Advertisement

Pseudomonas pp 25-49 | Cite as

Pseudomonas entomophila: A Versatile Bacterium with Entomopathogenic Properties

  • Guennaelle Dieppois
  • Onya Opota
  • Jorge Lalucat
  • Bruno Lemaitre
Chapter

Abstract

Pseudomonas entomophila is unique among Pseudomonas species in being able to activate a systemic immune response in both Drosophila larvae and adults. It has been subsequently shown that oral infections with high doses of this bacterium are highly pathogenic to Drosophila and cause massive destruction of the Drosophila gut epithelium. Besides Drosophila, P. entomophila was able to kill other insects from at least three different orders, suggesting that it has a potentially wide host range and making it a promising model for the study of host pathogen interactions and for the development of bio-control agents against insect pests. In order to unravel the features contributing to P. entomophila’s pathogenic properties, its complete genome was sequenced and genetic screens were performed to identify virulence factors encoded by this bacterium. The aim of this chapter is to review the current knowledge we have on this bacterium with a particular focus on the pathogenesis it induces, its virulence effectors and their genetic regulation.

Keywords

Pseudomonas Drosophila gut virulence NRPS regulation entomopathogenic 

References

  1. Amcheslavsky A, Jiang J, Ip YT (2009) Tissue damage-induced intestinal stem cell division in Drosophila. Cell Stem Cell 4:49–61PubMedCentralPubMedCrossRefGoogle Scholar
  2. Balasubramanian D, Kong KF, Jayawardena SR, Leal SM, Sautter RT, Mathee K (2011) Co-regulation of {beta}-lactam resistance, alginate production and quorum sensing in Pseudomonas aeruginosa. J Med Microbiol 60:147–156PubMedCentralPubMedCrossRefGoogle Scholar
  3. Bardoel BW, van Kessel KP, van Strijp JA, Milder FJ (2012) Inhibition of Pseudomonas aeruginosa virulence: characterization of the AprA-AprI interface and species selectivity. J Mol Biol 415:573–583PubMedCrossRefGoogle Scholar
  4. Bassler BL (1999) How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2:582–587PubMedCrossRefGoogle Scholar
  5. Berti AD, Greve NJ, Christensen QH, Thomas MG (2007) Identification of a biosynthetic gene cluster and the six associated lipopeptides involved in swarming motility of Pseudomonas syringae pv. tomato DC3000. J Bacteriol 189:6312–6323PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bischofberger M, Gonzalez MR, van der Goot FG (2009) Membrane injury by pore-forming proteins. Curr Opin Cell Biol 21:589–595PubMedCrossRefGoogle Scholar
  7. Bodilis J, Ghysels B, Osayande J, Matthijs S, Pirnay JP, Denayer S, De Vos D, Cornelis P (2009) Distribution and evolution of ferripyoverdine receptors in Pseudomonas aeruginosa. Environ Microbiol 11:2123–2135PubMedCrossRefGoogle Scholar
  8. Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423–435PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bravo A, Likitvivatanavong S, Gill SS, Soberon M (2011) Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem Mol Biol 41:423–431PubMedCentralPubMedCrossRefGoogle Scholar
  10. Broderick NA, Lemaitre B (2012) Gut-associated microbes of Drosophila melanogaster. Gut Microbes 3:307–321PubMedCentralPubMedCrossRefGoogle Scholar
  11. Buchon N, Broderick NA, Chakrabarti S, Lemaitre B (2009a) Invasive and indigenous microbiota impact intestinal stem cell activity through multiple pathways in Drosophila. Genes Dev 23:2333–2344Google Scholar
