Ammonoid Shell Microstructure

  • Cyprian Kulicki
  • Kazushige Tanabe
  • Neil H. Landman
  • Andrzej Kaim
Part of the Topics in Geobiology book series (TGBI, volume 43)


This chapter discusses various aspects of ammonoid shell microstructure, presents a description of the structure of the individual layers that compose the ammonoid shell, shows the distribution and relationships of these layers, and depicts their ultrastructure whenever possible. The major limitation in micro-and ultrastructural studies of ammonoids is diagenetic alteration, therefore the best studied ammonoids are those from the Jurassic and Cretaceous, while the data on Paleozoic and Triassic ammonoids are still scarce. At the ultrastructural level, the three main layers of the postembryonic shell of ammonoids do not differ significantly from those known from the shell of Recent nautilids. The same is also true for the septa. However, the embryonic shells of ammonoids, called the ammonitellas, are distinguished from those of modern and fossil nautiloids in their smaller size and the presence of a spherical or barrel-shaped initial chamber.


Ammonoids Microstructure Ultrastructure Ammonitella 


  1. Andalib F (1972) Mineralogy and preservation of siphuncles in Jurassic cephalopods. N Jb Geol Paläont Abh 140:33–48Google Scholar
  2. Arkell WJ (1957) Introduction to Mesozoic Ammonoidea. In: Moore RC (ed) Treatise on invertebrate paleontology, Part L, Mollusca 4. GSA and University Kansas Press, Lawrence, pp. 81–129Google Scholar
  3. Bandel K (1981) The structure and formation of the siphuncular tube of Quenstedtoceras compared with that of Nautilus (Cephalopoda). N Jb Geol Paläont Abh 161:153–171Google Scholar
  4. Bandel K (1982) Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies 7:1–198Google Scholar
  5. Bandel K (1986) The ammonitella: a model of formation with the aid of the embryonic shell of archaeogastropods. Lethaia 19:171–180Google Scholar
  6. Bandel K (1990) Cephalopod shell structure and general mechanisms of shell formation. In: Carter G (ed) Skeletal biomineralization: patterns, processes and evolutionary trends, vol I. Van Nostrand Reinhold, New YorkGoogle Scholar
  7. Bandel K, Boletzky SV (1979) A comparative study of the structure, development, and morphological relationships of chambered cephalopod shells. Veliger 21:313–354Google Scholar
  8. Bandel K, Landman NH, Waage KM (1982) Micro-ornament on early whorls of Mesozoic ammonites: implications for early ontogeny. J Paleontol 56:386–391Google Scholar
  9. Bayer U (1974) Die Runzelschicht—ein Leichtbauelement der Arnmonitenschale. Paläontol Z 48(1–2):6–15Google Scholar
  10. Bayer U (1975) Organische Tapeten im Ammoniten-Phragmocon und ihr Einfluß auf die Fossilisation. N Jb Geol Paläont Mh 1975(1):12–25Google Scholar
  11. Bayer U (1977) Cephalopoden Septen. Teil I. Konstruktionsmorphologie des Ammoniten-Septums. N Jb Geol Paläont Abh 154:290–366Google Scholar
  12. Birkelund T (1967) Submicroscopic shell structures in early growth stage of Maastrichtian ammonites (Saghalinites and Scaphites). Medd Dan Geol Foren 17(1):95–101Google Scholar
  13. Birkelund T (1981) Ammonoid shell structure. In: House MR, Senior JR (eds) The Ammonoidea (Systematics Association Special vol 18). Academic Press, London, pp. 177–214Google Scholar
  14. Birkelund T, Hansen HT (1968) Early shell growth and structures of the septa and the siphuncular tube in some Maastrichtian ammonites. Medd Dan Geol Foren 18:95–101Google Scholar
