholar
  48. Callomon JH (1988) Review of Matyja 1986. Cephalopod Newsletter 9:14–16Google Scholar
  49. Casey R (1961) A monograph of the Ammonoidea of the Lower Greensand, part II. Palaeontogr Soc Lond 493:45–118Google Scholar
  50. Casey R (1963) A monograph of the Ammonoidea of the Lower Greensand, part V. Palaeontogr Soc Lond 502:289–398Google Scholar
  51. Chandler R, Callomon J (2009) The inferior oolite at Coombe quarry, near Mapperton, Dorset, and a new Middle Jurassic ammonite faunal horizon, Aa-3b, Leioceras comptocostosum n. biosp. in the Scissum zone of the Lower Aalenian. Proc Dorset Nat Hist Archaeol Soc 130:99–132Google Scholar
  52. Charpy N, Thierry J (1976) Dimorphisme et polymorphisme chez Pachyceras Bayle (Ammonitina, Stephanocerataceae) du Callovien Supérieur (Jurassique Moyen). Haliotis 6:185–218Google Scholar
  53. Checa A, Company M, Sandoval J, Weitschat W (1996) Covariation of morpho-logical characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225–235Google Scholar
  54. Chlupáč I, Turek V (1983) Devonian goniatites from the Barrandian area. Rozpr Ustred Ust Geol 46:1–15Google Scholar
  55. Clarke JM (1899) The Naples fauna (fauna with Manticoceras intumescens) in western New York. New York State Museum. Annu Rep Regents 50:31–161Google Scholar
  56. Clarke AH (1978) Polymorphism in marine mollusks and biome development. Smithson Contrib Zool 274:1–14Google Scholar
  57. Collyer ML, Adams DC (2013) Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix 24:75–83Google Scholar
  58. Contini D, Marchand D, Thierry J (1984) Reflexions sur la notion de genre et de sous-genre chez les Ammonites: exemples pris essentiellement dans le Jurassique moyen. Bull Soc Geol Fr 26:653–666Google Scholar
  59. Courville P (1993) Les formations marines et les faunes d’ammonites cénomaniennes et turoniennes (Crétacé supérieur) dans le Fosséde la Bénoué (Nigéria). Impacts des facteurs locaux et globaux sur les échanges fauniques à l’interface Téthys/ Atlantique Sud. Unpubl PhD Thesis, Univ de Dijon, p. 360Google Scholar
  60. Courville P (2011) Caractères ornementaux, disparité et diversité chez les Ammonitina: exemple des Kosmoceratinae (Stephanoceratoidea), Callovien moyen et supérieur (Jurassique moyen, Bassin parisien). C R Palevol 10:155–170Google Scholar
  61. Courville P, Crônier C (2003) Les hétérochronies du développement: un outil pour l’étude de la variabilité et des relations phylétiques: Exemple de Nigericeras, Ammonitina du Crétacé supérieur africain. C R Palevol 2:535–546Google Scholar
  62. Courville P, Crônier C (2005) Diversity or disparity in the Jurassic (Upper Callovian) Genus Kosmoceras (Ammonitina): a morphometric approach. J Paleontol 79:944–953Google Scholar
  63. Courville P, Lebrun P (2010) L’Albien (Crétacé) de la region de Troyes (Aube) et ses ammonites: Hoplitidae et Douvilleiceratidae. Fossiles 4:4–30Google Scholar
  64. Courville P, Thierry J (1993) Sous-espèces géographiques et/ou contrôle environnemental de la variabilité morphologique chez “Thomasitesgongilensis (Woods, 1911), (Ammonitina, Acanthocerataceae, Vascoceratinae) du Turonien inférieur de la Haute Bénoué (Nigéria). Geobios 26(Suppl 1):73–89Google Scholar
  65. Crick RR (1978) Morphological variations in the ammonite Scaphites of the Blue Hill member, Crlile Shale, Upper Cretaceous. Univ Kans Paleontol Contrib 88:1–30Google Scholar
  66. Dagys AS (2001) The ammonoid family Arctohungaritidae from the boreal Lower-Middle Anisian (Triassic) of arctic Asia. Rev Paleobiol 20:543–546Google Scholar
  67. Dagys AS, Weitschat W (1993a) Intraspecific variation in Boreal Triassic ammonoids. Geobios 26:107–109Google Scholar
  68. Dagys AS, Weitschat W (1993b) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121Google Scholar
  69. Dagys AS, Bucher H, Weitschat W (1999) Intraspecific variation of Parasibirites kolymensis Bychkov (Ammonoidea) from the Lower Triassic (Spathian) of arctic Asia. Mitt aus dem Geol-Paläont Inst Universität Hamburg 83:163–178Google Scholar
  70. Darwin CR (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  71. Davis RA, Landman NH, Dommergues J-L, Marchand D, Bucher H (1996) Mature modifications and dimorphism in ammonoid cephalopods. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  72. De Baets K, Klug C, Monnet C (2013a) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:75–94Google Scholar
  73. De Baets K, Klug C, Korn D, Bartels C, Poschmann M (2013b) Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontogr A 299:1–113Google Scholar
  74. De Baets K, Keupp H, Klug C (2015a) Parasites of ammonoids. This volumeGoogle Scholar
  75. De Baets K, Landman NH, Tanabe K (2015b) Ammonoid embryonic development. This volumeGoogle Scholar
  76. De Beer G (1958) Evolution by natural selection: a centenary commemorative volume. Papers by Charles Darwin and Alfred Wallace. Cambridge University, CambridgeGoogle Scholar
  77. Delanoy G (1997) Biostratigraphie des faunes d’Ammonites à la limite Barrémien-Aptien dans la région d’Angles-Barrême-Castellane. Étude particulière de la Famille des Heteroceratidae Spath 1922 (Ancyloceratina, Ammonoidea). Ann Mus Hist Nat Nice 12:1–270Google Scholar
  78. Delanoy G, Ropolo P, Magnin A, Autran G, Poupon A, Gonnet R (1995) Sur le dimorphisme chez les Ancyloceratina (Ammonoidea) du Crétacé Inférieur. C R Acad Sci Ser IIa 321:537–543Google Scholar
  79. Dera G, Neige P, Dommergues J-L, Brayard A (2011) Ammonite paleobiogeography during the Pliensbachian-Toarcian crisis (Early Jurassic) reflecting paleoclimate, eustasy, and extinctions. Glob Planet Change 78:92–105Google Scholar
  80. Diedrich C (2000) Faziesabhängige Schalenmorphologie des Großammoniten Puzosia dibleyi (Spath 1922) aus dem Puzosia-Event I (Ober-Cenoman) von Europa. Senckenb Lethaea 80:463–483Google Scholar
  81. Dietl G (1978) Die heteromorphen Ammoniten des Dogger. Stuttg Beitr Natur B 33:1–97Google Scholar
  82. Dietze V, Callomon JH, Schweigert G, Chandler RB (2005) The ammonite fauna and biostratigraphy of the Lower Bajocian (Ovale and Laeviuscula zones) of E Swabia (S Germany). Stuttg Beitr Natur B353:1–82Google Scholar
  83. Doguzhaeva L (1982) Rhythms of ammonoid shell secretion. Lethaia 15:385–394Google Scholar
  84. Dommergues J-L (1988) Can ribs and septa provide an alternative standard for age in ammonite ontogenetic studies? Lethaia 21:243–256Google Scholar
  85. Dommergues J-L, David B, Marchand D (1986) Les rélations ontogenèse-phylogenèse: applications paléontologiques. Geobios 19:335–356Google Scholar
  86. Dommergues J-L, Cariou E, Contini D, Hantzpergue P, Marchand D, Meister C, Thierry J (1989) Homéomorphies et canalisations évolutives: Le rôle de l’ontogenèse. Quelques exemples pris chez les Ammonites du Jurassique. Geobios 22:5–48Google Scholar
  87. Dommergues J-L, Montuire S, Neige P (2002) Size patterns through time: the case of the early Jurassic ammonite radiation. Paleobiology 28:423–434Google Scholar