  12. Buchon N, Broderick NA, Poidevin M, Pradervand S, Lemaitre B (2009b) Drosophila intestinal response to bacterial infection: activation of host defense and stem cell proliferation. Cell Host Microbe 5:200–211Google Scholar
  13. Burger M, Woods RG, McCarthy C, Beacham IR (2000) Temperature regulation of protease in Pseudomonas fluorescens LS107d2 by an ECF sigma factor and a transmembrane activator. Microbiol 146 (Pt 12):3149–3155Google Scholar
  14. Carterson AJ, Morici LA, Jackson DW, Frisk A, Lizewski SE, Jupiter R, Simpson K, Kunz DA, Davis SH, Schurr JR et al (2004) The transcriptional regulator AlgR controls cyanide production in Pseudomonas aeruginosa. J Bacteriol 186:6837–6844PubMedCentralPubMedCrossRefGoogle Scholar
  15. Chakrabarti S, Liehl P, Buchon N, Lemaitre B (2012) Infection-induced host translational blockage inhibits immune responses and epithelial renewal in the Drosophila gut. Cell Host Microbe 12:60–70PubMedCrossRefGoogle Scholar
  16. Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7:e1002272PubMedCentralPubMedCrossRefGoogle Scholar
  17. Charles JF, Nielson-LeRoux C, Delecluse A (1996) Bacillus sphaericus toxins: molecular biology and mode of action. Annu Rev Entomol 41:451–472PubMedCrossRefGoogle Scholar
  18. Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer JM, Izard D (2002) Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evolut Microbiol 52:363–376Google Scholar
  19. Daffre S, Kylsten P, Samakovlis C, Hultmark D (1994) The lysozyme locus in Drosophila melanogaster: an expanded gene family adapted for expression in the digestive tract. Mol Gen Genet: MGG 242:152–162PubMedCrossRefGoogle Scholar
  20. Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103:14965–14970PubMedCentralPubMedCrossRefGoogle Scholar
  21. Darboux I, Nielsen-LeRoux C, Charles JF, Pauron D (2001) The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem Mol Biol 31:981–990PubMedCrossRefGoogle Scholar
  22. de Bruijn I, de Kock MJ, Yang M, de Waard P, van Beek TA, Raaijmakers JM (2007) Genome-based discovery, structure prediction and functional analysis of cyclic lipopeptide antibiotics in Pseudomonas species. Mol Microbiol 63:417–428PubMedCrossRefGoogle Scholar
  23. Deretic V, Konyecsni WM (1989) Control of mucoidy in Pseudomonas aeruginosa: transcriptional regulation of algR and identification of the second regulatory gene, algQ. J Bacteriol 171:3680–3688PubMedCentralPubMedGoogle Scholar
  24. Deziel E, Lepine F, Milot S, Villemur R (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiol 149:2005–2013CrossRefGoogle Scholar
  25. Dubern JF, Coppoolse ER, Stiekema WJ, Bloemberg GV (2008) Genetic and functional characterization of the gene cluster directing the biosynthesis of putisolvin I and II in Pseudomonas putida strain PCL1445. Microbiology 154:2070–2083PubMedCrossRefGoogle Scholar
  26. Dunwell JM, Khuri S, Gane PJ (2000) Microbial relatives of the seed storage proteins of higher plants: conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiol Mol Biol Rev: MMBR 64:153–179PubMedCentralPubMedCrossRefGoogle Scholar
  27. Dunwell JM, Purvis A, Khuri S (2004) Cupins: the most functionally diverse protein superfamily? Phytochemistry 65:7–17PubMedCrossRefGoogle Scholar
  28. Duong F, Lazdunski A, Murgier M (1996) Protein secretion by heterologous bacterial ABC-transporters: the C-terminus secretion signal of the secreted protein confers high recognition specificity. Mol Microbiol 21:459–470PubMedCrossRefGoogle Scholar
  29. Ferrandon D (2013) The complementary facets of epithelial host defenses in the genetic model organism Drosophila melanogaster: from resistance to resilience. Curr opin immunology 25:59–70CrossRefGoogle Scholar
