Advertisement

Dynamic Geochemical Models to Assess Deposition Impacts of Metals for Soils and Surface Waters

  • Jan E. GroenenbergEmail author
  • Edward Tipping
  • Luc T. C. Bonten
  • Wim de Vries
Chapter
Part of the Environmental Pollution book series (EPOL, volume 25)

Abstract

This chapter describes the use of geochemical models to assess the impacts of the deposition of metals on the concentrations of metals in soils and surface waters. We describe three dynamic models: SMART2-metals, SMARTml and CHUM-AM, each with their specific purpose and geographical scale of application. All three models include the most relevant metal fluxes and soil chemical processes, but with various level of detail related to their specific aim and scale. The ability of the models to simulate the long-term trends of metal fate was assessed by comparing model results and observations of either the present metal status, using hind cast simulations with historical deposition trends, or metal pools in chronosequences of afforested agricultural land of different stand age, or metal concentrations observed in a long-term monitoring study. The model simulations show the long times needed to approach equilibrium concentrations of metals due to changes in the atmospheric deposition of metals, sulphur and nitrogen. Dynamic models are therefore indispensable tools for the assessment of metal concentrations at changing levels of metal inputs to soil-water systems.

Keywords

Atmospheric deposition Metals Modelling SMART2-metals CHUM-AM SMARTml 

Notes

Acknowledgements

Work on the Dutch and Swedish chronosequences was financed through the European Commission, 4th FP, contract no. FAIR-CT96-1983. We thank Mats Olsson from the Swedish University of Agricultural Sciences for providing the data of the Swedish chronosequences. Figure 9.4 is reprinted from Environmental Pollution, Vol. 158, Tipping E, Rothwell JJ, Shotbolt L, Lawlor AJ, Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (northern England), Pages 1521–1529, Copyright 2010, with permission from Elsevier. Figure 9.5 is reprinted from Environmental Pollution, Vol. 159, Bonten LTC, Groenenberg JE, Meesenburg H, De Vries W, Using advanced surface complexation models for modelling soil chemistry under forests. The Solling case, Pages 2831–2839, Copyright 2011, with permission from Elsevier.

