Exotic Allotropes of Carbon

  • Mircea V. DiudeaEmail author
  • Beata Szefler
  • Csaba L. Nagy
  • Attila Bende
Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 8)


Carbon allotropes, including triple-, double-, and single periodic, and finite non-periodic, nanostructures have been designed by using map operations and their topological and energetic properties studied. Two allotropes of the diamond D5 are discussed in this chapter: the dense hyper-diamond, with an “anti”-diamantane structure, and a quasi-diamond, which is a five-fold symmetry quasicrystal with “syn”-diamantane structure. Some substructures of these allotropes are proposed as possible intermediates in the synthesis of some hyper-graphenes and their energetics evaluated at Hartree-Fock, DFT (B3LYP) and DFTB levels of theory. A topological description of D5_anti network and derived hyper-graphenes, in terms of the net parameter and Omega polynomial, is also given.


Topological Description Synthetic Zeolite Point Symbol Connected Bipartite Graph Diamantane Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



MVD acknowledges the financial support offered by project PN-II-ID-PCE-2011-3-0346. BSZ acknowledges the Grant no. 133 of PCSS (Poznań, Poland). Thanks are addressed to Professor Davide Proserpio, Universita degli Studi di Milano, Italy, for crystallographic data.


  1. Adams GB, O’Keeffe M, Demkov AA, Sankey OF, Huang Y-M (1994) Wide-band-gap Si in open fourfold-coordinated clathrate structures. Phys Rev B 49(12):8048–8053CrossRefGoogle Scholar
  2. Aradi B, Hourahine B, Frauenheim T (2007) DFTB +, a sparse matrix-based implementation of the DFTB method. J Phys Chem A 111:5678–5684CrossRefGoogle Scholar
  3. Benedek G, Colombo L (1996) Hollow diamonds from fullerenes. Mater Sci Forum 232:247–274CrossRefGoogle Scholar
  4. Blatov VA, Carlucci L, Ciani G, Proserpio DM (2004) Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database. CrystEngComm 6:377–395CrossRefGoogle Scholar
  5. Blatov VA, Delgado-Friedrichs O, O’Keeffe M, Proserpio DM (2007) Three-periodic nets and tilings: natural tilings for nets. Acta Crystallogr Sect A: Found Crystallogr 63(5):418–25CrossRefGoogle Scholar
  6. Blatov VA, O’Keeffe M, Proserpio DM (2009) Vertex-, face-, point-, Schläfli-, and Delaney-symbols in nets, polyhedra and tilings: recommended terminology. CrystEngComm 12(1):44–48CrossRefGoogle Scholar
  7. Böhme B, Guloy A, Tang Z, Schnelle W, Burkhardt U, Baitinger M, Grin Yu (2007) Oxidation of M4Si4 (M = Na, K) to clathrates by HCl or H2O. J Am Chem Soc 129:5348–5349CrossRefGoogle Scholar
  8. Delgado-Friedrichs O, O’Keeffe M (2005) Crystal nets as graphs: terminology and definitions. J Solid State Chem 178(8):2480–2485CrossRefGoogle Scholar
  9. DFTB (2013) DFTB + 1.1 is a DFTB implementation, which is free for noncommercial use. Bremen
  10. Diudea MV (2006) Omega polynomial. Carpath J Math 22:43–47Google Scholar
  11. Diudea MV (2010a) Nanomolecules and Nanostructures—Polynomials and Indices, MCM No. 10, University of KragujevacGoogle Scholar
  12. Diudea MV (2010b) Counting polynomials and related indices by edge cutting procedures, MATCH Commun Math Comput Chem 64:569–590Google Scholar
  13. Diudea MV (2010c) Omega polynomial in all_R[8] lattices. Iran J Math 1: 69–77Google Scholar
  14. Diudea MV (2013) Hyper-graphenes. Int J Chem Model 5: 211–220Google Scholar
  15. Diudea MV, Ilić A (2010) Omega polynomial in crystal-like single-type face/ring networks. Int J Chem Model 3: 65–71Google Scholar
  16. Diudea MV, Klavžar S (2010) Omega polynomial revisited. Acta Chim Sloven 57:565–570Google Scholar
  17. Diudea MV, Szefler B (2012) Nanotube junctions and the genus of multi-tori. Phys Chem Chem Phys 14 (22):8111–8115CrossRefGoogle Scholar
  18. Diudea MV, Ştefu M, John PE, Graovac A (2006) Generalized operations on maps. Croat Chem Acta 79:355–362Google Scholar
  19. Diudea MV, Cigher S, John PE (2008) Omega and related counting polynomials. MATCH Commun Math Comput Chem 60:237–250Google Scholar
  20. Diudea MV, Ilić A, Medeleanu M (2011) Hyperdiamonds: a topological view. Iran J Math Chem 2:7–29Google Scholar
  21. Djoković DŽ (1973) Distance preserving subgraphs of hypercubes. J Combin Theory Ser B 14: 263–267CrossRefGoogle Scholar
  22. Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties. Phys Rev B 58:7260–7268CrossRefGoogle Scholar
  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Rev. A.1. Gaussian Inc, WallingfordGoogle Scholar
  24. Guloy A, Ramlau R, Tang Z, Schnelle W, Baitinger M, Grin Yu (2006) A quest-free germanium chlatrate. Nature 443:320–323CrossRefGoogle Scholar
  25. John PE, Vizitiu AE, Cigher S, Diudea MV (2007) CI index in tubular nanostructures. MATCH Commun Math Comput Chem 57:479–484Google Scholar
  26. Klavžar S (2008) Some comments on Co graphs and CI index. MATCH Commun Math Comput Chem 59: 217–222Google Scholar
  27. Kyani A, Diudea MV (2012) Molecular dynamics simulation study on the diamond D5 substructures. Cent Eur J Chem 10(4):1028–1033CrossRefGoogle Scholar
  28. Meier WM, Olson DH (1992) Atlas of Zeolite Structure Types, vol 3E. Butterworth-Heineman, LondonGoogle Scholar
  29. Nagy CL, Diudea MV (2009) Nano Studio. Babes–Bolyai University, ClujGoogle Scholar
  30. Nagy CL, Diudea MV (2013) Diamond D5. In: Nagy CL, Diudea MV (eds) Diamond and Related Nanostructures. Springer, Dordrecht, 91–105CrossRefGoogle Scholar
  31. Schwarz U, Wosylus A, Böhme B, Baitinger M, Hanfland M, Grin Yu (2008) A 3D network of four-bonded germanium: a link between open and dense. Angew Chem Int Ed 47:6790–6793CrossRefGoogle Scholar
  32. Szefler B, Diudea MV (2012) On molecular dynamics of the diamond D5 seed. Struct Chem 23(3):717–722CrossRefGoogle Scholar
  33. Winkler PM (1984) Isometric embedding in products of complete graphs. Discret Appl Math 8:209–212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Mircea V. Diudea
    • 1
    Email author
  • Beata Szefler
    • 2
  • Csaba L. Nagy
    • 1
  • Attila Bende
    • 3
  1. 1.Faculty of Chemistry and Chemical EngineeringBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Physical Chemistry, Collegium MedicumNicolaus Copernicus UniversityBydgoszczPoland
  3. 3.Molecular and Biomolecular Physics DepartmentNational Institute for R&D of Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations