Advertisement

Ammonoid Buoyancy

  • René HoffmannEmail author
  • Robert Lemanis
  • Carole Naglik
  • Christian Klug
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 43)

Abstract

The buoyancy of ammonoids is one of the most controversial issues of ammonoid paleobiology. This chapter gives a short historical review about attempts made to clarify the potential function of the cephalopod chambered shell (phragmocone) and ammonoid life habits either as benthic crawler or as free swimmers in the water column. In order to understand efficiency of buoyancy control and the mode of life of the extinct ammonoids decoupling of cameral liquid, process of osmotic pumping including local osmosis, pre-septal gas, and the role of the siphuncle and cameral liquid were discussed extensively. It is accepted that processes like osmotic pumping and local osmosis act in ammonoids due to similar architecture of the extant relatives including the presence of a siphuncle. Additionally, the calculation of buoyancy represents a major task which depends on exact reconstructions of volumes and densities for shell and soft body. With the rise of 3D-imaging techniques the determination of volumes were enhanced and now represent an important step towards more precise buoyancy calculations.

Keywords

Cephalopoda Ammonoidea Buoyancy Hydrostatic apparatus Volumetry Tomography Actualism 

Notes

Acknowledgements

CK and CN thank the Swiss National Science Foundation (SNF project numbers 200021-113956⁄ 1, 200020-25029, and 200020-132870) and RH and RL thank the Deutsche Forschungsgemeinschaft (DFG project numbers HO 4674/2-1) for financial support of their research, especially for the grinding tomography. We greatly appreciate the work of the members of the Heidelberg grinding tomography lab, namely Stefan Götz, who died much too young, Enrique Pascual-Cebrian, and Dominik Hennhöfer (all Heidelberg).

References

  1. Appellöf A (1893) Die Schalen von Sepia, Spirula und Nautilus—Studien über den Bau und das Wachstum. Kongl Svenska Vetensk Akad Handl 25:1–106Google Scholar
  2. Arkell WJ (1957) Sutures and septa in Jurassic ammonite systematic. Geol Mag 94:235–248Google Scholar
  3. Ax P (2001) Das System der Metazoa. Fischer, StuttgartGoogle Scholar
  4. Bandel K, von Boletzky S (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger 21:313–354Google Scholar
  5. Bandel K, Stinnesbeck W (2006) Naefia Wetzel 1930 from the Quiriquina Formation (Later Maastrichtian, Chile): relationship to modern Spirula and ancient Coleoidea (Cephalopoda). Acta Univ Carol Geol 49:21–32Google Scholar
  6. Barskov IS (1990) Internal structure of siphuncle of the Late Jurassic ammonite Virgatites virgatus. Trans Paleontol Inst 243:127–132Google Scholar
  7. Barskov IS (1996) Phosphatized blood vessels in the siphuncle of Jurassic ammonites. Bull Inst Océanogr, (Monaco, special) 14:335–341Google Scholar
  8. Barskov IS (1999) Why ammonoids have complex septa and sutures? In: Rozanov AY, Shevyrev AA (eds) Fossil cephalopods: recent advances in their study. Russian Academy of Science, MoscowGoogle Scholar
  9. Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New YorkGoogle Scholar
  10. Berry E (1928) Cephalopod adaptations—the record and its interpretations. Q Rev Biol (Baltimore) 3:92–108Google Scholar
  11. Bert P (1867) Mémoire sur la physiologie de la Seiche. Mem Soc Sci Phys Nat Bordeaux 5:114–138Google Scholar
  12. Bidder AM (1962) Use of the tentacles, swimming and buoyancy control in the Pearly Nautilus. Nature 196:451–454Google Scholar
  13. Bonting SL (1970) Sodium-potassium activated adenosine triphosphatase and cation transport. In: Bittar I (ed) Membranes and Ion Transport. Wiley, New YorkGoogle Scholar
  14. Bruun AF (1943) The biology of Spirula spirula (L.). Dana Rep 4:1–46.Google Scholar
  15. Bruun AF (1950) New light on the biology of Spirula, a mesopelagic cephalopod (Essays on the natural sciences in honour of Captain Allan Hancock). University of Southern California Press, Los Angeles, pp 61–72Google Scholar
  16. Buckland W (1836) Geology and mineralogy considered with reference to natural theology, vol 1. William Pickering, LondonGoogle Scholar
  17. Chamberlain Jr JA (1987) Locomotion of Nautilus. In: Saunders WB, Landman NH (eds) Nautilus—the biology and paleobiology of a living fossil. Springer, DordrechtGoogle Scholar
  18. Chamberlain JA Jr, Moore WA Jr (1982) Rupture strength and flow rate of Nautilus siphuncular tube. Paleobiology 8:408–425Google Scholar
  19. Chamberlain JA Jr, Ward PD, Weaver JS (1981) Post-mortem ascent of Nautilus shells: implications for cephalopod paleobiogeography. Paleobiology 7:494–509Google Scholar
  20. Charbonnier S (2009) Le Lagerstätte de la Voulte un environment bathyal au Jurassique. Mém Mus Natl Hist Nat 199:1–272Google Scholar
  21. Checa A (1996) Origin of intracameral sheets in ammonoids. Lethaia 29:61–75Google Scholar
  22. Chun C (1915) The Cephalopoda part 1: Oegopsida, part 2: Myopsida, Octopoda—text and atlas. Scientific results of the German deepsea expedition on board the steamship “Valdivia” 1898–1899Google Scholar
  23. Clarke MR (1969) Cephalopoda collected on the Sond Cruise. J Mar Biol Assoc UK 49:961–976Google Scholar
  24. Clarke MR (1970) Growth and development of Spirula spirula. J Mar Biol Assoc UK 50:53–64Google Scholar
  25. Collins DH, Minton P (1967) Siphuncular tube of Nautilus. Nature 216:916–917Google Scholar
  26. Collins DH, Ward, PD, Westermann GEG (1980) Function of cameral water in Nautilus. Paleobiology 6:168–172Google Scholar
  27. Crick RE (1988) Buoyancy regulation and macroevolution in nautiloid cephalopods. Senck Leth 69:13–42Google Scholar
  28. Currie ED (1957) The mode of life of certain goniatites. Trans Geol Soc Glasg 22:169–186Google Scholar
  29. Daniel TL, Helmuth BS, Saunders WB, Ward PD (1997) Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 23:470–481Google Scholar
  30. Delanoy G, Magnin A, Sélébran M, Sélébran J (1991) Moutoniceras nodosum d’Orbigny, 1850 (Ammonoidea, Ancyloceratina), une très grande ammonite hétéromorphe du Barrémien inférieur. Rev Paléobiol 10:229–245.Google Scholar
  31. Denton EJ (1962) Some recently discovered buoyancy mechanisms in marine animals. Proc R Soc Lond B 265:366–370Google Scholar
  32. Denton EJ (1971) Examples of the use of active transport of salts and water to give buoyancy in the sea. Phil Trans R Soc Lond B 262:277–287Google Scholar
  33. Denton EJ (1974) On buoyancy and the lives of modern and fossil cephalopods. Proc R Soc Lond B 185:273–299Google Scholar
  34. Denton EJ, Gilpin-Brown JB (1961a) The buoyancy of the cuttlefish Sepia officinalis (L.). J Mar Biol Assoc UK 41:319–342Google Scholar
  35. Denton EJ, Gilpin-Brown JB (1961b) The effect of light on the buoyancy of the cuttlefish. J Mar Biol Assoc UK 41:343–350Google Scholar
  36. Denton EJ, Gilpin-Brown JB (1961c) The distribution of gas and liquid within the cuttlebone. J Mar Biol Assoc UK 41:365–381Google Scholar
  37. Denton EJ, Gilpin-Brown JB (1966) On the buoyancy of the pearly Nautilus. J Mar Biol Assoc UK 46:723–759Google Scholar
  38. Denton EJ, Gilpin-Brown JB (1971) Further observations on the buoyancy of Spirula. J Mar Biol Assoc UK 51:363–373Google Scholar
  39. Denton EJ, Gilpin-Brown JB (1973) Floatation mechanisms in modern and fossil cephalopods. Adv Mar Biol 11:197–268Google Scholar
  40. Denton EJ, Gilpin-Brown JB, Howarth JV (1961) The osmotic mechanism of the cuttlebone. J Mar Biol Assoc UK 41:351–364Google Scholar
  41. Denton EJ, Gilpin-Brown JB, Howarth JV (1967) On the buoyancy of Spirula spirula. J Mar Biol Assoc UK 47:181–191Google Scholar
  42. Denton EJ, Gilpin-Brown JB, Shaw TI (1969) A buoyancy mechanism found in cranchid squid. Proc R Soc Lond B 174:271–279Google Scholar
  43. Derham W (1726) Philosophical experiments and observations of the late eminent Dr. Robert Hooke, Derham, LondonGoogle Scholar
  44. Diamond JM, Bossert WH (1967) Standing gradient osmotic flow—a mechanism for coupling water and solute transport in epithelia. J Gen Physiol 50:2061–2083Google Scholar
  45. Diamond JM, Bossert WH (1968) Functional consequences of ultra-structural geometry in “backwards” fluid-transporting epithelia. J Cell Biol 37:694–702Google Scholar
  46. Diener C (1912) Lebensweise und Verbreitung der Ammoniten. Neues Jahrb Miner Geol Palaontol 2:67–89Google Scholar
  47. Donovan D (1964) Cephalopod phylogeny and classification. Biol Rev 39:259–287Google Scholar
  48. Drushchits VV, Doguzhaeva LA (1981) Ammonites under the electron microscope (internal shell structure and systematics of Mesozoic Phylloceratidae, Lytoceratidae and 6 families of Early Cretaceous Ammonitidae). Moscow University, MoscowGoogle Scholar
  49. Dumont ER, Piccirillo J, Grosse IR (2005) Finite-element analysis of biting behavior and bone stress in the facial skeletons of bats. Anat Rec 283A:319–330Google Scholar
  50. Dunstan AJ, Ward PD, Marshall NJ (2011) Vertical Distribution and Migration Patterns of Nautilus pompilius. PLoS One 6:e16312Google Scholar
  51. Dzik J (1981) Origin of the Cephalopoda. Acta Palaeont Pol 26:161–91Google Scholar
  52. Ebel K (1983) Berechnungen zur Schwebfähigkeit von Ammoniten. Neues Jahrb Geol Paläontol (MMonatshefte) 1983:614–640Google Scholar
  53. Ebel K (1985) Gehäusespirale und Septenform bei Ammoniten unter der Annahme vagil benthischer Lebensweise. Paläontol Z 59:109–123Google Scholar
  54. Ebel K (1990) Swimming abilities of ammonites and limitations. Paläontol Z 64:25–37Google Scholar
  55. Ebel K (1992) Mode of life and soft body shape of heteromorph ammonites. Lethaia 25:179–193Google Scholar
  56. Ebel K (1993) Negative buoyancy of ammonoids—reply. Lethaia 26:260Google Scholar
  57. Ebel K (1999) Hydrostatics of fossil ectocochleate cephalopods and its significance for the reconstruction of their lifestyle. Paläontol Z 73:277–288Google Scholar
  58. Engeser, T (1996) The position of the Ammonoidea within the Cephalopoda. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in Geobiology 13. Plenum, New YorkGoogle Scholar
  59. Finn, JK, Norman, MD (2010) The argonaut shell: gas-mediated buoyancy controlin a pelagic octopus. Proc R Soc B 277:2967–2971Google Scholar
  60. Gottobrio WE, Saunders WB (2005) The clymeniid dilemma: functional implications of the dorsal siphuncle in clymeniid ammonoids. Paleobiology 31:233–252Google Scholar
  61. Greenwald L, Ward PD (1982) On the source of cameral liquid in the chambered Nautilus. Veliger 25:169–170.Google Scholar
  62. Greenwald L, Ward PD (1987) Buoyancy in Nautilus. In: Saunders BW, Landman NH (eds) Nautilus—the biology and paleobiology of a living fossil. Springer, DordrechtGoogle Scholar
  63. Greenwald L, Ward PD, Greenwald OE (1980) Cameral liquid transport and buoyancy control in the chambered nautilus (Nautilus macromphalus). Nature 286:55–56Google Scholar
  64. Greenwald L, Cook CB, Ward PD (1982) The structure of the chambered Nautilus siphuncle: the siphuncular epithelium. J Morphol 172:5–22Google Scholar
  65. Greenwald L, Verderber G, Singley C (1984) Localization of Na-K ATPase activity in the Nautilus siphuncle. J Exp Zool 229:481–484Google Scholar
  66. Guex J (2005) Buoyancy control and growth rates in ammonoids: new preliminary remarks about an old Red Herring. Bull Géol Lausanne 365:1–4Google Scholar
  67. Guex J, Koch A, O’Dogherty L, Bucher H (2003) A morphogenetic explanation of Buckman’s law of covariation. Bull Soc Géol Fr 174:603–606Google Scholar
  68. Hammer Ø, Bucher H (2005) Buckman’s law of covariation—a case of proportionality. Lethaia 38:67–72Google Scholar
  69. Hammer Ø, Bucher H (2006) Generalized ammonoid hydrostatics modelling, with application to Intornites and intraspecific variation in Amaltheus. Paleontol Res 10:91–96Google Scholar