References

  1. Ashmore, M., van den Berg, L., Terry, A., Tipping, E., Lawlor, A. J., Lofts, S., Thacker, S. A., Vincent, C. D., Hall, J., O’Hanlon, S., Shotbolt, L., Harmens, H., Lloyd, A., Norris, D., Nemitz, E., Jarvis, K., & Jordan, C. (2007). Development of an effects-based approach for toxic metals. Report to the UK Department for Environment, Food and Rural Affairs, the Scottish Executive, the National Assembly for Wales and the Department of the Environment in Northern Ireland. Contract CPEA 24. University of York.Google Scholar
  2. Berg, T., Røyset, O., & Steinnes, E. (1995). Moss (Hylocomium Splendens) used as biomonitor of atmospheric trace element deposition: Estimation of uptake efficiencies. Atmospheric Environment, 29, 353–360.CrossRefGoogle Scholar
  3. Bonten, L. T. C., Groenenberg, J. E., Weng, L., & van Riemsdijk, W. H. (2008). Use of speciation and complexation models to estimate heavy metal sorption in soils. Geoderma, 146, 303–310.CrossRefGoogle Scholar
  4. Bonten, L. T. C., Groenenberg, J. E., Meesenburg, H., & De Vries, W. (2011). Using advanced surface complexation models for modelling soil chemistry under forests. The Solling case. Environmental Pollution, 159, 2831–2839.CrossRefGoogle Scholar
  5. De Vries, W., & Groenenberg, J. E. (2009). Evaluation of approaches to calculate critical metal loads for forest ecosystems. Environmental Pollution, 157, 3422–3433.CrossRefGoogle Scholar
  6. De Vries, W., Posch, M., & Kämäri, J. (1989). Modeling time patterns of forest soil acidification for various deposition scenarios. In J. Kämäri, D. F. Brakke, A. Jenkins, S. A. Norton, & R. F. Wright (Eds.), Regional acidification models. Geographic extent and time development (pp. 129–149). Berlin: Springer.Google Scholar
  7. De Vries, W., Bakker, D. J., Groenenberg, J. E., Reinds, G. J., Bril, J., & van Jaarsveld, J. A. (1998). Calculation and mapping of critical loads for heavy metals and persistent organic pollutants for Dutch forest soils. Journal of Hazardous Materials, 61, 99–106.CrossRefGoogle Scholar
  8. Deller, B. (1983). Determination of the CEC of carbonate soils with unbuffered 0.1 M BaCl2. Zeitschrift für Pflanzenernährung Bodenkunde, 146, 348–352.CrossRefGoogle Scholar
  9. Dijkstra, J. J., Meeussen, J. C. L., & Comans, R. N. J. (2004). Leaching of heavy metals from contaminated soils: An experimental and modeling study. Environmental Science and Technology, 38, 4390–4395.CrossRefGoogle Scholar
  10. Dzombak, D. A., & Morel, F. M. M. (1990). Surface complexation modeling: Hydrous ferric oxide. New York: Wiley.Google Scholar
  11. Erisman, J. W., Potma, C., Draaijers, G., van Leeuwen, E., & van Pul, A. (1995). A generalised description of the deposition of acidifying pollutants on a small scale in Europe. Water Air & Soil Pollution, 85, 2101–2106.CrossRefGoogle Scholar
  12. FAO. (1998). World reference base for soil resources. World Soil Resources Report 84. Rome: FAO.Google Scholar
  13. Groenenberg, J. E., Dijkstra, J. J., Bonten, L. T. C., De Vries, W., & Comans, R. N. J. (2012). Evaluation of the performance and limitations of empirical regression models and process based multisurface models to predict trace element solubility in soils. Environmental ­Pollution, 168, 98–107.CrossRefGoogle Scholar
  14. Helling, C. S., Chesters, G., & Corey, R. B. (1964). Contribution of organic matter and clay to soil cation exchange capacity as affected by the pH of the saturating solution. Soil Science Society of America Journal, 28, 517–520.CrossRefGoogle Scholar
  15. Karltun, E., Harrison, A. F., Alriksson, A., Bryant, C., Garnett, M. H., & Olsson, M. T. (2005). Old organic carbon in soil solution DOC after afforestation-Evidence from 14C analysis. Geoderma, 127, 188–195.CrossRefGoogle Scholar
  16. Kinniburgh, D. G., Van Riemsdijk, W. H., Koopal, L. K., Borkovec, M., Benedetti, M. F., & Avena, M. J. (1999). Ion binding to natural organic matter: Competition, heterogeneity, stoichiometry and thermodynamic consistency. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 151, 147–166.CrossRefGoogle Scholar
  17. Kros, J., Reinds, G. J., De Vries, W., Latour, J. B., & Bollen, M. J. S. (1995). Modelling of soil acidity and nitrogen availability in natural ecosystems in response to changes in acid ­deposition and hydrology. SC-DLO Report 95. Wageningen, The Netherlands.Google Scholar
  18. Lofts, S., Chapman, P., Dwyer, R., McLaughlin, M., Schoeters, I., Sheppard, S., Adams, W., ­Alloway, B., Antunes, P., Campbell, P., Davies, B., Degryse, F., De Vries, W., Farley, K. J., ­Garrett, R. G., Green, A., Groenenberg, B. J., Hale, B., Harrass, M., Hendershot, W. H., Keller, A., Lanno, R., Liang, T., Liu, W.-X., Ma, Y., Menzie, C., Moolenaar, S. W., Piatkiewicz, W., Reimann, C., Rieuwerts, J. S., Santore, R. C., Sauvé, S., Schuetze, G., Schlekat, C., Skeaff, J., Smolders, E., Tao, S., Wilkins, J., & Zhao, F.-J. (2007). Critical loads of metals and other trace elements to terrestrial environments. Environmental Science and Technology, 41, 6326–6331.CrossRefGoogle Scholar
  19. Meesenburg, H., Meiwes, K. J., & Rademacher, P. (1995). Long term trends in atmospheric deposition and seepage output in northwest German forest ecosystems. Water Air and Soil Pollution, 85, 611–616.CrossRefGoogle Scholar
  20. Meeussen, J. C. L. (2003). ORCHESTRA: an object-oriented framework for implementing chemical equilibrium models. Environmental Science Technology, 37, 1175–1182.CrossRefGoogle Scholar
  21. Römkens, P. F. A. M. (1998). Effects of land use changes on organic matter dynamics and trace metal solubility in soils. Ph.D., Groningen, University of Groningen.Google Scholar
  22. Römkens, P. F. A. M., & Salomons, W. (1998). Cd, Cu and Zn solubility in arable and forest soils: Consequences of land use changes for metal mobility and risk assessment. Soil Science, 163, 859–871.CrossRefGoogle Scholar
  23. Schnoor, J., & Stumm, W. (1986). The role of chemical weathering in the neutralization of acidic deposition. Schweizerische Zeitschrift für Hydrologie, 48, 171–195.CrossRefGoogle Scholar
  24. Sposito, G. (1989). The chemistry of soils. New York: Oxford University Press.Google Scholar
  25. Stidson, R. T., Hamilton-Taylor, J., & Tipping, E. (2002). Laboratory dissolution studies of rocks from the Borrowdale Volcanic Group (English Lake District). Water Air and Soil Pollution, 138, 335–358.CrossRefGoogle Scholar
  26. Tipping, E. (1998). Humic ion-binding Model VI: An improved description of the interactions of protons and metal ions with humic substances. Aquatic Geochemistry, 4, 3–47.CrossRefGoogle Scholar
  27. Tipping, E. (2002). Cation binding by humic substances. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  28. Tipping, E., Lawlor, A. J., & Lofts, S. (2006a). Simulating the long-term chemistry of an upland UK catchment: Major solutes and acidification. Environmental Pollution, 141, 151–166.CrossRefGoogle Scholar
  29. Tipping, E., Lawlor, A. J., Lofts, S., & Shotbolt, L. (2006b). Simulating the long-term chemistry of an upland UK catchment: Heavy metals. Environmental Pollution, 141, 139–150.CrossRefGoogle Scholar
  30. Tipping, E., Yang, H., Lawlor, A. J., Rose, N. L., & Shotbolt, L. (2007). Trace metals in the catchment, loch and sediments of Lochnagar: Measurements and modelling. In N. L. Rose (Ed.), Lochnagar: The natural history of a mountain lake (pp. 345–373). Dordrecht: Springer.CrossRefGoogle Scholar
  31. Tipping, E., Rothwell, J. J., Shotbolt, L., & Lawlor, A. J. (2010). Dynamic modelling of atmospherically-deposited Ni, Cu, Zn, Cd and Pb in Pennine catchments (Northern England). Environmental Pollution, 158, 1521–1529.CrossRefGoogle Scholar
  32. Van Jaarsveld, J. A., & de Leeuw, F. A. A. M. (1993). OPS: An operational atmospheric transport model for priority substances. Environmental Software, 8, 91–100.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Jan E. Groenenberg
    • 1
    Email author
  • Edward Tipping
    • 2
  • Luc T. C. Bonten
    • 1
  • Wim de Vries
    • 1
  1. 1.Alterra, Wageningen University and Research CentreWageningenThe Netherlands
  2. 2.Centre for Ecology and HydrologyBailriggUK

Personalised recommendations