  15. Birkelund T, Hansen HJ (1974) Shell ultrastructures of some Maastrichtian Ammonoidea and Coleoidea and their taxonomic implications. K Dan Vidensk Selsk Biol Skr 20(6):2–34Google Scholar
  16. Birkelund T, Hansen HJ (1975) Further remarks on the post-embryonic Hypophylloceras shell. Bull Geol Soc Den 24:87–92Google Scholar
  17. Bøggild OB (1930) The shell structure of the molluscs. K Dan Vidensk Selsk Skr Raekke 92(2):233–326Google Scholar
  18. Bogoslovsky BI (1969) Devonskie Ammonoidei. I. Agoniatity. Trans Paleont Inst Akad Nauk SSSR 124:1-341 [in Russian]Google Scholar
  19. Bogoslovsky BI (1971) Devonskie Ammonoidei. II. Goniatity. Trans Paleont Inst Akad Nauk SSSR 127:1-216 [in Russian]Google Scholar
  20. Böhmers JCA (1936) Bau und Struktur von Schale und Sipho bei permischen Ammonoidea. Dissertation. Drukkerij University, Amsterdam, ApeldoornGoogle Scholar
  21. Branco W (1880) Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden. Palaeontographica 27:17–81Google Scholar
  22. Brown A (1892) The development of the shell the coiled stage of Baculites compressus Say. Proc Acad Nat Sci Phila 44:136–142Google Scholar
  23. Crick RE, Mann KO (1987) Biomineralization and systematic implications. In: Saunders WB, Landman NH (eds) Nautilus—The biology and paleobiology of a living fossil. Plenum, New York, pp. 115–134Google Scholar
  24. De Baets K, Landman NH, Tanabe K (2015) Ammonoid embryonic development.This volumeGoogle Scholar
  25. Doguzhaeva LA (1973) Vnutriennoe stroienie rakoviny roda Megaphyllites. Byull Mosk Ova Ispyt Prir Otd Geol 48(6):161Google Scholar
  26. Doguzhaeva LA, Mikhailova IA (1982) The genus Luppovia and the phylogeny of Cretaceous heteromorph ammonoids. Lethaia 15:55–65Google Scholar
  27. Doguzhaeva LA, Mutvei H (1986a) Retro- and prochoanitic septal necks in ammonoids, and transition between them. Palaeontogr A 195:1–18Google Scholar
  28. Doguzhaeva LA, Mutvei H (1986b) Functional interpretation of inner shell layers in Triassic ceratid ammonites. Lethaia 19:195–209Google Scholar
  29. Doguzhaeva LA, Mutvei H (1989) Ptychoceras, a heteromorphic lytoceratid with truncated shell and modified ultrastructure. Palaeontogr A 208:91–121Google Scholar
  30. Drushchits VV, Doguzhaeva LA (1974) Some morphogenetic characteristics of phylloceratids and lytoceratids (Ammonoidea). Paleontol J 8(1):37–48Google Scholar
  31. Drushchits VV, Doguzhaeva LA (1981) Ammonity pod elektronnym mikroskopom. Moskva University Press [in Russian], p. 240Google Scholar
  32. Drushchits VV, Khiami N (1969) O niekotorykh voprosakh izuchenia rannikh stadia ontogeneza ammonitov. In Tez Dokl na sveshch po probl Puti i zakonomiernosti istoritscheskogo rozvitia zivotnykh i rostitelnykh organizmov. Moscow, pp. 26–30 [in Russian]Google Scholar
  33. Drushchits VV, Khiami N (1970) Stroienie sept, stenki protokonkha i natchalnykh oborotov rakoviny nekotorykh ranniemelovykh ammonitov. Paleontol Zh 1970(1):35–47 [in Russian]Google Scholar
  34. Drushchits VV, Doguzhaeva LA, Mikhailova IA (1977) The structure of the ammonitella and the direct development of antmonites. Paleontol J 11(2):188–199Google Scholar
  35. Drushchits VV, Doguzhaeva LA, Mikhailova IA (1978) Neobytchnye oblekayusche sloi ammonitov. Paleontol Zh 1978(2):36–44 [in Russian]Google Scholar
  36. Drushchits VV, Muravin ES, Baranov VN (1983) Morfogenez rakovin srednevolzhskikh ammonitov roda Virgatites, Lomonosovella, Epivirgatites. Vestn Mosk Univ Ser 4 Geol 1983:35–44 [in Russian]Google Scholar
