Advertisement

Ediacaran Ecosystems and the Dawn of Animals

  • Luis A. Buatois
  • M. Gabriela Mángano
Chapter
Part of the Topics in Geobiology book series (TGBI, volume 39)

Abstract

Ichnology may provide remarkable information for our understanding of Ediacaran paleobiology, illuminating aspects such as the earliest evidence of bilaterians and the nature of Ediacaran ecosystems. The possibility of animal trace fossils in pre-Ediacaran rocks is considered unlikely and, therefore, the target of ichnologic research has moved in recent years to Ediacaran strata that postdate the Gaskiers glaciation. Still, the earliest convincing evidence of bilaterian activity comes from the White Sea Assemblage (less than 560 Ma). Although earlier systematic compilations listed a wide variety of trace fossils for the Ediacaran, including complex trace fossils and scratch marks produced by arthropods, the present view is one of much more reduced global ichnodiversity and ichnodisparity. In fact, a critical reevaluation of the trace-fossil record indicates the presence of only seven categories of architectural designs: simple horizontal trails, passively filled horizontal burrows, actively filled (massive) horizontal burrows, plug-shaped burrows, oval-shaped impressions, rasping traces, and horizontal burrows with horizontal to vertical branches. Microbial mats were critical components in Ediacaran ecosystems and benthic communities developed in direct association with resistant matgrounds. Within this framework, various categories of organisms–microbial mats interactions can be recognized. Mat encrusters and mat stickers are essentially represented by body fossils, but trace-fossil data is key to decipher mat scratchers (organisms rasping on the microbial mats), mat digesters (organisms able to feed from direct external digestion of the mat), mat grazers (organisms browsing through the microbial mat), and undermat miners (organisms that constructed tunnels below the mat). Although integration of ichnologic and sedimentologic information allows discriminating between shallow- and deep-marine benthic communities, limited beta ichnodiversity implies substantial niche overlap during the Ediacaran. Ediacaran sediments displayed almost invariably no bioturbation (BI 0) to very locally sparse bioturbation (BI 1) at the most, with very limited to nonexistent infaunal tiering. Critical evaluation of the available information places the earliest evidence of complex behavior in the treptichnids recorded by the end of the Ediacaran, certainly representing the prelude of the dramatic increase in complexity evidenced by the Cambrian explosion.

Keywords

Trace fossils Ediacaran Ecosystem Microbial mats Early bilaterians 

Notes

Acknowledgments

We are happy to have been able to interact with Dolf Seilacher, who was a huge influence for us. Discussions with Guy Narbonne have always been both fruitful and enjoyable. Sören Jensen has always been there for valuable exchanges on Ediacaran ichnofaunas. Sören Jensen is also thanked for providing the photographs for Figs. 2.14b, c and 2.15a, b. Jakob Vinther generously provided all photographs included in Fig. 2.12 . A large number of colleagues guided us in Ediacaran outcrops all over the world, including John Almond (South Africa, Namibia), Jim Gehling (Australia), Gerard Germs (Namibia), Sören Jensen (Spain), Alex Liu (Newfoundland), and Guy Narbonne (Australia, Newfoundland). Peter Crimes gave access to his trace fossil collection and inspired us to tackle some of the issues discussed in this chapter. Richard Jenkins and Jim Gehling showed us material from Australia. Ludvig Loewemark and Jorge Genise provided valuable comments on the controversial Nama structures. This chapter has been benefitted from careful reviews by Sören Jensen and Guy Narbonne. Financial support for this study was provided by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants Discovery Grant 311726-05/08/13 awarded to Buatois.

References

  1. Almond JE, Buatois LA, Gresse PG, Germs GJB (2008) Trends in metazoan body size, burrowing behaviour and ichnodiversity across the Precambrian–Cambrian boundary: ichnoassemblages from the Vanrhynsdorp Group of South Africa. In: Conference programme and abstracts, 15th biennial meeting of the Palaeontological Society of South Africa, Matjiesfontein, pp 15–20Google Scholar
  2. Alpert SP (1977) Trace fossils and the basal Cambrian boundary. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J Spec Issue 9:1–8Google Scholar
  3. Anderson MM, Misra SB (1968) Fossils found in the Pre-Cambrian Conception Group of South-eastern Newfoundland. Nature 220:680–681CrossRefGoogle Scholar
  4. Antcliffe JB, Gooday AJ, Brasier MD (2011) Testing the protozoan hypothesis for Ediacaran fossils: a developmental analysis of Palaeopascichnus. Palaeontology 54:1157–1175CrossRefGoogle Scholar
  5. Banks NL (1970) Trace fossils from the late Precambrian and Lower Cambrian of Finmark, Norway. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J Spec Issue 3:19–34Google Scholar
  6. Banks NL (1973) Trace fossils in the Halkkavarre section of the Dividal Group (?late Precambrian-Lower Cambrian), Finmark. Norges Geol Unders 288:1–6Google Scholar
  7. Becker YR (2010) Geological potential of the oldest ichnofossils in the Late Precambrian stratotype of the South Urals. Reg Geol Metall 43:18–35 (in Russian)Google Scholar
  8. Becker YR (2013) Ichnofossils—a new paleontological object in the Late Precam-brian stratotype of the Urals. Litosfera 1:52–80 (in Russian)Google Scholar
  9. Bengtson S, Rasmussen R, Krape B (2007) The Paleoproterozoic megascopic Stirling biota. Paleobiology 33:351–381CrossRefGoogle Scholar
