Advertisement

Describing Ammonoid Conchs

  • Christian KlugEmail author
  • Dieter Korn
  • Neil H. Landman
  • Kazushige Tanabe
  • Kenneth De Baets
  • Carole Naglik
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 43)

Abstract

Research always requires the use of a common language and particularly of common technical terms. Thus, the definition of terms is fundamental for any scientific work, and this includes also the definition of species. In this chapter, we do not discuss species concepts but provide a guideline on how to describe ammonoids in a manner that is intelligible to the majority of the fellow cephalopod-workers. Accordingly, we list the most important terms and describe how to quantify and how to properly use them. We stress that the inclusion of morphological details throughout ontogeny as well as information on intraspecific variability can be important. This is essential, because species are the classical unit used in biodiversity and evolutionary studies and hence, a more or less uniform handling of this issue is desirable.

Keywords

Conch geometry Conch parameters Ornamentation Septa Suture lines Variability Quantification 

Notes

Acknowledgments

Some of the insights grew in the course of the research projects with the numbers 200021-113956/1, 200020-25029, and 200020-132870 funded by the Swiss National Science Foundation SNF (CK, CN, KDB). We greatly appreciate the constructive reviews of Ottilia Szives (Budapest) and Christian Meister (Geneva).

References

  1. Arkell WJ (1957) Introduction to Mesozoic Ammonoidea. In: Moore RC (ed) Treatise on Invertebrate Paleontology. Part L, Mollusca 4, Cephalopoda-Ammonoidea. GSA and University of Kansas Press, L80–L100Google Scholar
  2. Bengtson P (1988) Open nomenclature. Palaeontology 31:223–227Google Scholar
  3. Bockwinkel J, Becker RT, Ebbighausen V (2009) Upper Givetian ammonoids from Dar Kaoua (Tafilalt, SE Anti-Atlas, Morocco). Berl Paläobiol Abh 10:61–128Google Scholar
  4. Boyle P, Rodhouse P (2005) Cephalopods: ecology and fisheries. Blackwell Publishing, SingaporeCrossRefGoogle Scholar
  5. Branco W (1879–1880) Beiträge zur Entwicklungsgeschichte der fossilen Cephalopoden. Palaeontogr 26(1879):15–50 (27(1880):17–81)Google Scholar
  6. Bucher H, Landman NH, Klofak, SM, Guex J (1996) Mode and rate of shell growth. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  7. Callomon JH (1963) Sexual dimorphism in Jurassic ammonites. Trans Leic Lit Philos Soc 57:21–56Google Scholar
  8. Checa A, Company M, Sandoval J, Weitschat W (1996) Covariation of morphological characters in the Triassic ammonoid Czekanowskites rieberi. Lethaia 29:225–235CrossRefGoogle Scholar
  9. Chlupáč I, Turek V (1983) Devonian goniatites from the Barrandian area. Rozpr Ustred Ust Geol 46:1–159Google Scholar
  10. Dagys AS, Weitschat W (1993) Extensive intraspecific variation in a Triassic ammonoid from Siberia. Lethaia 26:113–121CrossRefGoogle Scholar
  11. De Baets K Klug C Korn D Landman NH (2012) Early evolutionary trends in ammonoid embryonic development. Evolution 66:1788–1806CrossRefGoogle Scholar
  12. De Baets K Klug C Monnet C (2013a) Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39(1):75–94CrossRefGoogle Scholar
  13. De Baets K Klug C Korn D Bartels C Poschmann M (2013b) Emsian Ammonoidea and the age of the Hunsrück Slate (Rhenish Mountains, Western Germany). Palaeontogr A 299(1–6):1–113Google Scholar
  14. De Baets K, Bert D, Hofmann R, Monnet C, Yacobucci MM, Klug C (2015) Ammonoid intraspecific variability (this volume)Google Scholar
  15. Dommergues J-L, Montuire S, Neige P (2002) Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 28:423–434CrossRefGoogle Scholar
  16. Drushchits VV, Doguzhaeva LA (1982) Ammonites under the electron microscope. Moscow University Press, Moscow (in Russian)Google Scholar