  88. Dommergues E, Dommergues J-L, Dommergues C-H (2006) Deux espèces sous un même masque. Le point de vue paléontologique piégé par les coquilles de deux espèces européennes de Trivia (Mollusca, Gastropoda). Rev Paleobiol 25:775–790Google Scholar
  89. Donovan DT (1994) History of classification of Mesozoic ammonites. J Geol Soc 151:1035–1040Google Scholar
  90. Dzik J (1985) Typologic versus population concepts of chronospecies: implications for ammonite biostratigraphy. Acta Palaeontol Pol 30:71–92Google Scholar
  91. Dzik J (1990a). The concept of chronospecies in ammonites. In: Cecca F, Cresta S, Pallini G, Santantonio M (eds) Atti del Secondo Convegno Inter-nazionale Fossili, Evoluzione, Ambiente, Pergola 25-30 ottobre 1987 estratto, Pergola, Comitato Centenario Raffaele PiccininiGoogle Scholar
  92. Dzik J (1990b) The ammonite Acrochordiceras in the Triassic of Silesia. Acta Palaeontol Pol 35:49–65Google Scholar
  93. Dzik J (1994) Sexual dimorphism in the virgatitid ammonites. Palaeopelagos Spec Publ 1:129–141Google Scholar
  94. Ebbighausen V, Korn D (2007) Conch geometry and ontogenetic trajectories in the triangularly coiled Late Devonian ammonoid Wocklumeria and related genera. Neues Jahrb Geol Paläontol Abh 244:9–41Google Scholar
  95. Egojan VL (1969) Ammonites from the Clanseysian beds of the western Caucasus. Trud Krasnodar Fil Vses Neftegazov Nauchnoissledovatel’sk Inst 19:126–188 [in Russian]Google Scholar
  96. Elmi S, Benshili K (1987) Relations entre la structuration tectonique, la composition des peuplements et l’évolution; exemple du Toarcien du Moyen-Atlas méridional (Maroc). Boll Soc Paleontol Ital 26:47–62Google Scholar
  97. Erben HK (1950) Bemerkungen zu Anomalien mancher Anfangswindungen von Mimagoniatites fecundus (Barr.). Neues Jahrb Geol Paläont Mh:25–32Google Scholar
  98. Erben HK (1964) Die Evolution der ältesten Ammonoidea (Lieferung I). Neues Jahrb Geol Paläontol Abh 120:107–212Google Scholar
  99. Flessa KW, Kowalewski M (1994) Shell survival and time-averaging in nearshore and shelf environments: estimates from the radiocarbon literature. Lethaia 27:153–165Google Scholar
  100. Fernández-López S (1995) Taphonomie et interpretation des paléoenvironements. Géobios 18:137–154Google Scholar
  101. Fernández-López S (2000) Temas de Tafonomía. Departamento de Paleontología. Universidad Complutense de Madrid, MadridGoogle Scholar
  102. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7:179–188Google Scholar
  103. Flessa KW, Cutler AH, Meldahl KH (1993) Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266–286Google Scholar
  104. Foote M, Miller AI (2007) Principles of paleontology. Freeman, New YorkGoogle Scholar
  105. Ford EB (1940) Polymorphism and taxonomy. In: Huxley JS (ed) The new systematics. Oxford University, OxfordGoogle Scholar
  106. Ford EB (1945) Polymorphism. Biol Rev 20:73–88Google Scholar
  107. Ford EB (1955) Polymorphism and taxonomy. Heredity 9:255–264Google Scholar
  108. Ford EB (1965) Genetic polymorphism. Faber and Faber, LondonGoogle Scholar
  109. Ford EB (1966) Genetic polymorphism. Proc R Soc B-Biol Sci 164:350–361Google Scholar
  110. Fürsich FT, Aberhan M (1990) Significance of time-averaging for palaeocommunity analysis. Lethaia 23:143–152Google Scholar
  111. Furnish WM, Knapp WD (1966) Lower Pennsylvanian fauna from eastern Kentucky; Part 1, Ammonoids. J Paleontol 40:296–308Google Scholar
  112. Fusco G, Minelli A (2010) Phenotypic plasticity in development and evolution: facts and concepts. Philos Trans R Soc B-Biol Sci 365:547–556Google Scholar
  113. Gangopadhyay TK, Bardhan S (2007) Ornamental polymorphism in Placenticeras kaffrarium (Ammonoidea; Upper Cretaceous of India): evolutionary implications. In: Landman N, Davis R, Mapes R (eds) Cephalopods present and past: new insights and fresh perspectives. Springer, NetherlandsGoogle Scholar
  114. Göddertz B (1989) Unterdevonische hercynische Goniatiten aus Deutschland, Frankreich und der Türkei. Palaeontogr A 208:61–89Google Scholar
  115. Goodfriend GA (1986) Variation in land-snail shell form and size and its causes: a review. Syst Biol 35:204–223Google Scholar
  116. Grüneberg H, Bains GS, Berry BJ, Riles L, Smith C, Weiss R (1966) A search for genetic effects of high natural radioactivity in south India. Spec Rep Ser Med Res Counc 307:1–59Google Scholar
  117. Guex J (2001) Environmental stress and atavism in ammonoid evolution. Eclogae Geol Helv 94:321–328Google Scholar
  118. Guex J (2003) A generalization of Cope’s rule. Bull Soc Geol Fr 174:449–452Google Scholar
  119. Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckman’s law of covariation. Bull Soc Geol Fr 174:603–606Google Scholar
  120. Haas O (1946) Intraspecific variation in, and ontogeny of, Prionotropis woollgari and Prionocyclus wyomingensis. Bull Am Mus Nat Hist 86(4):141–224Google Scholar
  121. Hallam A (1965) Environmental causes of stunting in living and fossil marine benthonic invertebrates. Palaeontology 8:132–155Google Scholar
  122. Hallgrímsson B, Hall BK (2005) Variation: a central concept in biology. Elsevier, AmsterdamGoogle Scholar
  123. Hammer Ø, Bucher H (2005) Buckman’s first law covariation-a case of proportionality. Lethaia 38:67–72Google Scholar
  124. Hammer Ø, Harper DAT (2006) Paleontological data analysis. Wiley-Blackwell, United KingdomGoogle Scholar
  125. Hammer Ø, Bucher H (2006) Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontol Res 10:91–96Google Scholar
  126. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:A4Google Scholar
  127. Hengsbach R (1976) Über die Sutur-Assymetrie bei Cymbites laevigatus (Ammonoidea; Jura). Senckenb Lethaea 56:463–468Google Scholar
  128. Hengsbach R (1980) Über die Sutur-Asymmetrie bei Hecticoceras (Ammonoidea; Jura). Senckenb Lethaea 60:463–473Google Scholar
  129. Hengsbach R (1986) Zur Kenntnis der Asymmetrie der Sutur-Asymmetrie bei Ammoniten. Senckenb Lethaea 67:119–149Google Scholar
  130. Hewitt RA, Hurst JM (1977) Size changes in Jurassic liparoceratid ammonites and their stratigraphical and ecological significance. Lethaia 10:287–301Google Scholar
  131. Hewitt RA, Stait B (1988) Seasonal variation in septal spacing of Sepia officinalis and some Ordovician actinocerid nautiloids. Lethaia 21:383–394Google Scholar
  132. Hewitt RA, Checa A, Westermann GEG, Zaborski PM (1991) Chamber growth in ammonites inferred from colour markings and naturally etched surfaces of Cretaceous vascoceratids from Nigeria. Lethaia 24:271–287Google Scholar
  133. Hewitt RA, Westermann GEG, Checa A (1993) Growth rates of ammonites estimated from aptychi. Geobios 26(Suppl 1):203–208Google Scholar
  134. Hirano H (1978) Phenotypic substitution of Gaudryceras (a Cretaceous ammonite). Trans Proc Palaeontol Soc Jpn New Ser 109:235–258Google Scholar
  135. Hirano H (1979) Importance of transient polymorphism in systematics of Ammonoidea. Gakujutsu Kenkyu Sch Educ Waseda Univ Ser Biol Geol 28:35–43Google Scholar
  136. Hirano H (1981) Growth rates in Nautilus macromphalus and ammonoids: its implications. In: Martinell J (ed) International symposium on conceptions and methods in paleontology. University of Barcelona, BarcelonaGoogle Scholar