  70. Heath TL (1897) The works of Archimedes. Clay and Sons, Cambridge University Press, Warehouse, LondonGoogle Scholar
  71. Heptonstall WB (1970) Buoyancy control in ammonoids. Lethaia 3:317–328.Google Scholar
  72. Hewitt RA (1985) Numerical aspects of sutural ontogeny in the Ammonitina and Lytoceratina. Neues Jahrb Geol Palaontol Abh 170:273–290Google Scholar
  73. Hewitt RA (1996) Architecture and strength of the ammonoid shell. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New York.Google Scholar
  74. Hewitt RA, Westermann GEG (1987) Function of complexly fluted septa in ammonoid shells 2. Septal evolution and conclusions. Neues Jahrb Geol Palaontol Abh 174:135–169Google Scholar
  75. Hewitt RA, Westermann GEG (1993) Growth rates of ammonites estimated from aptychi. Geobios Mem Spec 15:203–208Google Scholar
  76. Hewitt RA, Westermann GEG (1996) Post-mortem behaviour of Early Paleozoic nautiloids and paleobathymetry. Paläontol Z 70:405–424Google Scholar
  77. Hewitt RA, Westermann GEG (1997) Mechanical significance of ammonoid septa with complex sutures. Lethaia 30:205–212Google Scholar
  78. Hewitt RA, Westermann GEG, Judd RL (1999) Buoyancy calculations and ecology of Callovian (Jurassic) cylindroteuthid belemnites. Neues Jahrb Geol Paläont Abh 211:89–112Google Scholar
  79. Hoffmann R (2010) New insights on the phylogeny of the Lytoceratoidea (Ammonitina) from the septal lobe and its functional interpretation. Rev Paléobiol 29:1–156Google Scholar
  80. Hoffmann R, Zachow S (2011) Non-invasive approach to shed new light on the buoyancy business of chambered cephalopods (Mollusca). IAMG 2011 publication, Salzburg. doi:10.5242/iamg.2011.0163:506-516Google Scholar
  81. Hoffmann R, Schultz JA, Schellhorn R, Rybacki E, Keupp H, Gerden SR, Lemanis R, Zachow S (2014) Non-invasive imaging methods applied to neo- and paleontological cephalopod research. Biogeosciences 11: 2721–2739. doi:10.5194/bg-11-2721-2014Google Scholar
  82. Hooke R (1726) Philosophical experiments and observations. In: Derham W (ed) Printers to the Royal Society 8:807–810Google Scholar
  83. Jacobs DK (1992) The support of hydrostatic load in cephalopod shells—adaptive and ontogenetic explanations of shell form and evolution from Hooke 1695 to the present. In: Hecht MK, Wallace B, MacIntyre RJ (eds) Evolutionary biology, 26, Plenum, New YorkGoogle Scholar
  84. Jacobs DK (1996) Chambered cephalopod shells, buoyancy, structure and decoupling: history and red herrings. Palaios 11:610–614Google Scholar
  85. Jacobs DK, Chamberlain JA Jr (1996) Buoyancy and hydrodynamics in ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Topics in geobiology 13. Plenum, New YorkGoogle Scholar
  86. Jones D, Evans AR, Siu KWK (2012) The sharpest tool in the box? Quantitative analysis of conodont element functional morphology. Proc R Soc Biol 279:2849–2854Google Scholar
  87. Kalender W, Felsenberg D, Genant HK (1995) The European Spine Phantom—a tool for standardization and quality control in spinal bone mineral measurements by DXA and QCT. Eur J Radiol 20:83–92Google Scholar
  88. Kanie Y, Fukuda Y, Nakahara K, Seki K, Hattori H (1980) Implosion of living Nautilus under increased pressure. Paleobiology 6:44–47Google Scholar
  89. Kelly A (1901) Beiträge zur mineralogischen Kenntnis der Kalkausscheidungen im Tierreich. Jenä Z 35:429–494Google Scholar
  90. Keupp H (1997) Paläopathologische Analyse einer “Population” von Dactylioceras athleticum (Simpson) aus dem Unter-Toarcium von Schlaifhausen/Oberfranken. Berl Geowiss Abh 25:243–267Google Scholar
  91. Keupp H (2000) Ammoniten—Paläobiologische Erfolgsspiralen. Thorbecke, StuttgartGoogle Scholar
  92. Keupp H (2012) Atlas zur Paläopathologie der Cephalopoden. Berl Paläobiol Abh 10:1–390Google Scholar
  93. Keupp H, Röper M, Seilacher A (1999) Paläobiologische Aspekte von syn vivo-besiedelten Ammonoideen im Plattenkalk des Ober-Kimmeridgiums von Brunn in Ostbayern. Berl Geowiss Abh 30:121–145Google Scholar