  10. Bergström J (1990) Precambrian trace fossils and the rise of bilaterian animals. Ichnos 1:3–13CrossRefGoogle Scholar
  11. Billings E (1872) On some fossils from the Primordial rocks of Newfoundland. Can Nat Geol 6:465–479Google Scholar
  12. Bottjer DJ, Clapham ME (2006) Evolutionary paleoecology of Ediacaran Benthic marine animals. In: Kaufman J, Xiao, S (eds) Neoproterozoic geobiology and paleobiology. Top Geobiol 27:91–114Google Scholar
  13. Bouougri EH, Porada H (2007) Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia. J Afr Earth Sci 48:38–48CrossRefGoogle Scholar
  14. Brasier MD (2009) Darwin’s lost world. Oxford University Press, OxfordGoogle Scholar
  15. Brasier MD, McIlroy D (1998) Neonereites uniserialis from c. 600 Ma year old rocks in western Scotland and the emergence of animals. J Geol Soc Lond 155:5–12CrossRefGoogle Scholar
  16. Brasier MD, Cowe JW, Taylor ME (1994) Decision on the Precambrian-Cambrian boundary. Episodes 17:3–8Google Scholar
  17. Brasier MD, McIlroy D, Liu AG, Antcliffe JB, Menon LR (2013) The oldest evidence of bioturbation on Earth: Comment. Geology 41:e289CrossRefGoogle Scholar
  18. Bromley RG (1990) Trace fossils. Biology and taphonomy. Unwin Hyman, LondonGoogle Scholar
  19. Bromley RG (1996) Trace fossils. Biology, taphonomy and applications. Chapman & Hall, LondonCrossRefGoogle Scholar
  20. Buatois LA, Mángano MG (2002) Trace fossils from Carboniferous floodplain deposits in western Argentina: implications for ichnofacies models of continental environments. Palaeogeogr Palaeoclimatol Palaeoecol 183:71–86CrossRefGoogle Scholar
  21. Buatois LA, Almond J, Germs GJB (2013) Environmental tolerance and range offset of Treptichnus pedum: Implications for the recognition of the Ediacaran-Cambrian boundary. Geology 41:519–522Google Scholar
  22. Buatois LA, Mángano MG (2003) Early colonization of the deep sea: ichnologic evidence of deep-marine benthic ecology from the Early Cambrian of northwest Argentina. Palaios 18:572–581CrossRefGoogle Scholar
  23. Buatois LA, Mángano MG. (2004) Terminal Proterozoic–Early Cambrian ecosystems: ichnology of the Puncoviscana Formation, Northwest Argentina. In: Webby BD, Mángano MG, Buatois LA (eds) Trace fossils in evolutionary palaeoecology. Fossils Strata 51:1–16Google Scholar
  24. Buatois LA, Mángano MG (2011a) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  25. Buatois LA, Mángano MG (2011b) The Déjà vu effect: recurrent patterns in the exploitation of ecospace, the establishment of the mixed layer, and the distribution of matgrounds. Geology 39:1163–1166CrossRefGoogle Scholar
  26. Buatois LA, Mángano MG. (2012a) The trace-fossil record of organism-matground interactions in space and time. Noffke N, Chafetz H (eds) Microbial mats in siliciclastic sediments. SEPM Spec Pub 101:15–28Google Scholar
  27. Buatois LA, Mángano MG (2012b) An Early Cambrian shallow-marine ichnofauna from the Puncoviscana Formation of northwest Argentina: the interplay between sophisticated feeding behaviors, matgrounds and sea-level changes. J Paleontol 86:7–18CrossRefGoogle Scholar
  28. Buatois LA, Mángano MG (2013) Ichnodiversity and ichnodisparity: significance and caveats. Lethaia 46:281–292CrossRefGoogle Scholar
  29. Buatois LA, Mángano MG, Maples CG, Lanier WP (1998) Ichnology of an Upper Carboniferous fluvio-estuarine paleovalley: the Tonganoxie Sandstone, Buildex Quarry, eastern Kansas, USA. J Paleontol 72:152–180CrossRefGoogle Scholar
  30. Buatois LA, Almond J, Gresse P, Germs G (2007) The elusive Proterozoic-Cambrian boundary: ichnologic data from the Vanrhynsdorp Group of South Africa. In: 9th International ichnofabric workshop, Calgary, Abstract, p 8Google Scholar
  31. Buatois LA, Netto R, Mángano MG (2010) Ichnology of late Paleozoic post-glacial transgressive deposits in Gondwana: reconstructing salinity conditions in coastal ecosystems affected by strong meltwater discharge. In: Lopez Gamundi O, Buatois LA (eds) Late Paleozoic glacial events and postglacial transgressions in Gondwana. Geol Soc Am Spec Pap 468:149–173Google Scholar
  32. Buatois LA, Narbonne GM, Mángano MG, Carmona NB, Myrow P (2014) Relict ecosystems at the dawn of the Phanerozoic revolution. Nat Commun 5:3544, 5pCrossRefGoogle Scholar
  33. Budd GE (2013) At the origin of animals: the revolutionary Cambrian fossil record. Curr Genomics 14:348–349, 353CrossRefGoogle Scholar
  34. Budd GE (2015) Early animal evolution and the origin of nervous systems. Philos Trans B 370:20150037CrossRefGoogle Scholar
  35. Budd GE, Jensen S (2000) A critical reappraisal of the fossil record of the bilaterian phyla. Biol Rev 75:253–295CrossRefGoogle Scholar
  36. Budd GE, Jensen S (2004) The limitations of the fossil record and the dating of the origin of the Bilateria. In: Donoghue PCI, Smith MP (eds) Telling the evolutionary time: molecular clocks and the fossils record. Taylor and Francis, London, pp 166–169Google Scholar
  37. Budd GE, Jensen S (in press) The origin of the animals and a ‘Savannah hypothesis for early bilaterian evolution. Biol RevGoogle Scholar
  38. Cai Y, Hua H, Zhang X (2013) Tube construction and life mode of the late Ediacaran tubular fossil Gaojiashania cyclus from the Gaojiashan Lagerstätte. Precambrian Res 224:255–267CrossRefGoogle Scholar
  39. Callow RHT, Brasier MD, McIlroy D (2013) Discussion: “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?” by Retallack et al. Sedimentology 59:1208–1236Google Scholar
  40. Carbone C, Narbonne GM (2014) When life got smart: the evolution of behavioral complexity through the Ediacaran and Early Cambrian of NW Canada. J Paleontol 88:309–330CrossRefGoogle Scholar