  137. Hoffmann R, Keupp H, Wiese F (2009) The systematic position of the Lower Cretaceous heteromorphic ammonite Pictetia Uhlig, 1883. Paläontol Z 83:521–531Google Scholar
  138. Hohenegger J, Tatzreiter F (1992) Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). J Paleontology 66:801–816Google Scholar
  139. Hölder H (1956) Über Anomalien an jurassischen Ammoniten. Paläontol Z 30:95–107Google Scholar
  140. Hoving H-JT, Gilly WF, Markaida U, Benoit-Bird KJ, Brown ZW, Daniel P, Field JC, Parassenti L, Liu B, Campos B (2013) Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate. Glob Change Biol 19:2089–2103Google Scholar
  141. Howarth MK (1973) The stratigraphy and ammonite fauna of the Upper Liassic grey shales of the Yorkshire coast. Bull Br Mus (Nat Hist) Geol 24:235–277Google Scholar
  142. Howarth MK (1978) The stratigraphy and ammonite fauna of the Upper Lias of Northamptonshire. Bull Br Mus (Nat Hist) Geol 29:235–288Google Scholar
  143. Hughes NC, Labandeira CC (1995) The stability of species in taxonomy. Paleobiology 21:401–403Google Scholar
  144. Hunt G (2004a) Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426–443Google Scholar
  145. Hunt G (2004b) Phenotypic variance inflation in fossil samples: an empirical assessment. Paleobiology 30:487–506Google Scholar
  146. Hunt G (2006) Fitting and comparing models of phyletic evolution: random walks and beyond. Paleobiology 32:578–601Google Scholar
  147. Hunt G (2007) Variation and early evolution. Science 317:459–460Google Scholar
  148. Ikeda Y, Wani R (2012) Different modes of migration among late cretaceous ammonoids in northwestern Hokkaido, Japan: evidence from the analyses of shell whorls. J Paleontol 86:605–615Google Scholar
  149. Ivanov AN (1971a) Problems of the periodization of ontogeny in ammonites. Yarosl Ped Inst Uch Zap geol i paleont 87:76–119Google Scholar
  150. Ivanov AN (1971b) On the problem of periodicity of the formation of septa in ammonoid shells and in that of other cephalopods. Yarosl Ped Inst Uch Zap geol i paleont 87:127–130Google Scholar
  151. Ivanov AN (1975) Late ontogeny in ammonites and its characteristics in micro-, macro- and megaconchs. Yarosl Ped Inst Sb Nauchn Trudy 142:5–57Google Scholar
  152. Jackson GD (1994) Application and future potential of statolith increment analysis in squids and sepioids. Can J Fish Aquat Sci 51:2612–2625Google Scholar
  153. Jackson G, Moltschaniwskyj N (2002) Spatial and temporal variation in growth rates and maturity in the Indo-Pacific squid Sepioteuthis lessoniana (Cephalopoda: Loliginidae). Mar Biol 140:747–754Google Scholar
  154. Jacobs DK (1990) Sutural pattern and shell stress in Baculites with implications for other cephalopod shell morphologies. Paleobiology 16:336–348Google Scholar
  155. Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape co-varies with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908Google Scholar
  156. Jolliffe IT (2002) Principal component analysis. Springer, NetherlandsGoogle Scholar
  157. Joly B (2003) L’évolution chez les Phyllocerataceae, la variabilité des paramètres dimensionnels et relatifs. Variabilité de la complexité de la ligne cloisonnaire: Variabilité et paedomorphose. C R Pale 2:231–240Google Scholar
  158. Joly B, Fonters B (2007) Morphotypes, polymorphism and peristome in the species of the genus Holcophylloceras Spath, 1927. Hypothesis of the dimorphism in the species Holcophylloceras zignodianum (d’Orbigny, 1848). Bull Soc Geol Fr 178:217–229Google Scholar
  159. Jordan R, Stahl W (1971) Isotopische Paläotemperatur-Bestimmungen an Jurassischen Ammoniten und grundsätzliche Voraussetzungen für diese Methode. Geol Jahrb 89:33–62Google Scholar
  160. Kakabadze MV (2004) Intraspecific and intrageneric variabilities and their implication for the systematics of Cretaceous heteromorph ammonites; a review. Scr Geol 128:17–37Google Scholar
  161. Kampstra P (2008) Beanplot: a boxplot alternative for visual comparison of distributions. J Stat Softw 28, Code Snippet 1.Google Scholar
  162. Kant R (1973a) Allometrisches Wachstum paläozoischer Ammonoideen: Variabilität und Korrelation einiger Merkmale. Neues Jahrb Geol Paläontol Abh 143:153–192Google Scholar
  163. Kant R (1973b) Untersuchungen des allometrischen Gehäusewachstums paläozoischer Ammonoideen unter besonderer Berücksichtigung einzelner “Populationen.”. N Jahrb Geol Paläont Abh 144:206–251Google Scholar
  164. Kant R (1975) Biometrische Untersuchungen an Ammonoideen-Gehäusen. Paläontol Z 49:203–220Google Scholar
  165. Kaplan P (1999) Buckman’s rule of covariation and other trends in Paleozoic Ammonoidea: morphological integration as key innovation. GSA 31:172Google Scholar
  166. Kassab AS, Hamama HH (1991) Polymorphism in the upper Cretaceous ammonite Libycoceras ismaeli (Zittel). J Afr Earth Sci (Middle East) 12:437–448Google Scholar
  167. Kawabe F (2003) Relationship between Mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretac Res 24:751–763Google Scholar
  168. Kenkel NC (2006) On selecting an appropriate multivariate analysis. Can J Plant Sci 86:663–676Google Scholar
  169. Kennedy WJ (1972) The affinities of Idiohamites ellipticoides Spath (Cretaceous Ammonoidea). Palaeontology 15:400–404Google Scholar
  170. Kennedy WJ (2013) On variation in Schloenbachia varians (J. Sowerby, 1817) from the lower Cenomanian of western Kazakhstan. Acta Geol Pol 63:443–446Google Scholar
  171. Kennedy WJ, Cobban WA (1976) Aspects of ammonite biology, biogeography, and biostratigraphy. Spec Pap Palaeontol 17:1–94Google Scholar
  172. Kennedy WJ, Hancock JM (1970) Ammonites of the genus Acanthoceras from the Cenomanian of Rouen, France. Palaeontology 13:462–490Google Scholar
  173. Kennedy WJ, Wright CW (1985) Evolutionary patterns in Late Cretaceous ammonites. Spec Pap Palaeont 33:131–143Google Scholar
  174. Kennedy WJ, Reyment RA, MacLeod N, Krieger J (2009) Species discrimination in the Lower Cretaceous (Albian) ammonite genus Knemiceras Von Buch 1848. Palaeontogr A 290:1–63Google Scholar
  175. Keupp H (2000). Ammoniten: paläobiologische Erfolgsspiralen. Thorbecke, StuttgartGoogle Scholar
  176. Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berl Palaeobiol Abh 12:1–392Google Scholar
  177. Keupp H, Hoffmann R (2015) Ammonoid paleopathology. This volumeGoogle Scholar
  178. Keupp H, Mitta V (2013) Cephalopod jaws from the Middle Jurassic of Central Russia. Neues Jahrb Geol Paläontol Abh 270:23–54Google Scholar
  179. Keyl F, Argüelles J, Tafur R (2011) Interannual variability in size structure, age, and growth of jumbo squid (Dosidicus gigas) assessed by modal progression analysis. ICES J Mar Sci J Cons 68:507–518Google Scholar
  180. Kidwell SM (1998) Time-averaging in the marine fossil record: overview of strategies and uncertainties. Geobios 30:977–995Google Scholar
  181. Kidwell SM (2002) Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803–806Google Scholar