  94. Klinger HC (1981) Speculations on buoyancy control and ecology in some heteromorph ammonites. Syst Assoc Spec Vol 18:337–355Google Scholar
  95. Klug C (2001) Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215–233Google Scholar
  96. Klug C, Lehmann J (2015) Soft part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons (this volume)Google Scholar
  97. Klug C, Korn D, Richter U, Urlichs M (2004) The black layer in cephalopods from the German Muschelkalk (Middle Triassic). Palaeontology 47:1407–1425Google Scholar
  98. Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and Recent cephalopod septa and septum formation. Lethaia 41:477–492Google Scholar
  99. Klug C, Riegraf W, Lehmann J (2012) Soft-part preservation in heteromorph ammonites from the Cenomanian-Turonian Boundary Event (OAE 2) in the Teutoburger Wald (Germany). Palaeontology 55:1307–1331Google Scholar
  100. Klug C, Kröger B, Vinther J, Fuchs D, De Baets K (2015a) Ancestry, origin and early evolution of ammonoids. (this volume)Google Scholar
  101. Klug C, Zatoń M, Parent H, Hostettler B, Tajika A (2015b) Mature modifications and sexual dimorphism. (this volume)Google Scholar
  102. Kröger B (2000) Schalenverletzungen an jurassischen Ammoniten—ihre paläobiologische und palökologische Aussagefähigkeit. Berl Geowiss Abh 33:1–97Google Scholar
  103. Kröger B (2001) Discussion—comments on Ebel’s benthic-crawler hypothesis for ammonoids and extinct nautiloids. Paläontol Z 75:123–125Google Scholar
  104. Kröger B (2002) On the efficiency of the buoyancy apparatus in ammonoids: evidences from sublethal shell injuries. Lethaia 35:61–70Google Scholar
  105. Kröger B (2003) The size of the siphuncle in cephalopod evolution. Senckenberg Lethaea 83:39–52Google Scholar
  106. Kröger B, Vinther J, Fuchs D (2011) Cephalopod origin and evolution: a congruent picture emerging from fossils, development and molecules. Bioessays 12 pp. doi:10.1002/bies.201100001Google Scholar
  107. Kruta I, Landman NH, Rouget I, Cecca F, Tafforeau P (2011) The role of ammonites in the Mesozoic marine food web revealed by exceptional jaws preservation. Science 331(70):70–72Google Scholar
  108. Kruta I, Landman NH, Cochran JK (2014) A new approach for the determination of ammonite and nautilid habitats. PLoS One 9:e87479 doi:10.1371/journal.pone.0087479Google Scholar
  109. Kulicki C (1979) The ammonite shell, its structure, development and biological significance. Palaeontol Pol 39:97–142Google Scholar
  110. Kulicki C (1996) Ammonoid shell microstructure. In: Tanabe K, Davis RA (eds) Ammonoid Paleobiology. Plenum, New YorkGoogle Scholar
  111. Longridge LM, Smith PL, Rawlings G, Klaptocz V (2009) The impact of asymmetries in the elements of the phragmocone of early Jurassic ammonites. Palaeontol Electron 12:1–15Google Scholar
  112. Lukeneder A, Harzhauser M, Müllegger S, Piller WE (2010) Ontogeny and habitat change in Mesozoic cephalopods revealed by stable isotopes (delta18O, delta13C). Earth Planet Sci Lett 296:103–114 doi:10.1016/ j.epsl.2010.04.053Google Scholar
  113. Mangum CP, Towle DW (1982) The Nautilus siphuncle as an ion pump. Pac Sci 36:273–282Google Scholar
  114. Meigen W (1870) Über den hydrostatischen Apparat bei Nautilus pompilius. Arch Naturgesch 36:1–36Google Scholar
  115. Monks N, Young JR (1998) Body position and the functional morphology of Cretaceous heteromorph ammonites. Palaeontogr Electron, http:/www-odp.tamuedu/paleo/1998_1/toc.htm. Accessed 17 Jan 2015Google Scholar
  116. Moore R, Lalicker C, Fischer A (1952) Invertebrate fossils. McGraw-Hill Co., New YorkGoogle Scholar
  117. Moriya K, Nishi H, Kawahata H, Tanabe K, Takayanagi Y (2003) Demersal habitat of Late Cretaceous ammonoids: evidence from oxygen isotopes for the campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology 31:167–170Google Scholar