  17. Ernst HU, Klug C (2011) Perlboote und Ammonshörner weltweit. Nautilids and Ammonites worldwide. Pfeil Verlag, MünchenGoogle Scholar
  18. Hohenegger J, Tatzreiter F (1992) Morphometric methods in determination of ammonite species, exemplified through Balatonites shells (Middle Triassic). J Paleont 66:801–816.Google Scholar
  19. Hunt G (2004) Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 30:426–443CrossRefGoogle Scholar
  20. Hunt G (2007) Variation and early evolution. Science 317:459–460CrossRefGoogle Scholar
  21. Jacobs DK, Landman NH, Chamberlain JA (1994) Ammonite shell shape covaries with facies and hydrodynamics: iterative evolution as a response to changes in basinal environment. Geology 22:905–908CrossRefGoogle Scholar
  22. Kant R (1973) Allometrisches Wachstum paläozoischer Ammonoideen: Variabilität und Korrelation einiger Merkmale. Neues Jahrb Geol Paläontol Abh 143(2):153–192Google Scholar
  23. Kant R, Kullmann J (1980) Umstellungen im Gehäusebau jungpaläozoischer Ammonoideen. Neues Jahrb Geol Paläontol Mh 1980(11):673–685Google Scholar
  24. Klug C (2001) Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia 34:215–233CrossRefGoogle Scholar
  25. Klug C, Hoffmann R (2015) Ammonoid septa and sutures. (this volume)Google Scholar
  26. Klug C, Korn D (2002) Occluded umbilicus in the Pinacitinae (Devonian) and its palaeoecological implications. Palaeontology 45:917–931CrossRefGoogle Scholar
  27. Klug C, Lehmann J (2015) Soft-part anatomy of ammonoids: reconstructing the animal based on exceptionally preserved specimens and actualistic comparisons. (this volume)Google Scholar
  28. Klug C, Meyer E, Richter U, Korn D (2008) Soft-tissue imprints in fossil and recent cephalopod septa and septum formation. Lethaia 41:477–492CrossRefGoogle Scholar
  29. Klug C, Zatoń M, Parent H, Hostettler B, Tajika A (2015) Mature modifications and sexual dimorphism. (this volume)Google Scholar
  30. Korn D (1979) Mediandornen bei Kosmoclymenia Schindewolf (Ammonoidea, Cephalopoda). N Jahrb Geol Paläont Mh 7:399–405Google Scholar
  31. Korn D (1997) The Palaeozoic ammonoids of the South Portuguese Zone. Memórias do Instituto Geológico e Mineiro 33:1–131Google Scholar
  32. Korn D (2010) A key for the description of Palaeozoic ammonoids. Foss Rec 13:5–12CrossRefGoogle Scholar
  33. Korn D (2012) Quantification of ontogenetic allometry in ammonoids. Evol Dev 14(6):501–514CrossRefGoogle Scholar
  34. Korn D (2014) Armatites kaufmanni n. sp., the first Late Devonian goniatite with ventral spines. Neues Jahrb Geol Paläontol Abh 271:349–352CrossRefGoogle Scholar
  35. Korn D, Klug C (2002) Ammoneae Devonicae. In: Riegraf W (ed) Fossilium catalogus. Backhuys, LeidenGoogle Scholar
  36. Korn D, Klug C (2003) Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 29:329–348CrossRefGoogle Scholar
  37. Korn D, Klug C (2007) Conch form analysis, variability, morphological disparity, and mode of life of the Frasnian (Late Devonian) Ammonoid Manticoceras from Coumiac (Montagne Noire, France). In: Landman NH, Davis RA, Mapes RH (eds) Cephalopods present and past: New insights and fresh perspectives. Springer, DordrechtGoogle Scholar
  38. Korn D, Klug C (2012) Palaeozoic ammonoids—diversity and development of conch morphology. In: Talent J (ed) Extinction intervals and biogeographic perturbations through time: earth and Life (International year of planet earth). Springer, NetherlandsGoogle Scholar
  39. Korn D, Ebbighausen V, Bockwinkel J, Klug C (2003) On the A-mode sutural ontogeny in prolecanitid ammonoids. Palaeontology 46:1123–1132CrossRefGoogle Scholar
  40. Korn D, Bockwinkel J, Ebbighausen V (2010) The ammonoids from the Argiles de Teguentour of Oued Temertasset (early Late Tournaisian; Mouydir, Algeria). Foss Rec 13:35–152CrossRefGoogle Scholar
  41. Korn D, Mapes RH, Klug C (2013) The coarse wrinkle layer of Palaeozoic ammonoids: new evidence from the Early Carboniferous of Morocco. Palaeontology 57:771–781. doi:10.1111/pala.12087CrossRefGoogle Scholar