  182. Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy: releasing the data locked in the fossil record. Plenum, New YorkGoogle Scholar
  183. Kin A (2010) Early Maastrichtian ammonites and nautiloids from Hrebenne, southeast Poland, and phenotypic plasticity of Acanthoscaphites tridens (Kner, 1848). Cretaceous Res 31:27–60Google Scholar
  184. Kin A (2011) Phenotypic plasticity of Acanthoscaphites tridens (Late Cretaceous ammonites): additional data. Cretaceous Res 32:131–134Google Scholar
  185. Klingenberg CP (1996) Multivariate allometry. In: Marcus LF et al (eds) Advances in morphometrics. Plenum, New YorkGoogle Scholar
  186. Klinger HC, Kennedy WJ (1989) Cretaceous faunas from Zululand and Natal, South Africa. The ammonite family Placenticeratidae hyatt, 1900; with comments on the systematic position of the genus Hypengonoceras Spath, 1924. Ann S Afr Mus 98:241–408Google Scholar
  187. Klug C, Riegraf W, Lehmann J (2012) Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian boundary event (OAE 2) in north-west Germany. Palaeontology 55:1307–1331Google Scholar
  188. Klug C, Zatoń M, Parent H, Hostettler B, Tajika A (2015) Mature modifications and sexual dimorphism. This volumeGoogle Scholar
  189. Knauss MJ, Yacobucci MM (2014) Geographic information systems technology as a morphometric tool for quantifying morphological variation in an ammonoid clade. Palaeontol Electron 17:19AGoogle Scholar
  190. Korn D (1995) Impact of environmental perturbations on heterochronic development in Palaeozoic ammonoids. In: McNamara KJ (ed) Evolutionary change and heterochrony. Wiley, ChichesterGoogle Scholar
  191. Korn D, Klug C (2007) Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) ammonoid Manticoceras from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods-present and past: new insights and fresh perspectives. Springer, DordrechtGoogle Scholar
  192. Korn D, Vöhringer E (2004) Allometric growth and intraspecific variability in the Basal Carboniferous ammonoid Gattendorfia crassa Schmidt, 1924. Paläontol Z 78:425–432Google Scholar
  193. Kowalewski M (2009) The youngest fossil record and conservation biology: holocene shells as eco-environmental recorders. In: Dietl GP, Flessa KW (eds) Conservation paleobiology: using the past to manage for the future. Paleontological Society, New HavenGoogle Scholar
  194. Kraft S, Korn D, Klug C (2008) Patterns of ontogenetic septal spacing in Carboniferous ammonoids. Neues Jahrb Geol Paläontol Abh 250:31–44Google Scholar
  195. Kruta I, Landman NH, Tanabe K (2015) Ammonoid radulae. This volumeGoogle Scholar
  196. Krystyn L, Schäffer G, Schlager W (1971) Über die Fossil-Lagerstätten in den triadischen Hallstätter Kalken der Ostalpen. Neues Jahrb Geol Paläontol Abh 137:284–304Google Scholar
  197. Kulicki C (1974) Remarks on the embryogeny and postembryonal development of ammonites. Acta Palaeontol Pol 19:201–224Google Scholar
  198. Kummel B (1948) Environmental significance of dwarfed cephalopods. J Sediment Res 18:61–64Google Scholar
  199. Landman NH (1987) Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the western interior of North America: systematics, developmental patterns, and life history. Bull Am Mus Nat Hist 185:117–241Google Scholar
  200. Landman NH, Geyssant JR (1993) Heterochrony and ecology in Jurassic and Cretaceous ammonites. Geobios 26(Suppl 1):247–255Google Scholar
  201. Landman NH, Waage KM (1986) Shell abnormalities in scaphitid ammonites. Lethaia 19:211–224Google Scholar
  202. Landman NH, Waage KM (1993) Scaphitid ammonites of the Upper Cretaceous (Maastrichtian) Fox Hills formation in South Dakota and Wyoming. Bull Am Mus Nat Hist 215:1–257Google Scholar
  203. Landman N, Klofak SM, Sarg KB (2008) Variation in adult size of scaphitid ammonites from the Upper Cretaceous Pierre Shale and Fox Hills formation. In: Harries PJ (ed) High-resolution approaches in stratigraphic paleontology. Springer, NetherlandsGoogle Scholar
  204. Landman NH, Kennedy WJ, Cobban WA, Larson NL (2010) Scaphites of the “Nodosus Group” from the Upper Cretaceous (Campanian) of the Western Interior of North America. Bull Am Mus Nat Hist 342:1–242Google Scholar
  205. Landman NH, Cobban WA, Larson NL (2012) Mode of life and habitat of scaphitid ammonites. Geobios 45:87–98Google Scholar
  206. Lange W (1929) Zur Kenntnis des Oberdevons am Enkeberg und bei Balve (Sauerland). Abh Preuss Geol Landesanst NF 119:1–132Google Scholar
  207. Lange W (1941) Die Ammonitenfauna der Psiloceras-Stufe Norddeutschlands. Palaeontogr A 93:1–186Google Scholar
  208. Laptikhovsky V (2006) Latitudinal and bathymetric trends in egg size variation: a new look at Thorson’s and Rass’s rules. Mar Ecol 27:7–14Google Scholar
  209. Laptikhovsky VL, Rogov MA, Nikolaeva SE, Arkhipkin AI (2013) Environmental impact on ectocochleate cephalopod reproductive strategies and the evolutionary significance of cephalopod egg size. Bull Geosci 88:83–94Google Scholar
  210. Lawrence E (2000) Henderson’s dictionary of biological terms. Pearson, EssexGoogle Scholar
  211. Lécuyer C, Bucher H (2006) Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth 1:1–7Google Scholar
  212. Lehmann U (1981) The ammonites: their life and their world. Cambridge University, New YorkGoogle Scholar
  213. Lehmann U (1990) Ammonoideen. Enke, StuttgartGoogle Scholar
  214. Leporati S, Pecl G, Semmens J (2007) Cephalopod hatchling growth: the effects of initial size and seasonal temperatures. Mar Biol 151:1375–1383Google Scholar
  215. Levene H (1960) Robust test for the equality of variances. In: Olkin I, Ghurye SG, Hoeffding W, Madow WG, Mann HB (eds) Contributions to probability and statistics: essays in honor of harold hotelling. Stanford University, StanfordGoogle Scholar
  216. Levins R (1968) Evolution in changing environments. Princeton University, Princeton, p 120Google Scholar
  217. Machalski M (2010) Early Maastrichtian ammonites and nautiloids from Hrebenne, southeast Poland, and phenotypic plasticity of Acanthoscaphites tridens (Kner, 1848): a commentary. Cretaceous Res 31:593–595Google Scholar
  218. Makowski H (1962) Problem of sexual dimorphism in ammonites. Palaeontol Pol 12:1–92Google Scholar
  219. Makowski H (1991) Dimorphism and evolution of the goniatite Tornoceras in the Famennian of the holy cross mountains. Acta Palaeontol Pol 36:241–254Google Scholar
  220. Mancini EA (1978) Origin of micromorph faunas in the geologic record. J Paleontol 52:311–322Google Scholar
  221. Manger WL, Meeks LK, Stephen DA (1999) Pathologic gigantism in middle Carboniferous cephalopods, southern midcontinent, United States. In: Olóriz F, Rodríguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New YorkGoogle Scholar
  222. Mangold K (1983) Food, feeding and growth in cephalopods. Mem Natl Mus Vic 44:81–93Google Scholar
  223. Manship LL (2004) Pattern matching: classification of ammonitic sutures using GIS. Palaeontol Electron 7(6A):1–15Google Scholar
  224. Manship LL (2008) Variation analysis of ammonites and conodonts (implementing Geographic Information Systems): a qualitative and quantitative method. Texas Tech University, LubbockGoogle Scholar