  30. Gao R, Stock AM (2010) Molecular strategies for phosphorylation-mediated regulation of response regulator activity. Curr Opin Microbiol 13:160–167PubMedCentralPubMedCrossRefGoogle Scholar
  31. Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Freche B (2008) Bacterial pore-forming toxins: the (w)hole story? Cell Mol Life Sci: CMLS 65:493–507PubMedCrossRefGoogle Scholar
  32. Ha EM, Oh CT, Bae YS, Lee WJ (2005a) A direct role for dual oxidase in Drosophila gut immunity. Science 310:847–850Google Scholar
  33. Ha EM, Oh CT, Ryu JH, Bae YS, Kang SW, Jang IH, Brey PT, Lee WJ (2005b) An antioxidant system required for host protection against gut infection in Drosophila. Dev Cell 8:125–132Google Scholar
  34. Ha EM, Lee KA, Park SH, Kim SH, Nam HJ, Lee HY, Kang D, Lee WJ (2009a) Regulation of DUOX by the Galphaq-phospholipase Cbeta-Ca2+ pathway in Drosophila gut immunity. Dev Cell 16:386–397Google Scholar
  35. Ha EM, Lee KA, Seo YY, Kim SH, Lim JH, Oh BH, Kim J, Lee WJ (2009b) Coordination of multiple dual oxidase-regulatory pathways in responses to commensal and infectious microbes in drosophila gut. Nat Immunol 10:949–957Google Scholar
  36. Haas D (2005) Biocontrol genome deciphered. Nat Biotechnol 23:823–824PubMedCrossRefGoogle Scholar
  37. Haussler S (2010) Multicellular signalling and growth of Pseudomonas aeruginosa. Int J Med Microbiol: IJMM 300:544–548PubMedCrossRefGoogle Scholar
  38. Heeb S, Haas D (2001) Regulatory roles of the GacS/GacA two-component system in plant-associated and other gram-negative bacteria. Mol Plant-Microbe Interact: MPMI 14:1351–1363PubMedCrossRefGoogle Scholar
  39. Hinchliffe SJ, Hares MC, Dowling AJ, ffrench-Constant RH (2010) Insecticidal toxins from the Photorhabdus and Xenorhabdus Bacteria. Open Toxinol J 3:101–118CrossRefGoogle Scholar
  40. Hong YQ, Ghebrehiwet B (1992) Effect of Pseudomonas aeruginosa elastase and alkaline protease on serum complement and isolated components C1q and C3. Clin Immunol Immunopathol 62:133–138PubMedCrossRefGoogle Scholar
  41. Hughes KT, Mathee K (1998) The anti-sigma factors. Annu Rev Microbiol 52:231–286PubMedCrossRefGoogle Scholar
  42. Hurst MR, Glare TR, Jackson TA, Ronson CW (2000) Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J Bacteriol 182:5127–5138PubMedCentralPubMedCrossRefGoogle Scholar
  43. Hurst MR, Jones SM, Tan B, Jackson TA (2007) Induced expression of the Serratia entomophila Sep proteins shows activity towards the larvae of the New Zealand grass grub Costelytra zealandica. FEMS Microbiol Lett 275:160–167PubMedCrossRefGoogle Scholar
  44. Iacovache I, van der Goot FG, Pernot L (2008) Pore formation: an ancient yet complex form of attack. Biochim Biophys Acta 1778:1611–1623PubMedCrossRefGoogle Scholar
  45. Juneja P, Lazzaro BP (2009) Providencia sneebia sp. nov. and Providencia burhodogranariea sp. nov., isolated from wild Drosophila melanogaster. Int J Syst Evolut Microbiol 59:1108–1111CrossRefGoogle Scholar
  46. Kamala-Kannan S, Lee KJ, Park SM, Chae JC, Yun BS, Lee YH, Park YJ, Oh BT (2010) Characterization of ACC deaminase gene in Pseudomonas entomophila strain PS-PJH isolated from the rhizosphere soil. J Basic Microbiol 50:200–205PubMedGoogle Scholar
  47. Kaneko T, Goldman WE, Mellroth P, Steiner H, Fukase K, Kusumoto S, Harley W, Fox A, Golenbock D, Silverman N (2004) Monomeric and polymeric gram-negative peptidoglycan but not purified LPS stimulate the Drosophila IMD pathway. Immunity 20:637–649PubMedCrossRefGoogle Scholar
  48. Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590PubMedCrossRefGoogle Scholar