  41. Carbone CA, Narbonne GM, Macdonald FA, Boag TH (2015) New Ediacaran fossils from the uppermost Blueflower Formation, northwest Canada: disentangling biostratigraphy and paleoecology. J Paleo 89:281–291Google Scholar
  42. Caron JB, Scheltema A, Schander C, Rudkin D (2006) A soft-bodied mollusc with radula from the Middle Cambrian Burgess Shale. Nature 442:159–163CrossRefGoogle Scholar
  43. Chen Z, Zhou C, Meyer M, Xiang K, Schiffbauer JD, Yuan X, Xiao S (2013) Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors. Precambrian Res 224:690–701CrossRefGoogle Scholar
  44. Chen Z, Zhou C, Xiao S, Wang W, Guan C, Hua H, Yuan X (2014) New Ediacara fossils preserved in marine limestone and their ecological implications. Nat Commun 4:4180, 10 ppGoogle Scholar
  45. Clapham ME, Narbonne GM (2002) Ediacaran epifaunal tiering. Geology 30:627–630CrossRefGoogle Scholar
  46. Clapham ME, Narbonne GM, Gehling JG (2003) Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527–544CrossRefGoogle Scholar
  47. Clemmey H (1976) World’s oldest animal traces. Nature 261:576–578CrossRefGoogle Scholar
  48. Cloud P, Gustafson LB, Watson JA (1980) The works of living social insects as pseudofossils and the age of the oldest known Metazoa. Science 210:1013–1015CrossRefGoogle Scholar
  49. Conway Morris S (2002) Ancient animals or something else entirely? Science 298:57–58CrossRefGoogle Scholar
  50. Crimes TP (1987) Trace fossils and correlation of late Precambrian and early Cambrian strata. Geol Mag 124:97–119CrossRefGoogle Scholar
  51. Crimes TP (1992) The record of trace fossils across the Proterozoic-Cambrian boundary. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum Press, New YorkGoogle Scholar
  52. Crimes TP (1994) The period of early evolutionary failure and the dawn of evolutionary success. In: Donovan SK (ed) The palaeobiology of trace fossils. John Wiley & Sons, ChichesterGoogle Scholar
  53. Crimes TP, Anderson MM (1985) Trace fossils from Late Precambrian-Early Cambrian strata of southeastern Newfoundland (Canada): temporal and environmental implications. J Paleontol 59:310–343Google Scholar
  54. Crimes TP, Fedonkin M (1996) Biotic changes in platform communities across the Precambrian Phanerozoic boundary. Riv Ital Pal Strat 102:317–332Google Scholar
  55. Dalrymple RW, Narbonne GM (1996) Continental slope sedimentation in the Sheepbed Formation (Neoproterozoic; Windermere Supergroup), Mackenzie Mountains, N.W.T. Can J Earth Sci 33:848–862CrossRefGoogle Scholar
  56. Darroch SA, Sperling EA, Boag TH, Racicot RA, Mason SJ, Morgan AS, Tweedt S, Myrow P, Johnston DT, Erwin DH, Laflamme M (2015) Biotic replacement and mass extinction of the Ediacara biota. Proc R Soc B 282(1814):20151003CrossRefGoogle Scholar
  57. Darwin C (1859) On The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonCrossRefGoogle Scholar
  58. Ding LF, Zhang L, Li Y, Dong J (1992) The study of the Late Sinian–Early Cambrian biotas from the northern margin of Yangtze Platform. Scientific and Technical Documents Publishing House, Beijing (in Chinese with English abstract)Google Scholar
  59. Dornbos SQ (2006) Evolutionary palaeoecology of early epifaunal echinoderms: response to increasing bioturbation levels during the Cambrian radiation. Palaeogeogr Palaeoclimatol Palaeoecol 237:225–239CrossRefGoogle Scholar
  60. dos Reis M, Thawornwattana Y, Angelis K, Telford MJ, Donoghue PCJ, Yang Z (2015) Uncertainty in the Timing of Origin of Animals and the Limits of Precision in Molecular Timescales. Curr Biol 25:2939–2950CrossRefGoogle Scholar
  61. Droser ML, Gehling JG (2008) Synchronous aggregate growth in an abundant new Ediacaran tubular organism. Science 319:1660–1662Google Scholar
  62. Droser ML, Gehling JG (2015) The advent of animals: the view from the Ediacaran. Proc Natl Acad Sci U S A 112:4865–4870CrossRefGoogle Scholar
  63. Droser ML, Gehling JG, Jensen S (2005). Ediacaran trace fossils: true and false. In: Briggs DEG (ed) Evolving form and function: fossils and development. Spec Pub Peabody Mus Nat Hist, Yale Univ, pp 125–138Google Scholar
  64. Droser ML, Gehling JG, Jensen SR (2006) Assemblage palaeoecology of the Ediacara biota: the unabridged edition? Palaeogeogr Palaeoclimatol Palaeoecol 232:131–147CrossRefGoogle Scholar
  65. Droser ML, Gehling JG, Dzaugis ME, Kennedy MJ, Rice D, Allen MF (2014) A new Ediacaran fossil with a novel sediment displacive life habit. J Paleontol 88:145–151CrossRefGoogle Scholar
  66. Dzik J (1999) Organic membranous skeleton of the Precambrian metazoans from Namibia. Geology 27:519–522CrossRefGoogle Scholar
  67. Elliott DA, Vickers-Rich P, Trusler P, Hall M (2011) New evidence on the taphonomic context of the Ediacaran Pteridinium. Acta Palaeontol Pol 56:641–650CrossRefGoogle Scholar
  68. Erwin DH (2015) Early metazoan life: divergence, environment and ecology. Philos Trans B 370:20150036CrossRefGoogle Scholar
  69. Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ (2011) The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals. Science 334:1091–1097Google Scholar
  70. Erwin DH, Valentine JW (2013) The Cambrian explosion and the construction of animal biodiversity. Roberts & Company, ColoradoGoogle Scholar
  71. Fedonkin MA (1983) The organic world of the Vendian. Itogi Nauki i Tehniki. Seria, Stratigrafia, Paleontologia 12:1–127 (in Russian)Google Scholar
  72. Fedonkin MA (1985) Paleoichnology of Vendian metazoa. In: Sokolov BS, Ivanovskiy AB (eds) The Vendian system 1: historic-geological and palaeontological basis. Nauka, Moscow, pp 112–116Google Scholar
  73. Fedonkin MA (1990) Systematic description of the Vendian metazoan. In: Sokolov BS, Iwanowski AB (eds) The Vendian System, Vol I. Springer-Verlag, Berlin, pp 71–12Google Scholar