  225. Mapes RH, Larson NL (2015) Colour patterns. This volumeGoogle Scholar
  226. Mapes RH, Sneck DA (1987) The oldest ‘colour’ patterns: description, comparison with Nautilus, and implications. Palaeontology 30:299–309Google Scholar
  227. Marchand D (1976) Quelques précisions sur le polymorphisme dans la famille des Cardioceratidae Douville (Ammonoidea). Haliotis 6:119–140Google Scholar
  228. Matsunaga T, Maeda H, Shigeta Y, Hasegawa K, Nomura S-I, Nishimura T, Misaki A, Tanaka G (2008) First discovery of Pravitoceras sigmoidale Yabe from the Yezo supergroup in Hokkaido, Japan. Paleontol Res 12:309–319Google Scholar
  229. Matyja BA (1986) Developmental polymorphism in Oxfordian ammonites. Acta Geol Pol 36:37–67Google Scholar
  230. Matyja BA (1994) Developmental polymorphism in the Oxfordian ammonite subfamily Peltoceratinae. Palaeopelagos Spec Publ 1:277–286Google Scholar
  231. Matyja BA, Wierzbowski A (2000) Biological response of ammonites to changing environmental conditions: an example of Boreal Amoeboceras invasions into Submediterranean province during Late Oxfordian. Acta Geol Pol 50:45–54Google Scholar
  232. Mayr E (1963) Animal species and evolution. Belknap of Harvard University , CambridgeGoogle Scholar
  233. McCaleb JA (1968) Lower Pennsylvanian ammonoids from the Bloyd formation of Arkansas and Oklahoma. GSA Special Papers 96:1–118Google Scholar
  234. McCaleb JA, Furnish WM (1964) The Lower Pennsylvanian ammonoid genus Axinolobus in the southern Midcontinent. J Paleontol 38:249–255Google Scholar
  235. McCaleb JA, Quinn JH, Furnish WM (1964) Girtyoceratidae in the southern Midcontinent. Okla Geol Surv Circ 67:1–41Google Scholar
  236. Meischner D (1968) Perniciöse Epökie von Placunopsis auf Ceratites. Lethaia 1:156–174Google Scholar
  237. Meister C (1989) Les ammonites du Crétacé supérieur d’Ashaka (Nigéria). Bull Centres Rech Explor-Prod Elf-Aquitaine 13(Suppl):1–84Google Scholar
  238. Meléndez G, Fontana B (1993) Intraspecific variability, sexual dimorphism, and non-sexual polymorphism in the ammonite genus Larcheria Tintant (Perisphinctidae) from the middle Oxfordian of western Europe. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Clarendon, OxfordGoogle Scholar
  239. Merkt J (1966) Über Austern und Serpeln als Epöken auf Ammonitengehäusen. Neues Jahrb Geol Paläontol Abh 125:467–479Google Scholar
  240. Michalsky AO (1890) Ammonites of the Lower Volgian stage. Tr Geol kom-ta St. Petersburg 8:361–369 [in Russian]Google Scholar
  241. Mignot Y (1993) Un problème de paléobiologie chez les ammonoides (Cephalopoda): croissance et miniaturisation en liaison avec les environnements. Doc Lab Geol Lyon 124:1–113Google Scholar
  242. Mignot Y, Elmi S, Dommergues J-L (1993) Croissance et miniaturisation de quelques Hildoceras (Cephalopoda) en liaison avec des environnements contraignants de la Téthys Toarcienne. Geobios 26(Suppl 1):305–312Google Scholar
  243. Miller RG (1974) The jackknife-a review. Biometrika 61:1–15Google Scholar
  244. Mitta VV (1990) Intraspecific variability in the Volgian ammonites. Paleontol J 1990:10–15Google Scholar
  245. Monnet C, Bucher H (2005) New middle and late Anisian (Middle Triassic) ammonoid faunas from northwestern Nevada (USA): taxonomy and biochronology. Fossils Strata 52:1–121Google Scholar
  246. Monnet C, Brack P, Bucher H, Rieber H (2008) Ammonoids of the middle/late Anisian boundary (Middle Triassic) and the transgression of the prezzo limestone in eastern Lombardy-Giudicarie (Italy). Swiss J Geosci 101:61–84Google Scholar
  247. Monnet C, Bucher H, Wasmer M, Guex J (2010) Revision of the genus Acrochordiceras Hyatt, 1877 (Ammonoidea, Middle Triassic): morphology, biometry, biostratigraphy and intraspecific variability. Palaeontology 53:961–996Google Scholar
  248. Monnet C, De Baets K, Klug C (2011a) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11:115Google Scholar
  249. Monnet C, Klug C, Goudemand N, De Baets K, Bucher H (2011b) Quantitative biochronology of Devonian ammonoids from Morocco and proposals for a refined unitary association method. Lethaia 44:469–489Google Scholar
  250. Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology 55:87–107Google Scholar
  251. Monnet C, De Baets K, Yacobucci MM (2015a) Buckman’s rules of covariation. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid paleobiology: from macroevolution to paleogeography. Springer, DordrechtGoogle Scholar
  252. Monnet C, Klug C, De Baets K (2015b) Evolutionary patterns of ammonoids: phenotypic trends, convergence, and parallel evolution. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid paleobiology: from macroevolution to paleogeography. Springer, DordrechtGoogle Scholar
  253. Morard A (2004) Les événements du passage Domérien-Toarcien entre Thétys occidentale et Europe du Nord-Ouest. 1–338. Thèse de Doctorat, Université de Lausanne, LausanneGoogle Scholar
  254. Morard A (2006) Covariation patterns in ammonoids: observations, models, and open questions. Proceedings of the 4th Swiss Geoscience Meeting, BernGoogle Scholar
  255. Morard A, Guex J (2003) Ontogeny and covariation in the Toarcian genus Osperleioceras (Ammonoidea). Bull Soc Geol Fr 174:607–615Google Scholar
  256. Naglik C, Tajika A, Chamberlain JA, Klug C (2015) Ammonoid locomotion. This volumeGoogle Scholar
  257. Nardin E, Rouget I, Neige P (2005) Tendencies in paleontological practice when defining species, and consequences on biodiversity studies. Geology 33:969–972. doi:10.1130/g21838.1Google Scholar
  258. Neige P (1997) Ontogeny of the Oxfordian ammonite Creniceras renggeri from the Jura of France. Eclogae Geol Helv 90:605–616Google Scholar
  259. Neige P, Dommergues J-L (1995) Morphometric and phenetics versus cladistic analysis of the early Harpoceratinae (Pliensbachian ammonites). Neues Jahrb Geol Paläontol Abh 196:411–438Google Scholar
  260. Neige P, Marchand D, Laurin B (1997a) Heterochronic differentiation of sexual dimorphs among Jurassic ammonite species. Lethaia 30:145–155Google Scholar
  261. Neige P, Chaline J, Chone T, Courant F, David B, Dommergues J-L, Laurin B, Madon C, Magniez-Jannin F, Marchand D, Thierry J (1997b) La notion d’espace morphologique, outil d’analyse de la morphodiversité des organismes. Geobios 30(Suppl 1):415–422Google Scholar
  262. Nigmatullin CM, Nesis KN, Arkhipkin AI (2001) A review of the biology of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae). Fish Res 54:9–19Google Scholar
  263. Oechsle E (1958) Stratigraphie und Ammonitenfauna der Sonninien-Schichten des Filsgebiets unter besonderer Berucksichtgung der Sowerbyi Zone (Mittlerer Doggers, Wuttemberg). Palaeontogr A 111:47–129Google Scholar
  264. Olóriz F (2000) Time-averaging and long-term palaeoecology in macroinvertebrate fossil assemblages with ammonites (Upper Jurassic). Rev Paleobiol 19:123–140Google Scholar
  265. Olóriz F, Palmqvist P, Pérez-Claros JA (1997) Shell features, main colonized environments, and fractal analysis of sutures in Late Jurassic ammonites. Lethaia 30:191–204Google Scholar