  37. Dullo WC, Bandel K (1988) Diagenesis of molluscan shells: a case study. In: Wiedmann J, Kullmann J (eds) Cephalopods-Present and past. Schweizerbart, Stuttgart, pp 719–729Google Scholar
  38. Dunachie JF (1963) The periostracum of Mytilus edulis. R Soc Edinb 65(15):383–411Google Scholar
  39. Erben HK (1962) Über den Prosipho, die Prosutur und die Ontogenie der Ammonoidea. Paläontol Z 36:99–108Google Scholar
  40. Erben HK (1966) Über den Ursprung der Ammonoidea. Biol Rev 41:6–19Google Scholar
  41. Erben HK (1972a) Über die Bildung und das Wachstum von Perlmutt. Biomineralisation 4:15–46Google Scholar
  42. Erben HK (1972b) Die Mikro- und Ultrastruktur abgedeckter Hohlelemente und die Conellen des Ammonitem-Gehäuses. Paläontol Z 46:6–19Google Scholar
  43. Erben HK (1974) On the structure and growth of the nacreous tablets in gastropods. Biomineralisation 4:14–22Google Scholar
  44. Erben HK, Reid REH (1971) Ultrastructure of shell, origin of conellae and siphuncular membranes in an ammonite. Biomineralisation 3:22–31Google Scholar
  45. Erben HK, Flajs G, Siehl A (1968) Ammonoids: early ontogeny of ultramicroscopical shell structure. Nature 219:396–398Google Scholar
  46. Erben HK, Flajs G, Siehl A (1969) Die frühontogenetische Entwicklung der Schalenstruktur ectocochleater Cephalopoden. Palaeontogr A 132:1–54Google Scholar
  47. Frýda J, Weitschat W, Tycova P, Haloda J, Mapes RH (2007) Crystallographic textures of cephalopod nacre: its evolution, time stability, and phylogenetic significance. Seventh International Symposium, Cephalopods—Present and past, Sapporo Japan, Abstracts Volume, pp. 56–57Google Scholar
  48. Frýda J, Bandel K, Frýdova B (2009) Crystallographic texture of late Triassic gastropod nacre: evidence of long-term stability of the mechanism controlling its formation. Bull Geosci 84:745–754Google Scholar
  49. Grandjean F (1910) Le siphon des ammonites et des belemnites. Bull Soc Géol Fr Sér 4(10):496–519Google Scholar
  50. Grégoire C (1962) On submicroscopic structure of the Nautilus shell. Bull Inst R Sci Nat Belg 38(49):1–71Google Scholar
  51. Grégoire C (1966) On organic remains of Paleozoic and Mesozoic cephalopods (nautiloids and ammonoids). Bull Inst R Sci Nat Belg 42(39):1–36Google Scholar
  52. Grégoire C (1968) Experimental alteration of the Nautilus shell by factors involved in diagenesis and metamorphism, Part I. Thermal changes in conchiolin matrix of mother-of-pearl. Bull Inst R Sci Nat Belg 44(25):1–69Google Scholar
  53. Grégoire C (1972) Experimental alteration of the Nautilus shell by factors involved in diagenesis and in metamorphism. Part III, Thermal and hydrothermal changes in the mineral and organic components of the mural mother-of-pearl. Bull Inst R Sci Nat Belg 48(6):1–85Google Scholar
  54. Grégoire C (1980) The conchiolin matrices in nacreous layers of ammonoids and fossil nautiloids: a survey. Akad Wiss Lit Abh Math Naturwiss Kl Mainz 1980(2):1–128Google Scholar
  55. Grégoire C (1984) Remains of organic components in the siphonal tube and in the brown membrane of ammonoids and fossil nautiloids. Hydrothermal simulation of their diagenetic alterations. Akad Wiss Lit Abh Math Naturwiss Kl Mainz 1984(5):5–56Google Scholar
  56. Grégoire C (1987) Ultrastructure of the Nautilus shell. In: Saunders WB, Landman NH (eds) Nautilus—The biology and paleobiology of a living fossil. Plenum, New York, pp. 463–486Google Scholar