  74. Fedonkin MA (2003) Origin of the Metazoa in the light of Proterozoic fossil records. Palaeontol Res 7:9–41CrossRefGoogle Scholar
  75. Fedonkin MA, Waggoner BM (1997) The late Precambrian fossil Kimberella is a mollusk like bilaterian organism. Nature 388:868–871CrossRefGoogle Scholar
  76. Fedonkin MA, Simonetta A, Ivantsov AY (2007) New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): palaeoecological and evolutionary implications. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran Biota. Geol Soc Lond Spec Pub 286:157–179Google Scholar
  77. Fritz WH, Crimes TP (1985) Lithology, trace fossils, and correlation of Precambrian-Cambrian boundary beds, Cassiar Mountains, north-central British Columbia. Geol Surv Can Pap 83–13:1–24Google Scholar
  78. Ford TD (1958) Pre-Cambrian fossils from Charnwood Forest. Proc Yorkshire Geol Soc 31(Pt. 3):211–217CrossRefGoogle Scholar
  79. Gaucher C, Poiré DG, Bossi J, Sánchez Bettucci L, Beri A (2013) Comment on “Bilaterian Burrows and Grazing Behavior at >585 Million Years Ago”. Science 339:906CrossRefGoogle Scholar
  80. Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastic Ediacaran masks. Palaios 14:40–57CrossRefGoogle Scholar
  81. Gehling JG (2000) Sequence stratigraphic context of the Ediacara Member, Rawnsley Quartzite, South Australia: a taphonomic window into the Neoproterozoic biosphere. Precambrian Res 100:65–95CrossRefGoogle Scholar
  82. Gehling JG, Droser ML (2009) Textured organic surfaces associated with the Ediacara biota in south Australia. Earth Sci Rev 96:196–206CrossRefGoogle Scholar
  83. Gehling JG, Droser ML (2013) How well do fossil assemblages of the Ediacara Biota tell time? Geology 41:447–450CrossRefGoogle Scholar
  84. Gehling JG, Narbonne GM, Anderson M (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427–456CrossRefGoogle Scholar
  85. Gehling JG, Jensen S, Droser ML, Myrow PM, Narbonne GM (2001) Burrowing below the basal Cambrian GSSP, Fortune Head, Newfoundland. Geol Mag 138:213–218CrossRefGoogle Scholar
  86. Gehling JG, Droser M, Jensen S, Runnegar B (2005) Ediacara organisms: relating form to function. In: Briggs DEG (ed) Evolving form and function: fossils and development. Spec Pub Peabody Mus Nat Hist, Yale Univ, pp 43–66Google Scholar
  87. Gehling JG, Runnegar BN, Droser ML (2014) Scratch traces of large ediacara bilaterian animals. J Paleontol 88:284–298CrossRefGoogle Scholar
  88. Geyer G, Uchman A (1995) Ichnofossil assemblages from the Nama Group (Neoproterozoic-Lower Cambrian) in Namibia and the Proterozoic-Cambrian boundary problem revisited. Beringeria Spec Iss 2:175–202Google Scholar
  89. Ghisalberti M, Gold DA, Laflamme M, Clapham ME, Narbonne GM, Summons RE, Johnston DT, Jacobs DK (2014) Canopy flow analysis reveals the advantage of size in the oldest communities of multicellular eukaryotes. Curr Biol 24:1–5CrossRefGoogle Scholar
  90. Gingras M, Hagadorn JW, Seilacher A, Lalonde SV, Pecoits E, Petrash D, Konhauser KO (2011) Possible evolution of mobile animals in association with microbial mats. Nat Geosci 4:372–375Google Scholar
  91. de Gibert JM, Ramos E, Marzo M (2011) Trace fossils and depositional environments in the Hawaz Formation, Middle Ordovician, western Libya. J Afr Earth Sci 60:28–37CrossRefGoogle Scholar
  92. Glaessner MF (1969) Trace fossils from the Precambiran and basal Cambrian. Lethaia 2:369–393CrossRefGoogle Scholar
  93. Glaessner MF (1984) The dawn of animal life. A biohistorical study. Cambridge University Press, CambridgeGoogle Scholar
  94. Glaessner MF, Wade M (1966) The late Precambrian fossils from Ediacara, South Australia. Palaeontology 9:599–628Google Scholar
  95. Gold DA, Runnegar B, Gehling JG, Jacobs DK (2015) Ancestral state reconstruction of ontogeny supports a bilaterian affinity for Dickinsonia. Evol Dev 17:315–324CrossRefGoogle Scholar
  96. Grazhdankin D (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:203–221CrossRefGoogle Scholar
  97. Grazhdankin D (2014) Patterns of evolution of the ediacaran soft-bodied biota. J Paleontol 88:269–283CrossRefGoogle Scholar
  98. Grazhdankin D, Seilacher A (2002) Underground Vendobionta from Namibia. Palaeontology 45:57–78CrossRefGoogle Scholar
  99. Grazhdankin D, Seilacher A (2005) A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geol Mag 142:571–582CrossRefGoogle Scholar
  100. Gürich G (1933) Die Kuibis-Fossilien der Nama-Formation von Suedwestafrica; nachtraege und Zusaetze. Palaeontol Z 15:137–154CrossRefGoogle Scholar
  101. Haines PW (2000) Problematic fossils in the late Neoproterozoic Wonoka Formation, South Australia. Precambrian Res 100:97–108CrossRefGoogle Scholar
  102. Harrington HJ, Moore RC (1956) Medusa of the hydroidea. In: Moore RC (ed) Treatise on invertebrate paleontology, Part F: Coelenterata. GSA and University of Kansas Press, Kansas, pp 77–80Google Scholar
  103. Hautmann M (2014) Diversification and diversity partitioning. Paleobiology 40:162–176CrossRefGoogle Scholar
  104. Hofmann HJ (1967) Precambrian fossils near Elliot Lake, Ontario. Science 156:500–504CrossRefGoogle Scholar
  105. Hofmann HJ (1971) Precambrian fossils, pseudofossils, and problemática in Canada. Geol Surv Can Bull 189:1–146Google Scholar
  106. Hofmann HJ (2005) Palaeoproterozoic dubiofossils from India revisited: Vindhyan triploblastic animal burrows or pseudopfossils. J Palaeontol Soc India, Golden Jubilee 50:113–120Google Scholar
  107. Hofmann HJ, Mountjoy EW (2010) Ediacaran body and trace fossils in Miette Group (Windermere Supergroup) near Salient Mountain, British Columbia, Canada. Can J Earth Sci 47:1305–1325CrossRefGoogle Scholar