  266. Oloriz F, Palmqvist P, Perez-Claros JA (1999) Recent advances in morphometric approaches to covariation of shell features and the complexity of suture lines in Late Jurassic ammonites, with reference to the major environments colonized. In: Oloriz F, Rodriguez-Tovar FJ (eds) Advancing research on living and fossil cephalopods. Kluwer Academic/Plenum, New YorkGoogle Scholar
  267. Olóriz F, Villaseñor AB, González-Arreola C (2000) Geographic control on phenotype expression. The case of Hybonoticeras mundulum (Oppel) from the Mexican Altiplano. Lethaia 33:157–174Google Scholar
  268. Palframan DFB (1966) Variation and ontogeny of some Oxfordian ammonites: Taramelliceras richei (de Loriol) and Creniceras renggeri (Oppel), from Woodham, Buckinghamshire. Palaeontology 9:290–311Google Scholar
  269. Palframan DFB (1967) Variation and ontogeny of some oxford clay ammonites: Distichoceras bicostatum (Stahl) and Horioceras baugieri (D’Orbigny), from England. Palaeontology 10:60–94Google Scholar
  270. Parent H (1998) Upper Bathonian and lower Callovian ammonites from Chacay Melehué (Argentina). Acta Palaeontol Pol 43:69–130Google Scholar
  271. Parent H, Scherzinger A, Schweigert G (2008) Sexual phenomena in late Jurassic Aspidoceratidae (Ammonoidea). Dimorphic correspondence between Physodoceras hermanni (Berckhemer) and Sutneria subeumela Schneid, and first record of possible hermaphroditism. Palaeodiversity 1:181–187Google Scholar
  272. Parent H, Greco AF, Bejas M (2009) Size-shape relationships in the Mesozoic planispiral ammonites. Acta Palaeontol Pol 55:85–98Google Scholar
  273. Parent H, Bejas M, Greco A, Hammer O (2011) Relationships between dimensionless models of ammonoid shell morphology. Acta Palaeontol Pol 57:445–447Google Scholar
  274. Paul CRC (2011) Sutural variation in the ammonites Oxynoticeras and Cheltonia from the Lower Jurassic of Bishop’s Cleeve, Gloucestershire, England and its significance for ammonite growth. Palaeogeogr. Palaeoclimatol Palaeoecol 309:201–214Google Scholar
  275. Pavia G (2006) Nomenclatural suitability in ammonoid classification: generic versus subgeneric status of dimorphic pairs. Volumina Jurassica 7:254Google Scholar
  276. Pearson K (1895) Contributions to the mathematical theory of evolution II. Skew variation in homogeneous material. Philos Trans Roy Soc Lond A 186:343–414Google Scholar
  277. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Phenomenol 2:559–572Google Scholar
  278. Pecl G, Jackson G (2008) The potential impacts of climate change on inshore squid: biology, ecology and fisheries. Rev Fish Biol Fish 18:373–385Google Scholar
  279. Pecl GT, Steer MA, Hodgson KE (2004) The role of hatchling size in generating the intrinsic size-at-age variability of cephalopods: extending the Forsythe hypothesis. Mar Freshw Res 55:387–394Google Scholar
  280. Pfaff E (1911) Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. Jb Niedersächs Geol 4:208–223Google Scholar
  281. Pictet FJ (1854) Traité de paléontologie, Céphalopodes, 2. B. Baillière, ParisGoogle Scholar
  282. Ploch I (2003) Taxonomic interpretation and sexual dimorphism in the Early Cretaceous (Valanginian) ammonite Valanginites nucleus (ROEMER, 1841). Acta Geol Pol 53:201–208Google Scholar
  283. Ploch I (2007) Intraspecific variability and problematic dimorphism in the Early Cretaceous (Valanginian) ammonite Saynoceras verrucosum (d’Orbigny, 1841). Acta Geol Sin 81:877–882Google Scholar
  284. Powell EN, Davies DJ (1990) When Is an “Old” shell really old? J Geol 98:823–844Google Scholar
  285. Rawson PF (1975a) The interpretation of the Lower Cretaceous heteromorph ammonite genera Paracrioceras and Hoplocrioceras Spath, 1924. Palaeontology 18:275–283Google Scholar
  286. Rawson PF (1975b) Lower Cretcaeous ammonites from north-east England: the Hauterivian heteromorph Aegocrioceras. Bull Br Mus (Nat Hist) Geol 26:139–159Google Scholar
  287. Reboulet S (2001) Limiting factors on shell growth, mode of life and segregation of Valanginian ammonoid populations: evidence from adult-size variations. Geobios 34:423–435Google Scholar
  288. Reeside JB, Cobban WA (1960) Studies of the Mowry shale (Cretaceous) and contemporary formations in the United States and Canada. US Geol Surv Prof Pap 355:1–126Google Scholar
  289. Reyment RA (1988) Does sexual dimorphism occur in cretaceous ammonoids? Senckenb Lethaea 69:109–119Google Scholar
  290. Reyment RA (2003) Morphometric analysis of variability in the shell of some Nigerian Turonian (Cretaceous) ammonites. Cretaceous Res 24:789–803Google Scholar
  291. Reyment R (2004) Instability in principal component analysis and the quantification of polyphenism in palaeontological data. Math Geol 36:629–638Google Scholar
  292. Reyment RA (2011) Morphometric analysis of polyphenism in Lower Cretaceous ammonite genus Knemiceras. In: Elewa AMT (ed) Computational paleontology. Springer, BerlinGoogle Scholar
  293. Reyment RA, Kennedy WJ (1991) Phenotypic plasticity in a cretaceous ammonite analyzed by multivariate statistical methods. Methodol Study Evol Biol 25:411–426Google Scholar
  294. Reyment RA, Kennedy WJ (1998) Taxonomic recognition of species of Neogastroplites (Ammonoidea, Cenomanian) by geometric morphometric methods. Cretaceous Res 19:25–42Google Scholar
  295. Reyment RA, Kennedy WJ (2000) Morphological links in an evolutionary sequence of the cretaceous ammonite genus Metoicoceras Hyatt. Cretaceous Res 21:845–849Google Scholar
  296. Reyment RA, Minaka N (2000) A note on reiterated phenotypes in species of Neogastroplites (Ammonoidea, Cenomanian, Cretaceous). Cretaceous Res 21:173–175Google Scholar
  297. Rieber H (1973) Ergebnisse paläontologisch-stratigraphischer Untersuchungen in der Grenzbitumenzone (Mittlere Trias) des Monte San Giorgio (Kanton Tessin, Schweiz). Eclog Geol Helv 66:667–685Google Scholar
  298. Ritterbush KA, Hoffmann R, Lukeneder A, De Baets K (2014) Pelagic palaeoecology: the importance of recent constraints on ammonoid palaeobiology and life history. J Zool 292:229–241Google Scholar
  299. Rocha R, Dias R (2005) Finite strain analysis using ammonoids: an interactive approach. J Struct Geol 27:475–479Google Scholar
  300. Ropolo P (1995) Implications of variation in coiling in some Hauterivian (Lower Cretaceous) heteromorph ammonites from the Vocontian basin, France. Mem Descr Cart Geol Ital 51:137–165Google Scholar
  301. Rouget I, Neige P (2001) Embryonic ammonoid shell features: intraspecific variation revisited. Palaeontology 44:53–64Google Scholar
  302. Salgado-Ugarte IH, Shimizu M, Taniuchi T, Matsushita K (2000) Size frequency analysis by averaged shifted histograms and kernel density estimators. Asian Fish Sci 13:1–12Google Scholar
  303. Sandoval J, Chandler RB (2000) The sonniniid ammonite Euhoploceras from the Middle Jurassic of south-west England and southern Spain. Palaeontology 43:495–532Google Scholar
