Advertisement

Techno-economic Assessment Methodology for Ultrasonic Production of Biofuels

  • Miet Van DaelEmail author
  • Tom Kuppens
  • Sebastien Lizin
  • Steven Van Passel
Chapter
Part of the Biofuels and Biorefineries book series (BIOBIO, volume 4)

Abstract

Many market introductions fail due to economic reasons and not because of process performance. A techno-economic assessment (TEA) tool can help in making good choices during process development and raise the success rate of market introduction. In this chapter, the advantages of performing a TEA in early development stage of an innovative technology are highlighted. Seeing the current state of ultrasound technology, a TEA can help to steer further research into the most interesting pathway. The chapter, therefore, elaborates on the methodology that can be used to perform such a TEA and on the specific components which should be taken into account when applying a TEA on the ultrasonic production of biofuels and chemicals. Finally, a review is provided on the existing scientific literature concerning the economic performance of ultrasound technology.

Keywords

Techno-economic assessment Cost-benefit analysis Mass balance Energy balance Biofuels Ultrasound 

List of Abbreviations

BCR

Benefit cost ratio

Capex

Capital cost

CBA

Cost-benefit analysis

CEENE

Cumulative exergy extraction from the natural environment

CEPCI

Chemical engineering plant cost index

CFn

Cash flow in year n

DPBP

Discounted payback period

FCI

Fixed capital investment

i

Discount rate

I0

Initial investment in year 0

IRR

Internal rate of return

LCA

Life cycle analysis

LCC

Life cycle costing

LCSA

Life cycle sustainability assessment

M&S Index

Marshall and Swift equipment cost index

MFD

Mass flow diagram

NPV

Net present value

Opex

Operational cost

PBP

Payback period

PFD

Process flow diagram

SLCA

Social life cycle analysis

T

Life span

TCI

Total capital investment

TEA

Techno-economic assessment

TSin

Total solids in

TSS

Total suspended solids

References

  1. 1.
    Kantor M, Wajda K, Lannoo B, Casier K, Verbrugge S, Pickavet M, Wosinska L, Chen J, Mitcsenkov A (2010) General framework for techno-economic analysis of next generation access networks. In: 12th international conference on transparent optical networks (ICTON). IEEEGoogle Scholar
  2. 2.
    Smura T, Kiiski A, Hämmäinen H (2007) Virtual operators in the mobile industry: a techno-economic analysis. NETNOMICS: Econ Res Electron Netw 8:25–48CrossRefGoogle Scholar
  3. 3.
    NABC (2011) Techno-economic analysis: evaluating the economic viability and potential of the nabc process strategies (cited 19 Nov 2012). Available from: http://www.nabcprojects.org/pdfs/techno-economic_analysis_evaluating_economic_viability.pdf
  4. 4.
    Kuppens T (2012) Techno-economic assessment of fast pyrolysis for the valorisation of short rotation coppice cultivated for phytoextractionGoogle Scholar
  5. 5.
    Njomo D (1995) Techno-economic analysis of a plastic cover solar air heater. Energy Convers Manage 36:1023–1029CrossRefGoogle Scholar
  6. 6.
    Petit PJ, Meyer JP (1998) Techno-economic analysis between the performances of heat source air conditioners in South Africa. Energy Convers Manage 39:661–669CrossRefGoogle Scholar
  7. 7.
    Staessens D, Angelou M, De Groote M, Azodolmolky S, Klonidis D, Verbrugge S, Colle D, Pickavet M, Tomkos L (2011) Techno-economic analysis of a dynamic impairment-aware optical network. In: Optical fiber communication conference and exposition, Los AngelesGoogle Scholar
  8. 8.
    Jerman-Blazic B (2007) Comparative study and techno-economic analysis of broadband backbone upgrading: a case study. Informatica 31:279–284Google Scholar
  9. 9.
    Lannoo B, Naudts B, Van Hauwaert E, Ruckebusch P, Hoebeke J, Moerman I (2012) Techno-economic evaluation of a cost-efficient standard container monitoring system. In: Key developments in the port and maritime sector, AntwerpGoogle Scholar
  10. 10.
    Didden M (2003) Techno-economic analysis of methods to reduce damage due to voltage dips. Doctoral thesis, Faculty of applied science, Catholic University of Louvain, LeuvenGoogle Scholar
  11. 11.