  108. Hofmann R, Mángano MG, Elicki O, Shinaq R (2012) Paleoecologic and biostratigraphic significance of trace fossils from shallow- to marginal-marine environments from the Middle Cambrian of Jordan. J Paleontol 86:931–955CrossRefGoogle Scholar
  109. Högström ES, Jensen S, Palacios T, Ebbestad JOR (2013) New information on the Ediacaran-Cambrian transition in the Vestertana Group, Finmark, northern Norway, from trace fossils and organic-walled microfossils. Nor J Geol 93:95–106Google Scholar
  110. Ichaso AA, Dalrymple RW, Narbonne GM (2007) Paleoenvironmental and basin analysis of the late Neoproterozoic (Ediacaran) Upper Conception and St John’s groups, west Conception Bay, Newfoundland. Can J Earth Sci 44:25–41CrossRefGoogle Scholar
  111. Ivantsov AY (2009) New reconstruction of Kimberella, problematic Vendian Metazoan. Paleontol J 43:601–611CrossRefGoogle Scholar
  112. Ivantsov AY (2011) Feeding traces of proarticulata—the Vendian Metazoa. Paleontol J 45:237–248CrossRefGoogle Scholar
  113. Ivantsov AY (2013) Trace fossils of Precambrian Metazoans “Vendobionta” and “Mollusks”. Strat Geol Correl 21:252–264CrossRefGoogle Scholar
  114. Ivantsov AY, Malakhovskaya YE (2002) Giant traces of Vendian animals. Dokl Earth Sci 385A:618–622Google Scholar
  115. Ivantsov AY, Narbonne GM, Trusler PW, Greentree C, Vickers-Rich P (in press) Elucidating Ernietta: New insights from exceptional specimens in the Ediacaran of Namibia. LethaiaGoogle Scholar
  116. Jenkins RJF (1995) The problems and potential of using animal fossils and trace fossils in terminal Proterozoic biostratigraphy. Precambrian Res 73:51–69CrossRefGoogle Scholar
  117. Jensen S (1997) Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Fossils and Strata 42:1–111Google Scholar
  118. Jensen S (2003) The Proterozoic and earliest trace fossil record; Patterns, problems and perspectives. Int Comp Biol 43:219–228CrossRefGoogle Scholar
  119. Jensen S, Runnegar BN (2005) A complex trace fossil from the Spitskop Member (terminal Ediacaran–? Lower Cambrian) of southern Namibia. Geol Mag 142:561–569CrossRefGoogle Scholar
  120. Jensen S, Saylor BZ, Gehling JG, Germs GJB (2000) Complex trace fossils from the terminal Proterozoic of Namibia. Geology 28:143–146CrossRefGoogle Scholar
  121. Jensen S, Gehling JG, Droser ML, Grant SWF (2002) A scratch circle origin for the medusoid fossil Kullingia. Lethaia 35:291–299CrossRefGoogle Scholar
  122. Jensen S, Droser ML, Gehling JG (2005) Trace fossil preservation and the early evolution of animals. Palaeogeogr Palaeoclimatol Palaeoecol 220:19–29CrossRefGoogle Scholar
  123. Jensen S, Droser ML, Gehling JG (2006). A critical look at the Ediacaran trace fossil record. In: Kaufman J, Xiao, S (eds) Neoproterozoic geobiology and paleobiology. Top Geobiol 27:115–157Google Scholar
  124. Kolesnikov AV, Marusin VV, Nagovitsin KE, Maslov AV, Grazhdankin DV (2015) Ediacaran biota in the aftermath of the Kotlinian Crisis: Asha Group of the South Urals. Precambrian Res 263:59–78CrossRefGoogle Scholar
  125. Jensen S, Palacios T, Martí Mus M (2007) A brief review of the fossil record of the Ediacaran-Cambrian transition in the área of Montes de Toledo-Guadalupe, Spain. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran Biota. Geol Soc Lond Spec Pub 286:223–235Google Scholar
  126. Joel LV, Droser ML, Gehling JG (2014) A new enigmatic, tubular organism from the Ediacara Member, Rawnsley Quartzite, South Australia. J Paleontol 88:253–262CrossRefGoogle Scholar
  127. Laflamme M, Xiao S, Kowalewski M (2009) Osmotrophy in modular Ediacara organisms. Proc Natl Acad Sci U S A 106:14438–14443CrossRefGoogle Scholar
  128. Laflamme M, Darroch SAF, Tweedt S, Peterson KJ, Erwin DH (2013) The end of the Ediacara biota: extinction, biotic replacement, or Cheshire cat? Gondwana Res 23:558–573CrossRefGoogle Scholar
  129. Landing E, Geyer G, Brasier MD, Bowring SA (2013) Cambrian evolutionary radiation: context, correlation, and chronostratigraphy—overcoming deficiencies of the first appearance datum (FAD) concept. Earth Sci Rev 123:133–172CrossRefGoogle Scholar
  130. Liu AG, Mcllroy D (2015) Horizontal surface traces from the Fermeuse Formation, Ferryland (Newfoundland, Canada), and their place within the late Ediacaran ichnological revolution. In: McIlroy D (ed) Proceedings of Ichnia 2012. Geol Assoc Can 9:141–156Google Scholar
  131. Liu AG, Mcllroy D, Brasier MD (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland. Geology 38:123–126CrossRefGoogle Scholar
  132. Liu AG, Mcllroy D, Matthews JJ, Brasier MD (2014) Confirming the metazoan character of a 565 Ma trace-fossil assemblage from Mistaken Point, Newfoundland. Palaios 29:420–430CrossRefGoogle Scholar
  133. Liu AG, Kenchington C, Mitchell E (2015) Remarkable insights into the paleoecology of the Avalonian Ediacaran macrobiota. Gondwana Res 27:1355–1380CrossRefGoogle Scholar
  134. McMenamin MAS (1998) The Garden of Ediacara: Discovering the first complex life. Columbia University Press, New YorkGoogle Scholar
  135. MacNaughton RB, Narbonne GM (1999) Evolution and ecology of Neoproterozoic-Lower Cambrian trace fossils, NW Canada. Palaios 14:97–115CrossRefGoogle Scholar
  136. MacNaughton RB, Narbonne GM, Dalrymple RW (2000) Neoproterozoic slope deposits, Mackenzie Mountains, northwestern Canada: implications for passive-margin development and Ediacaran faunal ecology. Can J Earth Sci 37:997–1020CrossRefGoogle Scholar
  137. Macdonald FA, Pruss SB, Strauss JV (2014) Trace fossils with spreiten from the late Ediacaran Nama Group, Namibia: complex feeding patterns five million years before the Precambrian–Cambrian boundary. J Paleo 88:299–308Google Scholar