  304. Sanvicente-Añorve L, Salgado-Ugarte I, Castillo-Rivera M (2003) The use of kernel density estimators to analyse length-frequency distributions of fish larvae. In: Browman HI, Skiftesvik AB (eds) The big fish bang. Proceedings of the 26th annual larval fish conference. Institute of Marine Research, BergenGoogle Scholar
  305. Sarti C (1999) Whorl width in the body chamber of the ammonites as a sign of dimorphism. In: Olóriz F, Rodríguez-Tovar F(eds) Advancing research on living and fossil cephalopods. Kluwer Academic, Plenum, New YorkGoogle Scholar
  306. Saunders WB, Swan ARH (1984) Morphology and morphologic diversity of Mid-Carboniferous (Namurian) ammonoids in time and space. Paleobiology 10:195–228Google Scholar
  307. Schindewolf OH (1934) Über Epöken auf Cephalopoden-Gehäusen. Paläontol Z 16:15–31Google Scholar
  308. Schindewolf OH (1961) Die Ammoniten-Gattung Cymbites im deutschen Lias. alaeontogr Abt A Palaeozool-Stratigr 117:193–232Google Scholar
  309. Schmidt H (1926) Neotenie und beschleunigte Entwicklung bei Ammoneen. Paläontol Z 7:197–205Google Scholar
  310. Schweigert G, Dietze V, Chandler RB, Mitta VV (2007) Revision of the Middle Jurassic dimorphic ammonite genera Strigoceras/Cadomoceras (Strigoceratidae) and related forms. Stuttg Beitr Nat Ser B (Geol Paläont) 373:1–74Google Scholar
  311. Seilacher A (1973) Fabricational noise in adaptive morphology. Syst Zool 22:451–465Google Scholar
  312. Seilacher A (1988) Why are nautiloid and ammonite sutures so different? Neues Jahrb Geol Paläontol Abh 177:41–69Google Scholar
  313. Silberling NJ (1956) “Trachyceras Zone” in the Upper Triassic of the western United States. J Paleontol 30:1147–1153Google Scholar
  314. Silberling NJ, Nichols KM (1982) Middle Triassic molluscan fossils of biostratigraphic significance from the Humboldt Range, northwestern Nevada. U.S. Geological Survey Professional Paper 1207:1–77Google Scholar
  315. Simpson GG (1944) Tempo and mode in evolution. Columbia University Press, New York, p. 237Google Scholar
  316. Simpson Stephen J, Sword Gregory A, Lo N (2011) Polyphenism in insects. Curr Biol 21:R738–R749Google Scholar
  317. Spath LF (1919) V.-Notes on Ammonites: I. Geol Mag 6:27–35Google Scholar
  318. Spearman C (1904) The proof and measurement of association between two things. Am J Psychol 15:72–10Google Scholar
  319. Sprent P (1989) Applied nonparametric statistical methods. Chapman & Hall, LondonGoogle Scholar
  320. Stephen DA, Stanton RJ (2002) Impact of reproductive strategy on cephalopod evolution. Abh Geol Bundesanst 57:151–155Google Scholar
  321. Stephen DA, Manger WL, Baker C (2002) Ontogeny and heterochrony in the middle Carboniferous ammonoid Arkanites relictus (Quinn, McCaleb, and Webb) from northern Arkansas. J Paleontol 76:810–821Google Scholar
  322. Stevens GR (1988) Giant ammonites: a review. In: Wiedmann J, Kullmann J (eds) Cephalopodspresent and past. Schweizerbart, StuttgartGoogle Scholar
  323. Sturani C (1971) Ammonites and stratigraphy of the “Posidonia Alpina” beds of the Venetian Alps (Middle Jurassic, Mainly Bajocian). Mem Ist Geol Mineral Univ Padova 28:1–190Google Scholar
  324. Swan ARH, Saunders WB (1987) Function and shape in late Paleozoic (Mid-Carboniferous) ammonoids. Paleobiology 13:297–311Google Scholar
  325. Tajika A, Wani R (2011) Intraspecific variation of hatchling size in late Cretaceous ammonoids from Hokkaido, Japan: implication for planktic duration at early ontogenetic stage. Lethaia 44:287–298Google Scholar
  326. Tan BK (1973) Determination of strain ellipses from deformed ammonoids. Tectonophys 16:89–101Google Scholar
  327. Tanabe K (1977a) Mid-Cretaceous scaphitid ammonites from Hokkaido. Palaeontological Society of Japan. Special Papers 21:11–22Google Scholar
  328. Tanabe K (1977b) Functional evolution of Otoscaphites puerculus (Jimbo) and Scaphites planus (Yabe), Upper Cretaceous ammonites, Series D (Geology) 23. Memoirs of the Faculty of Science, Kyushu University, pp 367–407Google Scholar
  329. Tanabe K (1993) Variability and mode of evolution of the Middle Cretaceous ammonite Subprionocyclus (Ammonitina: Collignoniceratidae) from Japan. Geobios 26(Suppl 1):347–357Google Scholar
  330. Tanabe K, Shigeta Y (1987) Ontogenetic shell variation and streamlining of some Cretaceous ammonites. Transactions and Proceedings of the Palaeontological Society of Japan, New Series 147:165–179Google Scholar
  331. Tanabe K, Shigeta Y, Mapes RH (1995) Early life history of Carboniferous ammonoids inferred from analysis of shell hydrostatics and fossil assemblages. Palaios 10:80–86Google Scholar
  332. Tanabe K, Landman NH, Yoshioka Y (2003) Intra- and interspecific variation in the early internal shell features of some Cretaceous ammonoids. J Paleontol 77:876–887Google Scholar
  333. Thierry J (1978) Le genre Macrocephalites au Callovien Inférieur (Ammonites, Jurassique Moyen). Mémoires Géologiques de l’Université de Dijon 4:1-490Tintant H (1963) Les kosmocératidés du Callovien inférieur et moyen d’Europe occidentale: essai de paléontologie quantitative. 29. Presses universitaires de France. Publications de l’Université de Dijon 29:1–491Google Scholar
  334. Tintant H (1963) Les kosmocératidés du Callovien inférieur et moyen d’Europe occidentale: essai de paléontologie quantitative, vol 29. Publications de l’Universite de Dijon, Paris, pp. 1–491Google Scholar
  335. Tintant H (1976) Le polymorphisme intraspécifique en paléontologie. Haliotis 6:49–69Google Scholar
  336. Tintant H (1980) Problématique de l’espèce en Paléozoologie. Mem Soc Zool Fr 40:321–372Google Scholar
  337. Tozer ET (1971) Triassic time and ammonoids: problems and proposals. Canad J Earth Sci 8:989–1031Google Scholar
  338. Trueman AE (1940) The ammonite body-chamber, with special reference to the buoyancy and mode of life of the living ammonite. Q J Geol Soc 96:339–383Google Scholar
  339. Tsujino Y, Naruse H, Maeda H (2003) Estimation of allometric shell growth by fragmentary specimens of Baculites tanakae Matsumoto and Obata (a Late Cretaceous heteromorph ammonoid). Paleontol Res 7:245–255Google Scholar
  340. Ubukata T, Tanabe K, Shigeta Y, Maeda H, Mapes RH (2008) Piggyback whorls: a new theoretical morphologic model reveals constructional linkages among morphological characters in ammonoids. Acta Palaeontol Pol 53:113–128Google Scholar
  341. Urdy S (2015) Theoretical modelling of the molluscan shell: what has been learned from the comparison among molluscan taxa? This volumeGoogle Scholar
  342. Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool B 314:280–302Google Scholar
  343. Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. J Exp Zool B 314:303–326Google Scholar
  344. Urdy S, Wilson LAB, Haug JT, Sánchez-Villagra MR (2013) On the unique perspective of paleontology in the study of developmental evolution and biases. Biol Theory 8:1–19. doi:10.1007/s13752-013-0115-1Google Scholar
  345. Urlichs M (2004) Kümmerwuchs bei Lobites Mosjsisovics, 1902 (Ammonoidea) aus dem Unter-Karnium der Dolomiten (Ober-Trias, Italien) mit Revision der unterkarnischen Arten. Stuttg Beitr Nat Ser B (Geol Palaont) 344:1–37Google Scholar