  49. Kobayashi N, Nishino K, Yamaguchi A (2001) Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol 183:5639–5644PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kuraishi T, Binggeli O, Opota O, Buchon N, Lemaitre B (2011) Genetic evidence for a protective role of the peritrophic matrix against intestinal bacterial infection in Drosophila melanogaster. Proc Natl Acad Sci U S A 108:15966–15971PubMedCentralPubMedCrossRefGoogle Scholar
  51. Lally ET, Hill RB, Kieba IR, Korostoff J (1999) The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361PubMedCrossRefGoogle Scholar
  52. Leduc D, Beaufort N, de Bentzmann S, Rousselle JC, Namane A, Chignard M, Pidard D (2007) The Pseudomonas aeruginosa LasB metalloproteinase regulates the human urokinase-type plasminogen activator receptor through domain-specific endoproteolysis. Infect Immun 75:3848–3858PubMedCentralPubMedCrossRefGoogle Scholar
  53. Lee KA, Kim SH, Kim EK, Ha EM, You H, Kim B, Kim MJ, Kwon Y, Ryu JH, Lee WJ (2013) Bacterial-derived uracil as a modulator of mucosal immunity and gut-microbe homeostasis in Drosophila. Cell 153:797–811PubMedCrossRefGoogle Scholar
  54. Leulier F, Parquet C, Pili-Floury S, Ryu JH, Caroff M, Lee WJ, Mengin-Lecreulx D, Lemaitre B (2003) The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 4:478–484PubMedCrossRefGoogle Scholar
  55. Li W, Rokni-Zadeh H, De Vleeschouwer M, Ghequire MG, Sinnaeve D, Xie GL, Rozenski J, Madder A, Martins JC, De Mot R (2013) The antimicrobial compound xantholysin defines a new group of pseudomonas cyclic lipopeptides. PloS One 8:e62946PubMedCentralPubMedCrossRefGoogle Scholar
  56. Liehl P, Blight M, Vodovar N, Boccard F, Lemaitre B (2006) Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog 2:e56PubMedCentralPubMedCrossRefGoogle Scholar
  57. Lizewski SE, Lundberg DS, Schurr MJ (2002) The transcriptional regulator AlgR is essential for Pseudomonas aeruginosa pathogenesis. Infect Immun 70:6083–6093PubMedCentralPubMedCrossRefGoogle Scholar
  58. Lizewski SE, Schurr JR, Jackson DW, Frisk A, Carterson AJ, Schurr MJ (2004) Identification of AlgR-regulated genes in Pseudomonas aeruginosa by use of microarray analysis. J Bacteriol 186:5672–5684PubMedCentralPubMedCrossRefGoogle Scholar
  59. Mascher T, Helmann JD, Unden G (2006) Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev: MMBR 70:910–938PubMedCentralPubMedCrossRefGoogle Scholar
  60. Matthijs S, Laus G, Meyer JM, Abbaspour-Tehrani K, Schafer M, Budzikiewicz H, Cornelis P (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium Pseudomonas entomophila L48 and its close relative Pseudomonas putida KT2440. Biometals 22:951–964PubMedCrossRefGoogle Scholar
  61. Missiakas D, Raina S (1998) The extracytoplasmic function sigma factors: role and regulation. Mol Microbiol 28:1059–1066PubMedCrossRefGoogle Scholar
  62. Mitrophanov AY, Groisman EA (2008) Signal integration in bacterial two-component regulatory systems. Genes Dev 22:2601–2611PubMedCentralPubMedCrossRefGoogle Scholar
  63. Miyoshi S, Shinoda S (2000) Microbial metalloproteases and pathogenesis. Microbes Infect/Inst Pasteur 2:91–98CrossRefGoogle Scholar
  64. Morici LA, Carterson AJ, Wagner VE, Frisk A, Schurr JR, Honer zu Bentrup K, Hassett DJ, Iglewski BH, Sauer K, Schurr MJ (2007) Pseudomonas aeruginosa AlgR represses the Rhl quorum-sensing system in a biofilm-specific manner. J Bacteriol 189:7752–7764PubMedCentralPubMedCrossRefGoogle Scholar
  65. Mulet M, Gomila M, Lemaitre B, Lalucat J, Garcia-Valdes E (2012) Taxonomic characterisation of Pseudomonas strain L48 and formal proposal of Pseudomonas entomophila sp. nov. Syst Appl Microbiol 35:145–149PubMedCrossRefGoogle Scholar