  138. Mariotti G, Pruss SB, Ai X, Perron JT, Bosak T (2016) Microbial origin of early animal trace fossils? J Sed Res 86:287–293Google Scholar
  139. McMenamin MAS (1996) Ediacaran biota from Sonora, Mexico. Proc Natl Acad Sci U S A 93:4990–4993CrossRefGoogle Scholar
  140. Mángano MG (2011) Trace-fossil assemblages in a Burgess Shale-type deposit from the Stephen Formation at Stanley Glacier, Canadian Rocky Mountains: unraveling ecologic and evolutionary controls. In: Johnston PA, Johnston KJ (eds) Proceedings of the international conference on the Cambrian explosion. Palaeont Canad 31:89–107Google Scholar
  141. Mángano MG, Buatois LA (2007) Trace fossils in evolutionary paleoecology. In: Miller WIII (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 391–409CrossRefGoogle Scholar
  142. Mángano MG, Buatois LA (2014) Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: evolutionary and geobiological feedbacks. Proc R Soc B 281:20140038CrossRefGoogle Scholar
  143. Mángano MG, Buatois LA, West RR, Maples CG (2002) Ichnology of an equatorial tidal flat: the Stull Shale Member at Waverly, eastern Kansas. Kansas Geol Surv Bull 245:1–130Google Scholar
  144. Mángano MG, Bromley RG, Harper DAT, Nielsen AT, Smith MP, Vinther J (2012) Nonbiomineralized carapaces in Cambrian seafloor landscapes (Sirius Passet, Greenland): opening a new window into early Phanerozoic benthic ecology. Geology 40:519–522CrossRefGoogle Scholar
  145. Mángano MG, Buatois LA, Hofmann R, Elicki O, Shinaq R (2013) Exploring the aftermath of the Cambrian Explosion: the evolutionary significance of marginal- to shallow-marine ichnofaunas of Jordan. Palaeogeogr Palaeoclimatol Palaeoecol 374:1–15CrossRefGoogle Scholar
  146. Mariotti G, Pruss SB, Ai X, Perron JT, Bosak T (2016) Microbial Origin of Early Animal Trace Fossils?. J Sed Res 86:287–293Google Scholar
  147. Matz MV, Frank TM, Marshall NJ, Widder EA, Johnsen S (2008) Giant deep-sea Protist produces bilaterian-like traces. Curr Biol 18:1849–1854CrossRefGoogle Scholar
  148. McIlroy D, Brasier MD, Lang AS (2009) Smothering of microbial mats by macrobiota: implications for the Ediacara biota. J Geol Soc 166:1117–1121CrossRefGoogle Scholar
  149. Menon LR, McIlroy D, Brasier MD (2013) Evidence for Cnidaria-like behavior in ca. 560 Ma Ediacaran Aspidella. Geology 41:895–898CrossRefGoogle Scholar
  150. Meyer M, Schiffbauer JD, Xiao S, Cai Y, Hua H (2012) Taphonomy of the upper Ediacaran enigmatic ribbonlike fossil Shaanxilithes. Palaios 27:354–372CrossRefGoogle Scholar
  151. Meyer M, Xiao S, Gill BC, Schiffbauer JD, Chen Z, Zhou C, Yuan X (2014a) Interactions between Ediacaran animals and microbial mats: Insights from Lamonte trevallis, a new trace fossil from the Dengying Formation of South China. Palaeogeogr Palaeoclimatol Palaeoecol 396:62–74CrossRefGoogle Scholar
  152. Meyer M, Elliott D, Wood AD, Polys NF, Colbert M, Maisano JA, Vickers-Rich P, Hall M, Hoffmann KH, Schneider G, Xiao S (2014b) Three-dimensional microCT analysis of the Ediacara fossil Pteridinium simplex sheds new light on its ecology and phylogenetic affinity. Precambrian Res 249:79–87CrossRefGoogle Scholar
  153. Mikuláš R, Fatka O, Szabad M (2012) Paleoecologic implications of ichnofossils associated with slightly skeletonized body fossils, middle Cambrian of the Barrandian Area, Czech Republic. Ichnos 19:199–210CrossRefGoogle Scholar
  154. Miller MF, Smail SE (1997) A semiquantitative method for evaluating bioturbation on bedding planes. Palaios 12:391–396CrossRefGoogle Scholar
  155. Miller W III (1998) Complex marine trace fossils. Lethaia 31:29–32CrossRefGoogle Scholar
  156. Miller W III (2002) Complex trace fossils as extended organisms: a proposal. N Jahrb Geol Palaeontol Monatsh 3:147–158Google Scholar
  157. Miller W III (2003) Paleobiology of complex trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 192:3–14CrossRefGoogle Scholar
  158. Misra SB (1969) Late Precambrian (?) fossils from southeastern Newfoundland. Geol Soc Am Bull 80:2133–2140CrossRefGoogle Scholar
  159. Narbonne GM (2005) The Ediacara Biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Plan Sci 33:421–442CrossRefGoogle Scholar
  160. Narbonne GM, Aitken JD (1990) Ediacaran fossils from the Sekwi Brook area, Mackenzie Mountains, northwestern Canada. Palaeontology 33:945–980Google Scholar
  161. Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31:27–30CrossRefGoogle Scholar
  162. Narbonne GM, Hofmann HJ (1987) Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30:647–676Google Scholar
  163. Narbonne GM, Saylor BZ, Grotzinger JP (1997) The youngest Ediacaran fossils from southern Africa. J Paleontol 71:953–967CrossRefGoogle Scholar
  164. Narbonne GM, Myrow PM, Anderson MM (1987) A candidate stratotype for the Precambrian-Cambrian boundary, Fortune Head, Burin Peninsula, southeastern Newfoundland. Can J Earth Sci 24:1277–1293CrossRefGoogle Scholar
  165. Narbonne GM, Laflamme M, Trusler PW, Dalrymple RW, Greentree C (2014) Deepwater Ediacaran fossils from northwestern Canada: taphonomy, ecology, and evolution. J Paleontol 88:207–223CrossRefGoogle Scholar
  166. Noffke N, Gerdes G, Klenke T, Krumbein WE (1996) Microbially induced sedimentary structures-examples from modem sediments of siliciclastic tidal flats. Zbl Geol Palfiont Tell I 1:307–316Google Scholar
  167. Olivero D (2003) Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin (southeastern France). Palaeogeogr Palaeoclimatol Palaeoecol 192:59–78CrossRefGoogle Scholar
  168. Pacześna J (1985) Ichnorodzaj Paleodictyon Meneghini z dolnego kambru Zbilutki (Góry Świętokrzyskie). Kwartalnik Geol 29:589–596Google Scholar