  118. Moseley H (1838) On the geometrical form of turbinated and discoid shells. Phil Trans R Soc Lond 1838:351–370Google Scholar
  119. Mutvei H (1983) Flexible nacre in the nautiloid Isorthoceras, with remarks on the evolution of cephalopod nacre. Lethaia 16:233–240Google Scholar
  120. Mutvei H, Reyment RA (1973) Buoyancy control and siphuncle function in ammonoids. Palaeontology 16:623–636Google Scholar
  121. Naglik C, Monnet C, Götz S, Kolb C, De Baets K, Klug C (2015) Growth trajectories in chamber and septum volumes in major subclades of Paleozoic ammonoids. Lethaia: DOI:10.1111/let.12085. Accessed 17 Jan 2015Google Scholar
  122. Naglik C, Rikhtegar F, Klug C (2014) Buoyancy of some Palaeozoic ammonoids and their hydrostatic properties based on empirical 3D-models. Lethaia: ca. 14 pp.Google Scholar
  123. O’Dor RK, Forsythe J, Webber DM, Wells J, Wells MJ (1993) Activity levels of Nautilus in the wild. Nature 362:626–628Google Scholar
  124. Okamoto T (1988) Changes in life orientation during the ontogeny of some heteromorph ammonites. Paleontology 31:281–294Google Scholar
  125. Owen R (1832) Memoir of the Pearly Nautilus (Nautilus Pompilius, Linn.). London. pp 1–68Google Scholar
  126. Owen R (1878) On the relative positions to their constructions of the chambered shells of cephalopods. Proc Zool Soc Lond 1878:955–975Google Scholar
  127. Packard A (1972) Cephalopods and fish: the limits of convergence. Biol Rev 47:241–307Google Scholar
  128. Pfaff E (1911) Über Form und Bau der Ammonitensepten und ihre Beziehungen zur Suturlinie. Jahresber Niedersächs Geol Ver (Geol Abt Naturhist Ges Hannover) 4:207–223Google Scholar
  129. Pojeta J Jr (1980) Molluscan phylogeny. Tulane Stud Geol Paleontol 16:55–80Google Scholar
  130. Raup DM, Chamberlain JA Jr (1967) Equations for volume and center of gravity in ammonoids shells. J Paleontol 41:566–574Google Scholar
  131. Reboulet S, Giraud F, Proux O (2005) Ammonoid abundance variations related to changes in trophic conditions across the Oceanic Anoxic Event 1d (Latest Albian, SE France). Palaios 20:121–141Google Scholar
  132. Rein S (1999) On the swimming abilities of Ceratites De Haan and Germanonautilus Mojsisovics from the Upper Muschelkalk (Middle Triassic). Freiber Forschungsheft C481:39–47Google Scholar
  133. Reyment RA (1958) Some factors in the distribution of fossil Cephalopods. Acta Univ Stockh—Stockh Contrib in Geol 1:97–184Google Scholar
  134. Reyment RA (1973) Factors in the distribution of fossil cephalopods. Part 3: experiments with exact models of certain shell types. Bull Geol Inst Univ Uppsala N. S. 4:7–41Google Scholar
  135. Ritterbush KA, Bottjer DJ (2012) Westermann Morphospace displays ammonoid shell shape and hypothetical paleoecology. Paleobiology 38:424–446Google Scholar
  136. Saunders WB, Shapiro EA (1986) Calculation and simulation of ammonoid hydrostatics. Paleobiology 12:64–79Google Scholar
  137. Schmidt M (1925) Ammonitenstudien. Fortschr Geol Palaeontol 10:75–363Google Scholar
  138. Schmidt H (1930) Über die Bewegungsweise der Schalencephalopoden. Paläontol Z 12:194–208Google Scholar
  139. Schmidt DN, Rayfield ER, Cocking A (2013) Linking evolution and development: synchrotron radiation X-ray tomographic microscopy of planktic foraminifers. Palaeontology 56:741–749Google Scholar
  140. Schwarz EHL (1894) The Aptychus. Geol Mag, N S(Decade IV) 1:454–459Google Scholar
  141. Seilacher A (1960) Epizoans as a key to ammonoid ecology. J Paleontol 34:183–193Google Scholar
  142. Seilacher A, Gishlick AD (2015) Morphodynamics. CRC Press Taylor & Francis GroupGoogle Scholar
  143. Seilacher A, Labarbera M (1995) Ammonites as Cartesian Divers. Palaios 10:493–506Google Scholar
  144. Shigeta Y (1993) Post-hatching early life history of Cretaceous Ammonoidea. Lethaia 26:133–146Google Scholar
  145. Spath LF (1919) Notes on ammonites. Geol Mag 56:26–58, 65–74, 115–122, 170–177, 220–225Google Scholar