  42. Kraft S, Korn D, Klug C (2008) Ontogenetic patterns of septal spacing in Carboniferous ammonoids. Neues Jahrb Geol Paläontol Abh 250:31–44Google Scholar
  43. Kruta I, Landman NH, Tanabe K (2015) Ammonoid radulae. (this volume)Google Scholar
  44. Kulicki C, Tanabe K, Landman NH, Kaim A (2015) Ammonoid shell microstructure. (this volume)Google Scholar
  45. Kutygin RV (1998) Shell shapes of Permian ammonoids from northeastern Russia. Paleont Zh 1998 (1):20–31Google Scholar
  46. Kutygin RV (2006) Methods for studying ammonoid shell shape (example of Permian Goniatitida from northeastern Asia). Russiskaja Akademija Nauk Paleontologiczeskij Institut, pp 96–98 [in Russian]Google Scholar
  47. Landman NH, Tanabe K, Davis RA (eds) (1996) Ammonoid paleobiology. Plenum, New YorkCrossRefGoogle Scholar
  48. Lehmann U (1976) Ammoniten. Ihr Leben und ihre Umwelt. Enke, Stuttgart, p 171Google Scholar
  49. Lehmann U (1981) The ammonites: their life and their world. Cambridge University Press, New YorkGoogle Scholar
  50. Lehmann U (1990) Ammonoideen. Enke, StuttgartGoogle Scholar
  51. Makowski H (1962) Problem of sexual dimorphism in ammonites. Palaeontol Pol 12:1–92Google Scholar
  52. Matthews SC (1973) Notes on open nomenclature and synonymy lists. Palaeontology 16:713–719Google Scholar
  53. Miller AK, Furnish WM, Schindewolf OH (1957) Paleozoic Ammonoidea. In: Moore RC (ed) Treatise on Invertebrate Paleontology, Part L, Mollusca 4, Cephalopoda-Ammonoidea. GSA and University of Kansas Press, L11–L20Google Scholar
  54. Monnet C, Klug C, De Baets K (2011) Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods. BMC Evol Biol 11(115):1–21Google Scholar
  55. Monnet C, Bucher H, Guex J, Wasmer M (2012) Large-scale evolutionary trends of Acrochordiceratidae Arthaber, 1911 (Ammonoidea, Middle Triassic) and Cope’s rule. Palaeontology 55:87–107CrossRefGoogle Scholar
  56. Moseley H (1838) On the geometrical forms of turbinated and discoid shells. R Soc Lond Phil Trans 138:351–370CrossRefGoogle Scholar
  57. Nixon M, Young JZ (2003) The brains and lives of cephalopods. Oxford University Press, OxfordGoogle Scholar
  58. Parent H, Greco AF, Bejas M (2010) Size-Shape relationships in the Mesozoic Planispiral Ammonites. Acta Palaeont Pol 55, 85–98CrossRefGoogle Scholar
  59. Parent H, Bejas M, Greco A, Hammer O (2011) Relationships between dimensionless models of ammonoid shell morphology. Acta Palaeont Pol 57:445–447CrossRefGoogle Scholar
  60. Raup DM (1961) The geometry of coiling in gastropods. Proc Natl Acad. Sci U S A 47:602–609CrossRefGoogle Scholar
  61. Raup DM (1966) Geometric analysis of shell coiling: general problems. J Paleontol 40(5):1178–1190Google Scholar
  62. Raup DM (1967) Geometric analysis of shell coiling: coiling in ammonoids. J Paleontol 41(1):43–65Google Scholar
  63. Raup DM, Michelson A (1965) Theoretical morphology of the coiled shell. Science 147:1294–1295CrossRefGoogle Scholar
  64. Ropolo P (1995) Implications of variation in coiling in some Hauterivian (Lower Cretaceous) heteromorph ammonites from the Vocontian basin, France. Mem Descr della Carta Geol Ital 51:137–165.Google Scholar
  65. Ruzhencev VE (1949) Biostratigrafiya verkhnego karbona (Upper Carboniferous biostratigraphy). Dokl Akad Nauk SSSR 67(3):529–532Google Scholar
  66. Ruzhencev VE (1960) Printsipy sistematiki, sistema i filogeniya paleozoyskikh ammonoidey (Principles of systematics, the system and phylogeny of Paleozoic ammonoids). Trudy Paleontol Inst Akad Nauk SSSR 133:1–331 [in Russian]Google Scholar
  67. Ruzhencev VE (1962) Nadotryad Ammonoidea. Ammonoidei. Obshchaya chast’ (Superorder Ammonoidea. Ammonoidei. General section). In: Orlov YA, Ruzhencev VE (eds) Osnovy Paleontologii, 5, Mollyuski: Golovonogie 1. Akademiya Nauk SSSR, MoskvaGoogle Scholar
  68. Ruzhencev VE (1974) Superorder Ammonoidea. General section. In: Orlov YA, Ruzhencev VE (eds) Fundamentals of paleontology. V. Mollusca: Cephalopoda I, Jerusalem.Google Scholar
  69. Sandberger G (1851) Beobachtungen über mehrere schwierige Puncte der Organisation der Goniatiten. Jahrb Ver Nat Herzogthum Nassau 7:292–304Google Scholar
  70. Sandberger G (1853a) Einige Beobachtungen über Clymenien; mit besonderer Rücksicht auf die westphälischen Arten. Verh Naturhist Ver Preuss Rheinl Westph 10:171–216Google Scholar
  71. Sandberger G (1853b) Über Clymenien. Neues Jahrb Miner Geogn Geol Petrefakten-K 1853:513–523Google Scholar
  72. Sandberger G (1857) Paläontologische Kleinigkeiten aus den Rheinlanden. Verh Naturhist Ver Preuss Rheinl Westph 14:140–142Google Scholar
  73. Sandberger G, Sandberger F (1850–1856) Die Versteinerungen des rheinischen Schichtensystems in Nassau. Mit einer kurzgefassten Geognosie dieses Gebietes und mit steter Berücksichtigung analoger Schichten anderer Länder I-XIV, vol 1850, pp 1–72Google Scholar
  74. Schlegelmilch R (1976) Die Ammoniten des süddeutschen Lias. Fischer, StuttgartGoogle Scholar
  75. Schlegelmilch R (1985) Die Ammoniten des süddeutschen Doggers. Fischer, StuttgartCrossRefGoogle Scholar
  76. Schlegelmilch R (1994) Die Ammoniten des süddeutschen Malms. Fischer, Stuttgart.CrossRefGoogle Scholar
  77. Tanabe K, Kruta I, Landman NH (2015) Ammonoid buccal mass and jaw apparatus. (this volume) Google Scholar
  78. Tanabe K, Obata I, Fukuda Y, Futakami M (1979) Early shell growth in some Upper Cretaceous ammonites and its implications to major taxonomy. Bull Nat Sci Mus (Tokyo) C 5:155–176Google Scholar
  79. Tozer ET (1972) Observations on the shell structure of Triassic ammonoids. Palaeontology 15:637–654Google Scholar
  80. Trueman AE (1941) The ammonite body chamber, with special reference to the buoyancy and mode of life of the living ammonite. Quart J Geol Soc Lond 96:339–383CrossRefGoogle Scholar
  81. Urdy S (2015) Theoretical modelling of the molluscan shell: what has been learnt from the comparison among molluscan taxa? (this volume)Google Scholar
  82. Urdy S, Goudemand N, Bucher H, Chirat R (2010a) Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool B 314:280–302CrossRefGoogle Scholar
  83. Urdy S, Goudemand N, Bucher H, Chirat R (2010b) Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. J Exp Zool B 314:303–326CrossRefGoogle Scholar
  84. Vermeij GJ (1993) A natural history of shells. Princeton University Press, PrincetonGoogle Scholar
  85. Westermann GEG (1964) Sexual-Dimorphismus bei Ammonoideen und seine Bedeutung für Taxonomie der Otoitidae (einschliesslich Sphaeroceratinae; Ammonitina, M. Jura). Palaeontogr A 124:1–3, 33–73Google Scholar
  86. Westermann GEG (1996) Ammonoid life and habit. In: Landman NH, Tanabe K, Davis RA (eds) Ammonoid paleobiology. Plenum, New YorkGoogle Scholar
  87. Wilmsen M, Mosavinia A (2011) Phenotypic plasticity and taxonomy of Schloenbachia varians (J. Sowerby, 1817) (Cretaceous Ammonoidea). Paläontol Z 85:169–184CrossRefGoogle Scholar
  88. Yacobucci MM (2004) Buckman’s Paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 37:57–69CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Christian Klug
    • 1
    Email author
  • Dieter Korn
    • 2
  • Neil H. Landman
    • 3
  • Kazushige Tanabe
    • 4
  • Kenneth De Baets
    • 5
  • Carole Naglik
    • 1
  1. 1.Paläontologisches Institut und MuseumUniversity of ZurichZurichSwitzerland
  2. 2.Museum für NaturkundeLeibniz-Institut für Evolutions- und BiodiversitätsforschungBerlinGermany
  3. 3.Division of PaleontologyAmerican Museum of Natural HistoryNew YorkUSA
  4. 4.Department of Historical Geology and PaleontologyThe University Museum, The University of TokyoTokyoJapan
  5. 5.GeoZentrum Nordbayern, Fachgruppe PaläoUmweltUniversität ErlangenErlangenGermany

Personalised recommendations