  346. Urlichs M (2012) Stunting in some invertebrates from the Cassian formation (Late Triassic, Carnian) of the Dolomites (Italy). Neues Jahrb Geol Paläontol Abh 265:1–25Google Scholar
  347. Van Valen L (1978) The statistics of variation. Evolut Theory 4:33–43Google Scholar
  348. Van Valen L (2005) The statistics of variation. In: Hallgrímsson B, Hall BK (eds) Variation: a central concept in biology. Academic, BurlingtonGoogle Scholar
  349. Vermeulen J (2002) Étude stratigraphique et paléontologique de la famille des Pulchelliidae (Ammonoidea, Ammonitina, Endemocerataceae). Geol Alp Hors Ser 42:331–333Google Scholar
  350. Vogel K-P (1959) Zwergwuchs bei Polyptychiten (Ammonoidea). Geol Jahrb 76:469–540Google Scholar
  351. Waggoner KJ (2006) Sutural form and shell morphology of Placenticeras and systematic descriptions of late cretaceous ammonites from the big bend region, Texas. 1-398. Texas Tech University, LubbockGoogle Scholar
  352. Wagner FH (2000) Intraspecific variation. McGraw-Hill Yearbook of Science and TechnologyGoogle Scholar
  353. Wagner GP, Altenberg L (1996) Perspective: complex adaptations and the evolution of evolvability. Evolution Int J org Evolution 50:967–976Google Scholar
  354. Wani R (2001) Reworked ammonoids and their taphonomic implications in the upper cretaceous of northwestern Hokkaido, Japan. Cretaceous Res 22:615–625Google Scholar
  355. Wani R, Gupta NS (2015) Ammonoid taphonomy. In: Klug C, Korn D, De Baets K, Kruta I, Mapes RH (eds) Ammonoid paleobiology: from macroevolution to paleogeography. Springer, DordrechtGoogle Scholar
  356. Ward P (1980) Comparative shell shape distributions in Jurassic-Cretaceous ammonites and Jurassic-Tertiary nautilids. Paleobiology 6:32–43Google Scholar
  357. Ward PD (1987) The natural history of Nautilus. Allen & Unwin, BostonGoogle Scholar
  358. Ward PD, Westerman GEG (1985) Cephalopod paleoecology. In: Broadhead TW (ed) Mollusks, notes for a short cource. University of Tennessee, KnoxvilleGoogle Scholar
  359. Weitschat W (2008) Intraspecific variation of Svalbardiceras spitzbergensis (Frebold) from the early Triassic (Spathian) of Spitsbergen. Polar Res 27(3):292–297Google Scholar
  360. Weitschat W, Bandel K (1991) Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65:269–303Google Scholar
  361. Wendt J (1971) Genese und Fauna submariner sedimentärer Spaltenfüllungen im mediterranen Jura. Palaeontogr A 136:121–192Google Scholar
  362. West-Eberhard MJ (1989) Phenotypic plasticity and the origins of diversity. Annu Rev Ecol Syst 20:249–278Google Scholar
  363. West-Eberhard MJ (2003) Developmental plasticity and evolution. Oxford University, OxfordGoogle Scholar
  364. West-Eberhard MJ (2005) Developmental plasticity and the origin of species differences. Proc Natl Acad Sci USA 102:6543–6549Google Scholar
  365. Westermann G (1964) Sexual-Dimorphismus bei Ammonoideen und seine Bedeutung für die Taxonomie der Otoitidae (einschließlich Sphaeroceratinae; Ammonitina, M. Jura). Palaeontogr A:33–73Google Scholar
  366. Westermann GEG (1966) Covariation and taxonomy of the Jurassic ammonite Sonninia adicra (Waagen). Neues Jahrb Geol Paläontol Abh 124:289–312Google Scholar
  367. Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib, Royal Ontario Museum 78:1–39Google Scholar
  368. Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  369. Westermann GEG, Callomon J (1988) The Macrocephalitinae and associated Bathonian and early Callovian (Jurassic) ammonoids of the Sula Islands and New Guinea. Palaeontogr A 203:1–90Google Scholar
  370. Wiedmann J (1969) The heteromorphs and ammonoid extinction. Biol Rev 44:563–602Google Scholar
  371. Wiedmann J, Dieni I (1968) Die Kreide Sardiniens und ihre Cephalopoden. Palaeontogr Italica 64:1–171Google Scholar
  372. Wiese F, Schulze F (2005) The Upper Cenomanian (Cretaceous) ammonite Neolobites vibrayeanus (d’Orbigny, 1841) in the Middle East: taxonomic and palaeoecologic remarks. Cretaceous Res 26:930–946Google Scholar
  373. Willmore KE, Young NM, Richtsmeier JT (2007) Phenotypic variability: its components, measurement and underlying developmental processes. Revolut Biol 34(3–4):99–120Google Scholar
  374. Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Paläontol Z 85:169–184Google Scholar
  375. Yacobucci MM (2004a) Buckman’s paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:57–69Google Scholar
  376. Yacobucci MM (2004) Neogastroplites meets Metengonoceras: morphological response of an endemic hoplitid ammonite to a new invader in the mid-cretaceous mowry sea of North America. Cretaceous Res 25:927–944Google Scholar
  377. Yacobucci MM (2008) Controls on shell shape in acanthoceratid ammonites from the Cenomanian-Turonian Western Interior seaway. In: Harries PJ (ed) High-resolution approaches in stratigraphic paleontology. Springer, NetherlandsGoogle Scholar
  378. Yacobucci MM, Manship LL (2011) Ammonoid septal formation and suture asymmetry explored with a geographic information systems approach. Palaeontol Electron 14:3A:17Google Scholar
  379. Yahada H, Wani R (2013) Limited migration of scaphitid ammonoids: evidence from the analyses of shell whorls. J Paleontol 87:406–412Google Scholar
  380. Yamaji A, Maeda H (2013) Determination of 2D strain from a fragmented single ammonoid. Isl Arc 22:126–132Google Scholar
  381. Zakharov YD (1977) Ontogeny of ceratites of the genus Pinacoceras and developmental features of the suborder Pinacoceratina. Paleontol J 4:445–445Google Scholar
  382. Zatoń M (2008) Taxonomy and palaeobiology of the Bathonian (Middle Jurassic) tulitid ammonite Morrisiceras. Geobios 41:699–717.Google Scholar
  383. Zittel KA von (1885) Handbuch der Paläontologie, Abt. 1, Bd. 2. R. Oldenbourg, MünchenGoogle Scholar
  384. Zuev GV (1971) Cephalopods from the north-western part of the Indian Ocean. Naukova Dumka, Kiev in RussianGoogle Scholar
  385. Zuev GV (1976) Physiological variability of the females of the squid Symplectoteuthis pteropus (Steenstrup). Biol Sea 38:55–62 [in Russian]Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Kenneth De Baets
    • 1
    Email author
  • Didier Bert
    • 2
    • 3
  • René Hoffmann
    • 4
  • Claude Monnet
    • 5
  • Margaret M. Yacobucci
    • 6
  • Christian Klug
    • 7
  1. 1.GeoZentrum Nordbayern, Fachgruppe PaläoUmweltUniversität ErlangenErlangenGermany
  2. 2.UMR-CNRS 6118 GéosciencesUniversité de Rennes 1, campus BeaulieuRennes cedexFrance
  3. 3.Laboratoire du Groupe de recherche en paléobiologie et bios-tratigraphie des ammonites (GPA)La Mure-ArgensFrance
  4. 4.Department of Earth Sciences, Institute of Geology, Mineralogy, and GeophysicsRuhr-Universität BochumBochumGermany
  5. 5.UMR CNRS 8198 Evo-Eco-PaleoUniversité de Lille 1, UFR Sciences de la Terre (SN5)Villeneuve d’Ascq cedexFrance
  6. 6.Department of GeologyBowling Green State UniversityBowling GreenUSA
  7. 7.Paläontologisches Institut und MuseumUniversity of ZurichZurichSwitzerland

Personalised recommendations