  146. Stock SR (2009) MicroComputed tomography: methodology and applications. CRC Press, LondonGoogle Scholar
  147. Sutton MD, Briggs DEG, Siveter DJ et al (2001) Methodologies for the Visualization and Reconstruction of Three-dimensional Fossils from the Silurian Herefordshire Lagerstätte. Palaeontol Electron 4:1–17Google Scholar
  148. Sutton MD, Briggs DEG, Siveter DJ, Siveter DJ (2006) Fossilized soft tissues in a Silurian platyceratid gastropod. Proc Royal Soc B 273(1590):1039–1044Google Scholar
  149. Sutton MD, Rahman IA, Garwood RJ (2014) Techniques for virtual palaeontology. Wiley, New York. doi:10.1002/9781118591192Google Scholar
  150. Swan ARH, Saunders WB (1987) Function and shape in late Paleozoic (mid-Carboniferous) ammonoids. Paleobiology 13:297–311Google Scholar
  151. Tajika A, Naglik C, Morimoto N, Pascual-Cebrian E, Hennhöfer DK, Klug C (2014) Empirical 3D-model of the conch of the Middle Jurassic ammonite microconch Normannites, its buoyancy, the physical effects of its mature modifications and speculations on their function. Hist Biol, 27:181–191. Accessed 17 Jan 2015Google Scholar
  152. Tanabe K (1975) Functional morphology of Otoscaphites puerculus (Jimbo), an Upper Cretaceous ammonite. Trans Proc Palaeont Soc Jpn, N S 99:109–132Google Scholar
  153. Tanabe K, Landman NH (1996) Septal neck—siphuncular complex of ammonoids. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology, Plenum, New YorkGoogle Scholar
  154. Tanabe K, Mapes RH, Sasaki T, Landman NH (2000) Soft part anatomy of the siphuncle in Permian prolecanitid ammonoids. Lethaia 3:83–91Google Scholar
  155. Tanabe K, Sasaki T, Mapes RH (2014) Soft-part anatomy of the siphuncle in ammonoids (this volume)Google Scholar
  156. Tasch P (1973) Paleobiology of invertebrates. Wiley, New York.Google Scholar
  157. Trueman AE (1941) The ammonite body chamber with special reference to the buoyancy and mode of life of the living ammonite. Quart J Geol Soc Lond 96:339–383Google Scholar
  158. Tsujino Y, Shigeta Y (2012) Biological response to experimental damage of the phragmocone and siphuncle in Nautilus pompilius Linnaeus. Lethaia 45:443–449Google Scholar
  159. Tsujita CJ, Westermann GEG (1998) Ammonoid habitats and habits in the Western Interior Seaway: a case study from the Upper Cretaceous Bearpaw Formation of southern Alberta, Canada. Palaeogeogr Palaeoclim Palaeoecol 144:135–160Google Scholar
  160. Vrolik W (1843) On the Anatomy of the Pearly Nautilus. Ann Mag Nat Hist 12:173–175Google Scholar
  161. Wani R, Kase T, Shigeta Y, De Ocampo R (2005) New look at ammonoid taphonomy, based on field experiments with modern chambered nautilus. Geology 33:849–852Google Scholar
  162. Ward PD (1979) Cameral liquid in Nautilus and ammonites. Paleobiology 5:40–49Google Scholar
  163. Ward PD (1980) Restructuring the chambered Nautilus. Paleobiology 6: 247–249Google Scholar
  164. Ward PD (1982) The relationship of siphuncle size to emptying rates in chambered cephalopods: implications for cephalopod paleobiology. Paleobiology 8:426–433Google Scholar
  165. Ward PD (1986) Rates and processes of compensatory buoyancy change in Nautilus macromphalus. Veliger 28:356–368Google Scholar
  166. Ward PD (1987) The Natural History of Nautilus. Allen & Unwin, BostonGoogle Scholar
  167. Ward PD, von Boletzky S (1984) Shell implosion depth and implosion morphologies in three species of Sepia (Cephalopoda) from the Mediterranean Sea. J Mar Biol Assoc UK 64:955–966Google Scholar
  168. Ward PD, Greenwald L (1982) Chamber refilling in Nautilus. J Mar Biol Assoc UK 62:469–475Google Scholar
  169. Ward PD, Martin AW (1978) On the buoyancy of the Pearly Nautilus. J Exp Zool 205:5–12Google Scholar
  170. Ward PD, Westermann GEG (1977) First occurrence, systematics, and functional morphology of Nipponites (Cretaceous Lytoceratina) from the Americas. J Paleontol 51:367–372Google Scholar