  57. Hansen HJ (1967) A technique for depiction of grind sections of foraminifera by aid of compiled electronmicrographs. Medd Dan Geol Foren 17:128Google Scholar
  58. Hewitt RA, Westermann GEG (1983) Mineralogy, structure and homology of ammonoid siphuncles. N Jb Geol Paläont Abh 165(3):378–396Google Scholar
  59. Hewitt RA, Checa A, Westermann GEG, Zaborski PM (1991) Chamber growth in ammonites inferred from colour markings and naturally etched surfaces of Cretaceous vascoceratids from Nigeria. Lethaia 24:271–287Google Scholar
  60. Hölder HH (1952a) Über Gehäusebau, insbesondere den Hohlkiel jurassischer Ammoniten. Palaeontogr A 102:18–48Google Scholar
  61. Hölder HH (1952b) Der Hohlkiel der Ammoniten und seine Entdeckung durch F. A. Quenstedt. Jb Vaterl Naturk Württ 1952:37–50Google Scholar
  62. Hölder HH (1954) Über die Sipho-Anheftung bei Ammoniten. N Jb Geol Paläont Mh 1954(8):372–379Google Scholar
  63. House MR (1965) A study in the Tornoceratidae: the succession of Tornoceras and related genera in the North American Devonian. Phil R Soc Lond B 250(763):79–130Google Scholar
  64. House MR (1971) The goniatite wrinkle-layer. Smithson Contrib Paleobiol 3:23–32Google Scholar
  65. Howarth MK (1975) The shell structure of the Liassic ammonite family Dactylioceratidae. Bull Br Mus (Nat Hist) Geol 26:45–67Google Scholar
  66. Hyatt A (1872) Fossil cephalopods of the museum of comparative zoology: embryology. Bull Mus Comp Zool Harv 3:59–111Google Scholar
  67. John R (1909) Über die Lebensweise und Organisation des Ammoniten. Inaugural Dissertation, University of Tübingen, StuttgartGoogle Scholar
  68. Joly B (1976) Les Phylloceratidae malgaches au Jurassique. Généralités sur la Phylloceratidae et quelques Juraphyllitidae. Doc Lab Géol Fac Sci Lyon 67:1–471Google Scholar
  69. Keyserling A (1846) Wissenschajtliche Beobachtungen auf einer Reise in das Petschora-Land im Jahre 1843. St. PetersburgGoogle Scholar
  70. Klug C, Korn D, Richter U, Urlichs M (2004) The black layer in cephalopods from the German Muschelkalk (Triassic). Palaeontology 47:1407–1425Google Scholar
  71. Kulicki C (1974) Remarks on the embryogeny and postembryonal development of ammonites. Acta Palaeontol Pol 19:201–224Google Scholar
  72. Kulicki C (1975) Structure and mode of origin of the ammonite proseptum. Acta Palaeontol Pol 20(4):535–542Google Scholar
  73. Kulicki C (1979) The ammonite shell: its structure, development and biological significance. Palaeontol Pol 39:97–142Google Scholar
  74. Kulicki C (1989) Archaeogastropod model of mineralization of ammonitella shell. In: Carter JG (ed) Skeletal biomineralization: patterns, processes and evolutionary trends. Short course in geology, vol 5, Part 2. American Geophysical Union, WashingtonGoogle Scholar
  75. Kulicki C (1994) Septal neck-siphuncular complex in Stolleyites (Ammonoidea), Triassic, Svalbard. Polish Polar Research 15(1–2):37–49Google Scholar
  76. Kulicki C, Doguzhaeva LA (1994) Development and calcification of the ammonitella shell. Acta Palaeontol Pol 39:17–44Google Scholar
  77. Kulicki C, Mutvei H (1982) Ultrastructure of the siphonal tube in Quenstedtoceras (Ammonitina). Stockholm Contrib Geol 37:129–138Google Scholar
  78. Kulicki C, Mutvei H (1988) Functional interpretation of ammonoid septa. In: Wiedmann J, Kullmann J (eds) Cephalopods-Present and past. Schweizerbart, StuttgartGoogle Scholar