    Athanassiou M, Zabaniotou A (2008) Techno-economic assessment of recycling practices of municipal solid wastes in Cyprus. J Clean Prod 16:1474–1483CrossRefGoogle Scholar
  12. 12.
    Myles P, Herron SE, Grol E, Le P, Kuehn N (2012) Techno-economic analysis of CO2 capture-ready coal-fired power plants (DOE/NETL-2012/1581). Report prepared for the U.S. Department of Energy, National Energy Technology LaboratoryGoogle Scholar
  13. 13.
    Chong WT, Naghavi MS, Poh SC, Mahlia TMI, Pan KC (2011) Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application. Appl Energ 88:4067–4077CrossRefGoogle Scholar
  14. 14.
    Hernández H, Tübke A (2011) Techno-economic analysis of key renewable energy technologies (PV, CSP and wind). EUR 24904 EN. Publications Office of the European Union, LuxembourgGoogle Scholar
  15. 15.
    Bakos GC, Soursos M (2002) Techno-economic assessment of a stand-alone PV/hybrid installation for low-cost electrification of a tourist resort in Greece. Appl Energ 73:183–193CrossRefGoogle Scholar
  16. 16.
    Van Dael M, Van Passel S, Pelkmans L, Guisson R, Reumermann P, Luzardo NM, Witters N, Broeze J (2013) A techno-economic evaluation of a biomass energy conversion park. Appl Energ 104:611–622CrossRefGoogle Scholar
  17. 17.
    Enguídanos M, Soria A, Kavalov B, Jensen P (2002) Techno-economic analysis of bio-diesel production in the EU: a short summary for decision-makers. Report EUR 20279 EN, Institute for prospective technological studies, report for the European Commission, Joint Research CentreGoogle Scholar
  18. 18.
    Klein-Marcuschamer D, Oleskowicz-Popiel P, Simmons BA, Blanch HW (2010) Technoeconomic analysis of biofuels: a wiki-based platform for lignocellulosic biorefineries. Biomass Bioenerg 34:1914–1921CrossRefGoogle Scholar
  19. 19.
    Wright MM, Daugaard DE, Satrio JA, Brown RC (2010) Techno-economic analysis of biomass fast pyrolysis to transportation fuels. Fuel 89(Supplement 1):S2–S10CrossRefGoogle Scholar
  20. 20.
    Salsabil MR, Laurent J, Casellas M, Dagot C (2010) Techno-economic evaluation of thermal treatment, ozonation and sonication for the reduction of wastewater biomass volume before aerobic or anaerobic digestion. J Hazard Mater 174:323–333CrossRefGoogle Scholar
  21. 21.
    Rehman MSU, Kim I, Chisti Y, Han J-I (2013) Use of ultrasound in the production of bioethanol from lignocellulosic biomass. EEST Part A: Energ Sci Res 30:1391–1410Google Scholar
  22. 22.
    Ensminger D, Bond LJ (2011) Ultrasonics: fundamentals, technologies, and applications. CRC Press, Boca RatonGoogle Scholar
  23. 23.
    Luo J, Fang Z, Smith RL Jr (2014) Ultrasound-enhanced conversion of biomass to biofuels. Prog Energy Combust Sci 41:56–93CrossRefGoogle Scholar
  24. 24.
    Suslick KS (1990) Sonochemistry. Science 247:1439–1445CrossRefGoogle Scholar
  25. 25.
    Mason TJ, Peters D (2002) Practical sonochemistry: power ultrasound uses and applications. Woodhead Publishing, CambridgeGoogle Scholar
  26. 26.
    Ashokkumar M (2011) The characterization of acoustic cavitation bubbles—an overview. Ultrason Sonochem 18:864–872CrossRefGoogle Scholar
  27. 27.
    Capelo-Martínez J-L (2008) Ultrasound in chemistry: analytical applications. Wiley, New YorkGoogle Scholar
  28. 28.
    Verbrugge S, Casier K, Van Ooteghem J, Lannoo B (2008) Practical steps in techno-economic evaluation of network deployment planning part 1: methodology overview. In: 13th international telecommunications network strategy and planning symposium (networks 2008). IEEEGoogle Scholar
  29. 29.
    Barbiroli G (1997) The dynamics of technology: a methodological framework for techno-economic analyses. Kluwer Academic, BerlinGoogle Scholar
  30. 30.
    Biezma MV, Cristóbal JRS (2006) Investment criteria for the selection of cogeneration plants–a state of the art review. Appl Therm Eng 26:583–588CrossRefGoogle Scholar
  31. 31.
    Levy H, Sarnat M (1994) Capital investment and financial decisions. Prentice Hall, New JerseyGoogle Scholar
  32. 32.
    Karellas S, Boukis I, Kontopoulos G (2010) Development of an investment decision tool for biogas production from agricultural waste. Renew Sust Energ Rev 14:1273–1282CrossRefGoogle Scholar
  33. 33.
    Lorie JH, Savage LJ (1955) Three problems in rationing capital. J Bus 28(4):229–239Google Scholar
  34. 34.
    Carpaneto E, Chicco G, Mancarella P, Russo A (2011) Cogeneration planning under uncertainty. Part II: decision theory-based assessment of planning alternatives. Appl Energ 88:1075–1083CrossRefGoogle Scholar
  35. 35.
    Haimes YY (2005) Risk modeling, assessment, and management, vol 40. Wiley, New YorkGoogle Scholar
  36. 36.
    Vose D (1996) Quantitative risk analysis: a guide to monte carlo simulation modelling. Wiley, New YorkzbMATHGoogle Scholar
  37. 37.
    Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ (2010) Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol 101:4851–4861CrossRefGoogle Scholar
  38. 38.
    Lizin S, Leroy J, Delvenne C, Dijk M, De Schepper E, Van Passel S (2013) A patent landscape analysis for organic photovoltaic solar cells: identifying the technology’s development phase. Renew Energ 57:5–11CrossRefGoogle Scholar
  39. 39.
    Lizin S, Van Passel S, De Schepper E, Vranken L (2012) The future of organic photovoltaic solar cells as a direct power source for consumer electronics. Sol Energy Mater Sol Cells 103:1–10CrossRefGoogle Scholar
  40. 40.
    Whitesides RW (2007) Process equipment cost estimating by ratio and proportion. In: PDH Course G127, FairfaxGoogle Scholar
  41. 41.
    Horngren CT, Bhimani A, Datar SM, Foster G (2005) Management and cost accounting, 3rd edn. Pearson Education Limited, HarlowGoogle Scholar
  42. 42.
    Mercken R (2004) De investeringsbeslissing. Een beleidsgerichte analyse. Garant, AntwerpenGoogle Scholar
  43. 43.
    Peters MS, Timmerhaus KD, West RE (2004) Plant design and economics for chemical engineers, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  44. 44.
    Dysert LR (2003) Sharpen your cost estimating skills. Cost Eng 45(6):22–30Google Scholar
  45. 45.
    Christensen P, Dysert L (2005) Cost estimate classification system—as applied in engineering, procurement, and construction for the process industries in recommended practice no. 18R-97. In: International A (ed). AACE internationalGoogle Scholar
  46. 46.
    Long JA (2000) Parametric cost estimating in the new millennium. PRICE Systems White PapersGoogle Scholar
  47. 47.
    Anderson J (2009) Determining manufacturing costs. Chem Eng Prog (CEP) 105Google Scholar
  48. 48.
    Lang HJ (1947) Cost relationships in preliminary cost estimation. Chem Eng Mag 54:117–121Google Scholar
  49. 49.
    Lang HJ (1948) Simplified approach to preliminary cost estimates. Chem Eng Mag 55:112Google Scholar
  50. 50.
    Sinnott RK (2005) Chemical engineering design, 4th edn. In: Coulson and Richardson’s chemical engineering series, vol 6. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  51. 51.
    Dysert LR (2008) An introduction to parametric estimating. In: AACE international transactions of the annual meeting 2008, EST.03Google Scholar
  52. 52.
    Dysert LR (2005) So you think you’re an estimator? In: AACE international transactions of the annual meeting 2005, EST.01Google Scholar
  53. 53.
    Caputo AC, Palumbo M, Pelagagge PM, Scacchia F (2005) Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenerg 28:35–51CrossRefGoogle Scholar
  54. 54.
    Fiala M, Pellizzi G, Riva G (1997) A model for the optimal dimensioning of biomass-fuelled electric power plants. J Agr Eng Res 67:17–25CrossRefGoogle Scholar
  55. 55.
    Boardman AE, Greenberg DH, Vining AR (2006) Cost benefit analysis. Concepts and practice. Pearson Education, New JerseyGoogle Scholar
  56. 56.
    Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, New Jersey, p 468Google Scholar
  57. 57.
    Arrow KJ, Fisher AC (1974) Environmental preservation, uncertainty, and irreversibility. Q J Econ 88:312–319CrossRefGoogle Scholar
  58. 58.
    Jungk NC, Patyck A, Reinhardt GA, Calzoni J, Caspersen N, Dercas N, Gaillard G, Gosse G, Hanegraaf M, Heinzer L, Kool A, Korsuize G, Lechner M, Leviel B, Neumayr R, Nielsen AM, Nielsen PH, Nikolaou A, Panoutsou P, Panvini A, Rathbauer J, Riva G, Smedile E, Stettler C, Pedersen Weidema B, Wörgetter M, van Zeijts H (2000) Bioenergy for Europe: which one fits best—a comparative analysis for the community. Final report (contract CT 98 3832), Institute for Energy and Environmental Research Heidelberg, HeidelbergGoogle Scholar
  59. 59.
    Klöpffer W (1997) Life cycle assessment: from the beginning to the current state. Environ Sci Pollut R 4:223–228CrossRefGoogle Scholar
  60. 60.
    Ciroth A, Hunkeler D, Lichtenvort K (2008) Environmental life cycle costing. SETAC, PensacolaGoogle Scholar
  61. 61.
    Swarr TE, Hunkeler D, Klöpffer W, Personen H-L, Ciroth A, Brent AC, Pagan R (2011) Environmental life-cycle costing: a code of practice. Int J Life Cycle Ass 16:389–391CrossRefGoogle Scholar
  62. 62.
    Hoogmartens R, Van Passel S, Van Acker K, Dubois M (2014) Bridging the gap between LCA, LCC and CBA as sustainability assessment tools. Environ Impact Assess Rev 48:27–33CrossRefGoogle Scholar
  63. 63.
    Dewulf J, Van Langenhove H, Muys B, Bruers S, Bakshi BR, Grubb GF, Paulus DM, Sciubba E (2008) Exergy: its potential and limitations in environmental science and technology. Environ Sci Technol 42:2221–2232CrossRefGoogle Scholar
  64. 64.
    Maes D, Van Dael M, Vanheusden B, Goovaerts L, Reumerman P, Márquez Luzardo N, Van Passel S (2014) Assessment of the RED sustainability guidelines: the case of biorefineries. J Clean Prod. doi: 10.1016/j.jclepro.2014.04.051
  65. 65.
    Elbeshbishy E, Aldin S, Hafez H, Nakhla G, Ray M (2011) Impact of ultrasonication of hog manure on anaerobic digestability. Ultrason Sonochem 18:164–171CrossRefGoogle Scholar
  66. 66.
    Montalbo-Lomboy M, Khanal SK, van Leeuwen J, Raj Raman D, Grewell D (2011) Simultaneous saccharification and fermentation and economic evaluation of ultrasonic and jet cooking pretreatment of corn slurry. Biotechnol Prog 27:1561–1569CrossRefGoogle Scholar
  67. 67.
    Deenu A, Naruenartwongsakul S, Kim SM (2013) Optimization and economic evaluation of ultrasound extraction of lutein from Chlorella vulgaris. Biotechnol Bioproc E 18:1151–1162CrossRefGoogle Scholar
  68. 68.
    Chen T-C, Shen Y-H, Lee W-J, Lin C-C, Wan M-W (2013) An economic analysis of the continuous ultrasound-assisted oxidative desulfurization process applied to oil recovered from waste tires. J Clean Prod 39:129–136CrossRefGoogle Scholar
  69. 69.
    Franchetti M (2013) Economic and environmental analysis of four different configurations of anaerobic digestion for food waste to energy conversion using LCA for: a food service provider case study. J Environ Manage 123:42–48CrossRefGoogle Scholar
  70. 70.
    Vieira GS, Cavalcanti RN, Meireles MAA, Hubinger MD (2013) Chemical and economic evaluation of natural antioxidant extracts obtained by ultrasound-assisted and agitated bed extraction from jussara pulp (Euterpe edulis). J Food Eng 119:196–204CrossRefGoogle Scholar
  71. 71.
    Velmurugan R, Muthukumar K (2011) Utilization of sugarcane bagasse for bioethanol production: sono-assisted acid hydrolysis approach. Bioresour Technol 102:7119–7123CrossRefGoogle Scholar
  72. 72.
    Velmurugan R, Muthukumar K (2012) Ultrasound-assisted alkaline pretreatment of sugarcane bagasse for fermentable sugar production: optimization through response surface methodology. Bioresour Technol 112:293–299CrossRefGoogle Scholar
  73. 73.
    Velmurugan R, Muthukumar K (2012) Sono-assisted enzymatic saccharification of sugarcane bagasse for bioethanol production. Biochem Eng J 63:1–9CrossRefGoogle Scholar
  74. 74.
    Nitayavardhana S, Rakshit SK, Grewell D, van Leeuwen JH, Khanal SK (2008) Ultrasound pretreatment of cassava chip slurry to enhance sugar release for subsequent ethanol production. Biotechnol Bioeng 101:487–496CrossRefGoogle Scholar
  75. 75.
    Bussemaker MJ, Zhang D (2013) Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Ind Eng Chem Res 52:3563–3580CrossRefGoogle Scholar
  76. 76.
    Kapilan N, Baykov BD (2014) A review on new methods used for the production of biodiesel. Pet Coal 56:62–73Google Scholar
  77. 77.
    Gasparatos A, Scolobig A (2012) Choosing the most appropriate sustainability assessment tool. Ecolog Econ 80:1–7CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Miet Van Dael
    • 1
    • 2
    Email author
  • Tom Kuppens
    • 1
  • Sebastien Lizin
    • 1
  • Steven Van Passel
    • 1
  1. 1.Centre for Environmental SciencesHasselt UniversityHasseltBelgium
  2. 2.VITOMolBelgium

Personalised recommendations