  171. Ward PD, Stone R, Westermann GEG, Martin A (1977) Notes on animal weight, cameral fluids, swimming speed, and color polymorphism of the Cephalopod Nautilus pompilius in the Fiji Islands. Paleobiology 3:377–388Google Scholar
  172. Ward PD, Greenwald L, Rougerie F (1980a) Shell implosion depth for living Nautilus macromphalus and shell strength of extinct cephalopods. Lethaia 13:182Google Scholar
  173. Ward PD, Greenwald L, Greenwald OE (1980b) The buoyancy of the chambered Nautilus. Sci Am 243:190–203Google Scholar
  174. Ward PD, Greenwald L, Magnier Y (1981) The chamber formation cycle in Nautilus macromphalus. Paleobiology 7:481–493Google Scholar
  175. Ward PD, Carlson B, Weekley M, Brumbaugh B (1984) Remote telemetry of daily vertical and horizontal movement by Nautilus in Palau. Nature 309:248–250Google Scholar
  176. Warnke KM, Oppelt A, Hoffmann R (2010) Stable isotopes during ontogeny of Spirula and derived hatching temperatures. Ferrantia 59:191–201Google Scholar
  177. Weitschat W, Bandel K (1991) Organic components in phragmocones of boreal Triassic ammonoids: implications for ammonoid biology. Paläontol Z 65: 269–303Google Scholar
  178. Wells M (1990) The dilemma of the jet set. New Sci 1704:44–47Google Scholar
  179. Westermann GEG (1956) Phylogenie der Stephanocerataceae und Perisphinctaceae des Dogger. Neues Jahrb Geol Paläont Abh 103:233–279Google Scholar
  180. Westermann GEG (1971) Form, structure and function of shell and siphuncle in coiled mesozoic ammonoids. Life Sci Contrib, R Ont Mus 78:1–39Google Scholar
  181. Westermann GEG (1973) Strength of concave septa and depth limits of fossil cephalopods. Lethaia 6:383–403Google Scholar
  182. Westermann GEG (1975) Model for origin, function and fabrication of fluted cephalopod septa. Paläontol Z 49:235–253Google Scholar
  183. Westermann GEG (1977) Form and function of orthoconic cephalopod shells with concave septa. Paleobiology 3:300–321Google Scholar
  184. Westermann GEG (1982) The connecting rings of Nautilus and Mesozoic ammonids: implications for ammonite bathymetry. Lethaia 15:373–384Google Scholar
  185. Westermann GEG (1990) New developments in ecology of Jurassic-Cretaceous ammonoids. In: Pallini G, Cresta S, Santantonio M (eds) Fossili, Evolutione, Ambiente. Atti II Convenio Internationale Pergola 1987Google Scholar
  186. Westermann GEG (1993) On alleged negative buoyancy of ammonoids. Lethaia 26:246Google Scholar
  187. Westermann GEG (1996) Ammonoid life and habitat. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology, Plenum, New YorkGoogle Scholar
  188. Westermann GEG (1998a) Life habits of nautiloids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, ChichesterGoogle Scholar
  189. Westermann GEG (1998b) Life habits of ammonoids. In: Savazzi E (ed) Functional morphology of the invertebrate skeleton. Wiley, ChichesterGoogle Scholar
  190. Westermann GEG (2013) Hydrostatics, propulsion and life-habits of the Cretaceous ammonoid Baculites. Rev Paléobiol 32:249–265Google Scholar
  191. Westermann B, Beuerlein K, Hempelmann G, Schipp R (2002) Localization of putative neurotransmitters in the mantle and siphuncle of the mollusc Nautilus L. (Cephalopoda). Histochem J 34:435–440Google Scholar
  192. Willey A (1902) Contributions to the natural history of the Pearly Nautilus. In: Wiley A (ed.) Zoological results part 6, Cambridge University Press, CambridgeGoogle Scholar
  193. Witmer LM (1995) The extant phylogenetic bracket and the importance of reconstructing soft tissues in fossils. In: Thomason JJ (ed) Functional morphology in vertebrate paleontology. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • René Hoffmann
    • 1
    Email author
  • Robert Lemanis
    • 1
  • Carole Naglik
    • 2
  • Christian Klug
    • 2
  1. 1.Department of Earth Sciences, Institute of Geology, Mineralogy, and GeophysicsRuhr-Universität BochumBochumGermany
  2. 2.Paläontologisches Institut und MuseumUniversity of ZurichZurichSwitzerland

Personalised recommendations