  79. Kulicki C, Tanabe K, Landman NH, Mapes RH (2001) Dorsal shell wall in ammonoids. Acta Palaeontol Pol 46:23–42Google Scholar
  80. Kulicki C, Landman NH, Heaney MJ, Mapes RH, Tanabe K (2002) Morphology of the early whorls of goniatites from the Carboniferous Buckhorn Asphalt (Oklahoma) with aragonitic preservation. Abh Geol BA Wien 205:205–224Google Scholar
  81. Kulicki C, Tanabe K, Landman NH (2007) Primary structure of the connecting ring of ammonoids and its preservation. Acta Palaeontol Pol 53:823–827Google Scholar
  82. Landman NH (1985) Preserved ammonitellas of Scaphites (Ammonoidea. Ancyloceratina). Am Mus Novit 2815:1–21Google Scholar
  83. Landman NH (1987) Ontogeny of Upper Cretaceous (Turonian-Santonian) scaphitid ammonites from the Western interior of North America: systematics, developmental patterns, and life history. Bull Amer Mus Nat Rist 185:117–241Google Scholar
  84. Landman NH (1988) Early ontogeny of Mesozoic ammonites and nautilids. In: Wiedmann J, Kullman J (eds) Cephalopods—Present and past. Schweizerbart, Stuttgart, pp. 215–228Google Scholar
  85. Landman NH, Bandel K (1985) Internal structures in the early whorls of Mesozoic ammonites. Am Mus Novit 2823:1–21Google Scholar
  86. Landman NH, Waage K (1982) Terminology of structures in embryonic shells of Mesozoic ammonites. J Paleontol 56:1293–1295Google Scholar
  87. Landman NH, Tanabe K, Mapes RH, Klofak SM, Whitehill J (1993) Pseudosutures in Paleozoic ammonoids. Lethaia 26:99–100Google Scholar
  88. Landman NH, Polizzotto K, Mapes RH, Tanabe K (2006) Cameral membranes in prolecanitid ammonoids from the Permian Arcturus Formation, Nevada. Lethaia 39:365–379Google Scholar
  89. Makowski H (1962) Problem of sexual dimorphism in ammonites. Palaeontol Pol 12:1–92Google Scholar
  90. Makowski H (1971) Some remarks on the ontogenetic development and sexual dimorphism in the Ammonoidea. Acta Geol Pol 21:321–340Google Scholar
  91. Miller AK, Unklesbay AG (1943) The siphuncle of late Paleozoic ammonoids. J Paleontol 17:1–25Google Scholar
  92. Miller AK, Furnish WM, Schindewolf OH (1957) Paleozoic Ammonoidea. In: Moore RC (ed) Treatise on invertebrate paleontology. Part L, Mollusca 4. GSA and University Kansas Press, Lawrence, pp. 11–79Google Scholar
  93. Mutvei H (1964) On the shells of Nautilus and Spirula with notes on the shell secretion in non-cephalopod molluscs. Ark Zool 16(14):221–278Google Scholar
  94. Mutvei H (1967) On the microscopic shell structure in some Jurassic ammonoids. N Jb Geol Paläont Abh 129(2):157–166Google Scholar
  95. Mutvei H (1969) On the micro and ultrastructure of the conchiolinin the nacreous layer of some recent and fossil Molluscs. Stockholm Contrib Geol 20(1):1–17Google Scholar
  96. Mutvei H (1970) Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineralisation 2:48–61Google Scholar
  97. Mutvei H (1972a) Ultrastructural studies on cephalopod shells, Part 1, The septa and siphonal tube in Nautilus. Bull Geol Inst Univ Upps 3:237–261Google Scholar
  98. Mutvei H (1972b) Ultrastructural studies on cephalopod shells, Part 2. Orthoconic cephalopods from the Pennsylvanian Buckhorn Asphalt. Bull Geol Inst Univ Upps 3:263–272Google Scholar
  99. Mutvei H (1979) On the internal structures of the nacreous tablets in molluscan shells. Scanning Electron Microsc 1979(II):451–462Google Scholar
  100. Mutvei H (1980) The nacreous layer in molluscan shells. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants: proceedings 3rd International Biomineralization Symposium. Tokai University Press, Tokyo, pp. 49–56Google Scholar