  66. Neidig N, Paul RJ, Scheu S, Jousset A (2011) Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb Ecol 61:853–859PubMedCentralPubMedCrossRefGoogle Scholar
  67. Ng WL, Bassler BL (2009) Bacterial quorum-sensing network architectures. Annu Rev Genet 43:197–222PubMedCrossRefGoogle Scholar
  68. Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A (2012) How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 15:220–231PubMedCrossRefGoogle Scholar
  69. Ochsner UA, Johnson Z, Vasil ML (2000) Genetics and regulation of two distinct haem-uptake systems, phu and has, in Pseudomonas aeruginosa. Microbiology 146(Pt 1):185–198PubMedGoogle Scholar
  70. Opota O, Charles JF, Warot S, Pauron D, Darboux I (2008) Identification and characterization of the receptor for the Bacillus sphaericus binary toxin in the malaria vector mosquito, Anopheles gambiae. Comp Biochem Physiol Part B. Biochem Mol Biol 149:419–427CrossRefGoogle Scholar
  71. Opota O, Vallet-Gely I, Vincentelli R, Kellenberger C, Iacovache I, Gonzalez MR, Roussel A, van der Goot FG, Lemaitre B (2011) Monalysin, a novel ss-pore-forming toxin from the Drosophila pathogen Pseudomonas entomophila, contributes to host intestinal damage and lethality. PLoS Pathog 7:e1002259PubMedCentralPubMedCrossRefGoogle Scholar
  72. Overhage J, Lewenza S, Marr AK, Hancock RE (2007) Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. J Bacteriol 189:2164–2169PubMedCentralPubMedCrossRefGoogle Scholar
  73. Parmely M, Gale A, Clabaugh M, Horvat R, Zhou WW (1990) Proteolytic inactivation of cytokines by Pseudomonas aeruginosa. Infect Immun 58:3009–3014PubMedCentralPubMedGoogle Scholar
  74. Prince RW, Cox CD, Vasil ML (1993) Coordinate regulation of siderophore and exotoxin A production: molecular cloning and sequencing of the Pseudomonas aeruginosa fur gene. J Bacteriol 175:2589–2598PubMedCentralPubMedGoogle Scholar
  75. Raghavan V, Groisman EA (2010) Orphan and hybrid two-component system proteins in health and disease. Curr Opin Microbiol 13:226–231PubMedCentralPubMedCrossRefGoogle Scholar
  76. Rahme LG, Ausubel FM, Cao H, Drenkard E, Goumnerov BC, Lau GW, Mahajan-Miklos S, Plotnikova J, Tan MW, Tsongalis J et al (2000) Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A 97:8815–8821PubMedCentralPubMedCrossRefGoogle Scholar
  77. Rodrigue A, Quentin Y, Lazdunski A, Mejean V, Foglino M (2000) Two-component systems in Pseudomonas aeruginosa: why so many? Trends Microbiol 8:498–504PubMedCrossRefGoogle Scholar
  78. Ryall B, Mitchell H, Mossialos D, Williams HD (2009) Cyanogenesis by the entomopathogenic bacterium Pseudomonas entomophila. Lett Appl Microbiol 49:131–135PubMedCrossRefGoogle Scholar
  79. Sarris PF, Scoulica EV (2011) Pseudomonas entomophila and Pseudomonas mendocina: potential models for studying the bacterial type VI secretion system. Infect, Genet Evol 11:1352–1360CrossRefGoogle Scholar
  80. Schaefer AL, Val DL, Hanzelka BL, Cronan JE Jr, Greenberg EP (1996) Generation of cell-to-cell signals in quorum sensing: acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proc Natl Acad Sci U S A 93:9505–9509PubMedCentralPubMedCrossRefGoogle Scholar
  81. Shahbaz-Mohammadi H, Omidinia E (2011) Screening and characterization of proline dehydrogenase flavoenzyme producing Pseudomonas entomophila. Iran J Microbiol 3:201–209PubMedCentralPubMedGoogle Scholar
  82. Shanbhag S, Tripathi S (2009) Epithelial ultrastructure and cellular mechanisms of acid and base transport in the Drosophila midgut. J Exp Biol 212:1731–1744PubMedCrossRefGoogle Scholar