  169. Pacześna J (1986) Upper Vendian and Lower Cambrian Ichnocoenoses of the Lublin Region. Biul Inst Geol 355:32–47Google Scholar
  170. Pacześna J (1996) The Vendian and Cambrian ichnocoenoses from the Polish part of the East-European Platform. Prace Państ Inst Geol CL11:1–77Google Scholar
  171. Pecoits E, Konhauser KO, Aubet NR, Heaman LM, Veroslavsky G, Stern RA, Gingras MK (2012) Bilaterian burrows and grazing behavior at >585 million years ago. Science 336:1693–1696CrossRefGoogle Scholar
  172. Pemberton SG, Frey RW (1982) Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. J Paleontol 56:843–871Google Scholar
  173. Pemberton SG, Frey RW, Bromley RG (1988) The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can J Earth Sci 25:886–892CrossRefGoogle Scholar
  174. Peterson KJ, Lyons JB, Nowak KS, Takacs CM, Wargo MJ, Mcpeek MA (2004) Estimating metazoan divergence times with a molecular clock. Proc Natl Acad Sci U S A 101:6536–6541CrossRefGoogle Scholar
  175. Peterson KJ, Cotton JA, Gehling JG, Pisani D (2008) The Ediacaran emergence of bilaterians: congruence between the genetic and the geological fossil records. Philos Trans R Soc B Biol Sci 363:1435–1443CrossRefGoogle Scholar
  176. Pisani D, Liu AG (2015) Animal evolution: only rocks can set the clock. Curr Biol 25:R1079–R1081CrossRefGoogle Scholar
  177. Plotnick RE, Dornbos SQ, Chen J (2010) Information landscapes and sensory ecology of the Cambrian Radiation. Paleobiology 36:303–317CrossRefGoogle Scholar
  178. Porada H, Bouougri E (2008) Neoproterozoic trace fossils vs. microbial mat structures: examples from the Tandilia Belt of Argentina. Gondwana Res 13:480–487CrossRefGoogle Scholar
  179. Rasmussen B, Bose PK, Sarkar S, Banerjee S, Fletcher IR, McNaughton NJ (2002a) 1.6 Ga U-Pb zircon age for the Chorhat Sandstone, lower Vindhyan, India: possible implications for early evolution of animals. Geology 30:103–106CrossRefGoogle Scholar
  180. Rasmussen B, Bengtson S, Fletcher IR, McNaughton N (2002b) Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296:1112–1115CrossRefGoogle Scholar
  181. Ray JS, Martin MW, Veizer J, Bowring SA (2002) U-Pb zircon dating and Sr isotope systematics of the Vindhyan Supergroup, India. Geology 30:131–134CrossRefGoogle Scholar
  182. Reineck H-E (1963) Sedimentgefüge im Bereich der südliche Nordsee. Abh Senck Nat Gesell 505:1–138Google Scholar
  183. Reineck H-E (1967) Layered sediments of tidal flat beaches, and shelf bottoms of the North Sea. In: Lauff GH (ed) Estuaries. Am Assoc Adv Sci Spec Pub 83:191–206Google Scholar
  184. Retallack GJ (2007) Growth, decay and burial compaction of Dickinsonia, an iconic Ediacaran fossil. Alcheringa 31:215–240CrossRefGoogle Scholar
  185. Retallack GJ (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma Mistaken Point Formation, Newfoundland: Comment. Geology 38:e223Google Scholar
  186. Retallack G (2012) Were the Ediacaran siliciclastics of South Australia coastal or deep marine? Sedimentology 59:1208–1236CrossRefGoogle Scholar
  187. Retallack GJ (2013a) Ediacaran life on land. Nature 493:89–92CrossRefGoogle Scholar
  188. Retallack GJ (2013b) Comment on “Trace fossil evidence for Ediacaran bilaterian animals with complex behaviors” by Chen et al. Precambrian Res 231:383–385CrossRefGoogle Scholar
  189. Retallack GJ (2013c) Reply to the discussion by Callow et al. on “Were the Ediacaran siliciclastics of South Australia coastal or deep marine?”. Sedimentology 59:1208–1236CrossRefGoogle Scholar
  190. Retallack GJ (2013d) Ediacaran characters. Evol Dev 15:387–388CrossRefGoogle Scholar
  191. Rogov V, Marusin V, Bykova N, Goy Y, Nagovitsin K, Kochnev B, Karlova G, Grazhdankin D (2012) The oldest evidence of bioturbation on Earth. Geology 40:395–398CrossRefGoogle Scholar
  192. Runnegar B (1992a) Proterozoic metazoan trace fossils. In: Klein C, Schopf JW (eds) The Proterozoic biosphere. Cambridge University Press, Cambridge, pp 1009–1015Google Scholar
  193. Runnegar B (1992b) Oxygen and the early evolution of the Metazoa. In: Bryant C (ed) Metazoan life without oxygen. Chapman & Hall, London, pp 65–87Google Scholar
  194. Sappenfield A, Droser ML, Gehling JG (2011) Problematica, trace fossils, and tubes within the Ediacara Member (South Australia): redefining the Ediacaran trace fossil record one tube at a time. J Paleontol 85:256–265CrossRefGoogle Scholar
  195. Schmitz MD (2012) Radiometric ages used in GTS2012. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale, vol 2. Elsevier, Amsterdam, pp 1045–1082CrossRefGoogle Scholar
  196. Schoener TW (1987) A brief history of optimal foraging ecology. In: Kamil AC, Krebs JR, Pulliam HR (eds) Foraging behavior. Plenum Press, New York, pp 5–68CrossRefGoogle Scholar
  197. Seilacher A (1956) Der Beginn des Kambriums als biologische Wende. N Jahrb Geol Palaeontol Abh 103:155–180Google Scholar
  198. Seilacher A (1984) Late Precambrian and Early Cambrian Metazoa: Preservational or real extinctions? In: Holland HD, Trendall AF (eds), Springer-Verlag, Berlin, pp 159–168Google Scholar
  199. Seilacher A (1992) Vendobionta and Psammocorallia: Lost constructions of Precambrian evolution. J Geol Soc Lond 149:607–613Google Scholar
  200. Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239CrossRefGoogle Scholar
  201. Seilacher A (1990) Paleozoic trace fossils. In: Said R (ed) The geology of Egypt. A.A. Balkema, Rotterdam, Brookfield, pp 649–722Google Scholar
  202. Seilacher A (1997) Fossil Art. The Royal Tyrrell Museum of Paleontology, DrumhellerGoogle Scholar
  203. Seilacher A (1999) Biomat-related lifestyles in the Precambrian. Palaios 14:86–93CrossRefGoogle Scholar
  204. Seilacher A (2007) Trace fossil analysis. Springer, HeidelbergGoogle Scholar