  101. Mutvei H (1983) Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre. Lethaia 16:233–240Google Scholar
  102. Nassichuk WW (1967) A morphological character new to ammonoids portrayed by Clistoceras gen. nov. from Pennsylvanian of Arctic Canada. J Paleontol 41:237–242Google Scholar
  103. Obata I, Tanabe K, Fukuda Y (1980) The ammonite siphuncular wall: its microstructure and functional significance. Bull Natl Sci Mus (Tokyo) Ser C (Geol) 6(2):59–72Google Scholar
  104. Ohtsuka Y (1986) Early internal shell microstructure of some Mesozoic Ammonoidea: implications for higher taxonomy. Trans Proc Palaeontol Soc Jpn New Ser 141:275–288Google Scholar
  105. Polizzotto K, Landman NH, Klug C (2015) Cameral membranes, Pseudosutures, and other Soft-Tissue Imprints in Ammonoid Shells. This volumeGoogle Scholar
  106. Ruzhentsev VE, Shimanskij VN (1954) Nizhnepermskye svernutye i sognutye nautiloidei juzhnogo Urala. Trans Paleontol Inst Akad Nauk SSSR 50:1-150 [in Russian]Google Scholar
  107. Sandberger G, Sandberger F (1850) Die Versteinerungen des rheinischen Schichtensystems in Nassau. Kreidel & Nieder, Wiesbaden, p. 564Google Scholar
  108. Schindewolf OH (1968) Analyse eines Ammoniten-Gehäuses. Akad Wiss Lit Abh Math Naturwiss Kl Mainz 1968(8):139–188Google Scholar
  109. Schulga-Nesterenko MJ (1926) Internal structure of the shell in Artinskian ammonites. Byull Mosk Ova Ispyt Prir Otd Geol 4(1–2):81–100 [in Russian]Google Scholar
  110. Senior JR (1971) Wrinkle-layer structures in Jurassic ammonites. Palaeontology 14:107–113Google Scholar
  111. Smith JP (1901) The larval coil of Baculites. Am Nat 35(409):39–49Google Scholar
  112. Smith WD (1905) The development of Scaphites. J Geol 13:635–654Google Scholar
  113. Tanabe K (1989) Endocochliate embryo model in the Mesozoic Ammonoidea. Hist Biol 2:183–196Google Scholar
  114. Tanabe K, Ohtsuka Y (1985) Ammonoid early internal shell structure: Its bearing on early life history. Paleobiology 11:310–322Google Scholar
  115. Tanabe K, Landman NH (1996) Septal neck-siphuncular complex of ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York, pp. 129–165Google Scholar
  116. Tanabe K, Obata I, Fukuda Y, Futakami M (1979) Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bull Natl Sci Mus (Tokyo). Ser C (Geol) 5(4):153–176Google Scholar
  117. Tanabe K, Fukuda Y, Obata I (1980) Ontogenetic development and functional morphology in the early growth stages of three Cretaceous ammonites. Bull Natl Sci Mus (Tokyo), Ser C (Geol) 6(1):9–26Google Scholar
  118. Tanabe K, Fukuda Y, Obata I (1982) Formation and function of the siphuncle-septal neck structures in two Mesozoic ammonites. Trans Proc Palaeontol Soc Jpn New Ser 128:433–443Google Scholar
  119. Tanabe K, Landman NH, Weitschat W (1993a) Septal necks in Mesozoic Ammonoidea: structure, ontogenetic development, and evolution. In: House MR (ed) The Ammonoidea: environment, ecology, and evolutionary change. Clarendon, Oxford, pp. 57–84Google Scholar
  120. Tanabe K, Landman NH, Mapes RH, Faulkner C (1993b) Analysis of a Carboniferous embryonic ammonoid assemblage from Kansas. USA-Implications for ammonoid embryology. Lethaia 26:215–224Google Scholar
  121. Tanabe K, Landman NH, Mapes RH (1998) Muscle attachment scars in a Carboniferous goniatite. Paleontological Research 2:130–136Google Scholar
  122. Tanabe K, Kulicki C, Landman NH, Mapes RH (2001) External features of embryonic and early postembryonic shells of a Carboniferous goniatite Vidrioceras from Kansas. Paleontological Research 5:13–19Google Scholar
  123. Tanabe K, Kulicki C, Landman NH (2005) Precursory siphuncular membranes in the body chamber of Phyllopachyceras and comparisons with other ammonoids. Acta Palaeontol Pol 50:9–18Google Scholar
  124. Tanabe K, Kulicki C, Landman NH (2008) Development of the embryonic shell structure of mesozoic Ammonoidea. Novitates of American Museum of. Natural History 3621:1–19Google Scholar
  125. Tanabe K, Kulicki C, Landman NH, Kaim A (2010) Tuberculate micro-ornamentation on embryonic shells of mesozoic ammonoids: microstructure, taxonomic variation, and morphogenesis. In: Tanabe K, Shigeta Y, Sasaki T, Hirano H (eds) Cephalopods—Present and past. Tokai University, Tokyo, pp. 105–121Google Scholar
  126. Tozer ET (1972) Observations on the shell structure of Triassic ammonoids. Palaeontology 15:637–654Google Scholar
  127. Vogel KP (1959) Zwergwuchs bei Polyptychiten (Ammonoidea). Geol Jahrb 76:469–540Google Scholar
  128. Voorthuysen JH (1940) Beitrag zur Kenntnis des inneren Baus von Schale und Sipho bei Triadischen Ammoniten. Dissertation, Amsterdam University. Van Gorcum & Co., AssenGoogle Scholar
  129. Voss-Foucart MF, Grégoire C (1971) Biochemical composition and submicroscopic structure of matrices of nacreous conchiolin in fossil cephalopods (nautiloids and ammonoids). Bull Inst R Sci Nat Belg 47(41):1–42Google Scholar
  130. Walliser OH (1970) Über die Runzelschicht bei Ammonoidea. Göttinger Arb Geol Paläont 5:115–126Google Scholar
  131. Ward PD (1987) The Natural History of Nautilus. Allen & Unwin, Boston, p. 267Google Scholar
  132. Weiner S, Lowenstam HA, Taborek B, Hood I (1979) Fossil mollusk shell organic matrix components preserved for 80 million years. Paleobiology 5:144–150Google Scholar
  133. Weitschat W (1986) Phosphatisierte Ammonoideen aus der Mittleren Trias von Central-Spitzbergen. Mitt Geol Paläont Inst Univ Hamburg 61:249–279Google Scholar
  134. Weitschat W, Bandel K (1991) Organic components in phragmocones of Boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65(3–4):269–303Google Scholar
  135. Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled Mesozoic ammonoids. Life Sci Contrib R Ont Mus 78:1–39Google Scholar
  136. Westermann GEG (1992) Formation and function of suspended organic cameral sheets in Triassic ammonoids-discussion. Paläontol Z 66(3–4):437–441Google Scholar
  137. Wise SW (1970) Microarchitecture and mode of formation of nacre (mother-of-pearl) in pelecypods, gastropods and cephalopods. Eclogae Geol Helv 63:775–797Google Scholar
  138. Zaborski PME (1986) Internal mould markings in a Cretaceous ammonite from Nigeria. Palaeontology 29:725–738Google Scholar
  139. Zakharov YuD, Grabovskaia BS (1984) Stroienie rakoviny roda Zelandites (Lytoceratida). Paleontol Zh 1984(1):19–29Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Cyprian Kulicki
    • 1
  • Kazushige Tanabe
    • 2
  • Neil H. Landman
    • 3
  • Andrzej Kaim
    • 4
  1. 1.Institute of PaleobiologyPolish Academy of SciencesWarszawaPoland
  2. 2.Department of Historical Geology and Paleontology, The University MuseumThe University of TokyoTokyoJapan
  3. 3.Division of Paleontology (Invertebrates)American Museum of Natural HistoryNew YorkUSA
  4. 4.Institute of PaleobiologyPolish Academy of SciencesWarszawaPoland

Personalised recommendations