  83. Soberon M, Fernandez LE, Perez C, Gill SS, Bravo A (2007) Mode of action of mosquitocidal Bacillus thuringiensis toxins. Toxicon 49:597–600PubMedCrossRefGoogle Scholar
  84. Sonnleitner E, Schuster M, Sorger-Domenigg T, Greenberg EP, Blasi U (2006) Hfq-dependent alterations of the transcriptome profile and effects on quorum sensing in Pseudomonas aeruginosa. Mol Microbiol 59:1542–1558PubMedCrossRefGoogle Scholar
  85. Stenbak CR, Ryu JH, Leulier F, Pili-Floury S, Parquet C, Herve M, Chaput C, Boneca IG, Lee WJ, Lemaitre B et al (2004) Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 173:7339–7348PubMedCrossRefGoogle Scholar
  86. Travis J, Potempa J, Maeda H (1995) Are bacterial proteinases pathogenic factors? Trends Microbiol 3:405–407PubMedCrossRefGoogle Scholar
  87. Vallet-Gely I, Lemaitre B, Boccard F (2008) Bacterial strategies to overcome insect defences. Nat Rev. Microbiol 6:302–313PubMedCrossRefGoogle Scholar
  88. Vallet-Gely I, Novikov A, Augusto L, Liehl P, Bolbach G, Pechy-Tarr M, Cosson P, Keel C, Caroff M, Lemaitre B (2010a) Association of hemolytic activity of Pseudomonas entomophila, a versatile soil bacterium, with cyclic lipopeptide production. Appl Environ Microbiol 76:910–921Google Scholar
  89. Vallet-Gely I, Opota O, Boniface A, Novikov A, Lemaitre B (2010b) A secondary metabolite acting as a signalling molecule controls Pseudomonas entomophila virulence. Cell Microbiol 12:1666–1679Google Scholar
  90. Vodovar N, Vinals M, Liehl P, Basset A, Degrouard J, Spellman P, Boccard F, Lemaitre B (2005) Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A 102:11414–11419PubMedCentralPubMedCrossRefGoogle Scholar
  91. Vodovar N, Vallenet D, Cruveiller S, Rouy Z, Barbe V, Acosta C, Cattolico L, Jubin C, Lajus A, Segurens B et al (2006) Complete genome sequence of the entomopathogenic and metabolically versatile soil bacterium Pseudomonas entomophila. Nat Biotechnol 24:673–679PubMedCrossRefGoogle Scholar
  92. Whitchurch CB, Alm RA, Mattick JS (1996) The alginate regulator AlgR and an associated sensor FimS are required for twitching motility in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 93:9839–9843PubMedCentralPubMedCrossRefGoogle Scholar
  93. Whitchurch CB, Erova TE, Emery JA, Sargent JL, Harris JM, Semmler AB, Young MD, Mattick JS, Wozniak DJ (2002) Phosphorylation of the Pseudomonas aeruginosa response regulator AlgR is essential for type IV fimbria-mediated twitching motility. J Bacteriol 184:4544–4554PubMedCentralPubMedCrossRefGoogle Scholar
  94. Williams P, Camara M (2009) Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. Curr Opin Microbiol 12:182–191PubMedCrossRefGoogle Scholar
  95. Yamamoto S, Okujo N, Sakakibara Y (1994) Isolation and structure elucidation of acinetobactin, a novel siderophore from Acinetobacter baumannii. Arch Microbiol 162:249–254PubMedGoogle Scholar
  96. Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PloS One 7:e30058PubMedCentralPubMedCrossRefGoogle Scholar
  97. Yu H, Mudd M, Boucher JC, Schurr MJ, Deretic V (1997) Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in Pseudomonas aeruginosa. J Bacteriol 179:187–193PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Guennaelle Dieppois
    • 1
  • Onya Opota
    • 2
  • Jorge Lalucat
    • 3
  • Bruno Lemaitre
    • 1
  1. 1.Global Health InstituteLausanneSwitzerland
  2. 2.Institut de MicrobiologieCHUV, Laboratoire de Diagnostic MoléculaireLausanneSwitzerland
  3. 3.Microbiologia, Departament de Biologia, Edifici Guillem ColomUniversitat de les Illes BalearsPalma de MallorcaSpain

Personalised recommendations