  205. Seilacher A (2008) Fossil art. An exhibition of the Geologisches Institut, Tubingen Unversity, Germany. Wacker Chernie AGGoogle Scholar
  206. Seilacher A, Gishlick AD (2014) Morphodynamics. CRC Press, Boca RatonCrossRefGoogle Scholar
  207. Seilacher A, Pflüger F (1994) From biomats to benthic agriculture: a biohistoric revolution. In: Krumbein WE, Peterson DM, Stal LJ (eds) Biostabilization of sediments. Bibliotheks und Informationssystem der Carl von Ossietzky Universität Odenburg, pp 97–105Google Scholar
  208. Seilacher A, Bose PK, Pflüger F (1998) Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:80–83CrossRefGoogle Scholar
  209. Seilacher A, Meschede M, Bolton EW, Luginsland H (2000) Precambrian “fossil” Vermiforma is a tectograph. Geology 28:235–238CrossRefGoogle Scholar
  210. Seilacher A, Grazhdankin D, Legouta A (2003) Ediacaran biota: the dawn of animal life in the shadow of giant protists. Paleontol Res 7:43–54CrossRefGoogle Scholar
  211. Seilacher A, Buatois LA, Mángano MG (2005) Trace fossils in the Ediacaran-Cambrian transition: behavioural diversification, ecological turnover and environmental shift. Palaeogeogr Palaeoclimatol Palaeoecol 227:323–356CrossRefGoogle Scholar
  212. Shen B, Xiao S, Dong L, Zhou C, Liu J (2007) Problematic macrofossils from Ediacaran successions in the North China and Chaidam blocks: implications for their evolutionary roots and biostratigraphic significance. J Paleontol 81:1396–1411CrossRefGoogle Scholar
  213. Sokolov BS (1997) Ocherki stanovleniya Venda. KMK Scientific Press, MoscowGoogle Scholar
  214. Sour-Tovar F, Hagadorn JW, Huitrón-Rubio T (2007) Ediacaran and Cambrian index fossils from Sonora, Mexico. Palaeontology 50:169–175CrossRefGoogle Scholar
  215. Sperling EA, Vinther JA (2010) A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev 12:201–209CrossRefGoogle Scholar
  216. Sprigg RC (1947) Early Cambrian (?) jellyfishes from the Flinders ranges, South Australia. Trans R Soc S Aust 71:212–224Google Scholar
  217. Sprigg RC (1949) Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, Kimberley District, Western Australia. Trans R Soc S Aust 73:72–99Google Scholar
  218. Tangri SK, Bhargava ON, Pande AC (2003) Late Precambrian–Early Cambrian trace fossils from Tethyan Himalaya, Bhutan and their bearing on the Precambrian-Cambrian boundary. J Geol Soc India 62:708–716Google Scholar
  219. Tarhan LG, Droser ML, Gehling JG (2010) Taphonomic controls on Ediacaran diversity: uncovering the holdfast origin of morphologically variable enigmatic structures. Palaios 25:823–830CrossRefGoogle Scholar
  220. Taylor AM, Goldring R (1993) Description and analysis of bioturbation and ichnofabric. J Geol Soc Lond 150:141–148CrossRefGoogle Scholar
  221. Vannier J, Calandra I, Gaillard C, Zylinska A (2010) Priapulid worms: pioneer horizontal burrowers at the Precambrian-Cambrian boundary. Geology 38:711–714CrossRefGoogle Scholar
  222. Verce M, Netto RG (2015) Alleged earliest bilaterian trace fossils in the so called Tacuarí Formation (“Ediacaran”, Cerro Largo, Uruguay) revisited: arthropod ichnocoenoses indicate a Pennsylvanian–earliest Asselian age. In: Third Latin American symposium on ichnology, Abstract, p 76Google Scholar
  223. Vickers-Rich P, Ivantsov AY, Trusler PW, Narbonne GM, Hall M, Wilson SA, Greentree C, Fedonkin M, Elliott DA, Hoffmann KH, Schneider GIC (2013) Reconstructing Rangea: new discoveries from the Ediacaran of southern Namibia. J Paleontol 87:1–15CrossRefGoogle Scholar
  224. Vidal G, Jensen S, Palacios T (1994) Neoproterozoic (Vendian) ichnofossils from Lower Alcudian strata in central Spain. Geol Mag 131:169–179CrossRefGoogle Scholar
  225. Walter MR, Elphinstone R, Heys GR (1989) Proterozoic and Early Cambrian trace fossils from the Amadeus and Georgina Basins, central Australia. Alcheringa 13:209–256CrossRefGoogle Scholar
  226. Webby BD (1970) Late Precambrian trace fossils from New South Wales. Lethaia 3:79–109CrossRefGoogle Scholar
  227. Webby BD (1984) Precambrian-Cambrian trace fossils from western New South Wales. Aust J Earth Sci 31:427–427CrossRefGoogle Scholar
  228. Weber B, Steiner M, Zhu MY (2007) Precambrian Cambrian trace fossils from the Yangtze Platform (South China) and the early evolution of bilaterian lifestyles. Palaeogeogr Palaeoclimatol Palaeoecol 254:328–349CrossRefGoogle Scholar
  229. Wood DA, Dalrymple RW, Narbonne GM, Gehling JG, Clapham ME (2003) Paleoenvironmental analysis of the late Neoproterozoic Mistaken Point and Trepassey formations, southeastern Newfoundland. Can J Earth Sci 40:1375–1391CrossRefGoogle Scholar
  230. Wray GA (2015) Molecular clocks and the early evolution of metazoan nervous systems. Philos Trans B 370:20150046CrossRefGoogle Scholar
  231. Xiao S, Droser M, Gehling JG, Hughes IV, Wan B, Chen Z, Yuan X (2013) Affirming life aquatic for the Ediacaran biota in China and Australia. Geology 41:1095–1098CrossRefGoogle Scholar
  232. Young FG (1972) Early Cambrian and older trace fossils from the Southern Cordillera of Canada. Can J Earth Sci 9:1–17CrossRefGoogle Scholar
  233. Zakrevskaya M (2014) Paleoecological reconstruction of the Ediacaran benthic macroscopic communities of the White Sea (Russia). Palaeogeogr Palaeoclimatol Palaeoecol 410:27–38CrossRefGoogle Scholar
  234. Zhang L (1986) A discovery and preliminary study of the late stage of late Gaojiashan biota from Sinian in Ningqiang county, Shaanxi. Bull Xian Inst Geol Miner Resour 13:67–88Google Scholar
  235. Zhuravlev AY, Gámez-Vintaned JA, Ivantsov AY (2009) First finds of problematic Ediacaran fossil Gaojiashania in Siberia and its origin. Geol Mag 146:775–780CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations