Advertisement

On The Immobilization of Candida antarctica Lipase B onto Surface Modified Porous Silica Gel Particles

  • Stephen J. ClarsonEmail author
  • Richard A. Gross
  • Siddharth V. Patwardhan
  • Yadagiri Poojari
Chapter
Part of the Advances in Silicon Science book series (ADSS, volume 5)

Abstract

Lipase B from Candida antarctica (CALB) was successfully immobilized onto the surface of porous silica gel particles that had been modified using (3-aminopropyl) triethoxysilane (3-APS or γ-APS) and then crosslinked using glutaraldehyde. The surface modification of the porous silica gel was conducted both in an aqueous medium using Tris buffer solution at pH 10.6 and in an organic medium using toluene, respectively. Subsequently, CALB was immobilized onto the silica gel particles in an aqueous medium using Tris buffer solution at room temperature and at a pH of 7.5. In another approach, CALB was entrapped in porous silica using a biologically inspired green method. The catalytic activity and the thermal stability of the immobilized enzyme systems including a commercial product were assessed by a model esterification reaction between 1-octanol and lauric acid carried out in isooctane at 37 °C. The results demonstrate that the immobilized CALB on silica had both a high catalytic activity and also good thermal stability when compared to free CALB.

Keywords

Silica Particle Enzyme Immobilization Lauric Acid Immobilize Lipase Porous Silica 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank the National Science Foundation (NSF) for Center Funding to two of us (Clarson and Gross) under the TIE Grant NSF #0631412. SVP thanks the Royal Society for funding (Grant # TG090299).

References

  1. 1.
    Yamanaka S, Tanaka T (1987) Methods Enzymol 136:405CrossRefGoogle Scholar
  2. 2.
    Manjoon A, Iborra J (1991) Biotechnol Lett 13:339CrossRefGoogle Scholar
  3. 3.
    Chopinean J, McCafferty FD (1998) Biotechnol Bioeng 31:208CrossRefGoogle Scholar
  4. 4.
    Gillies B, Yamazaki H (1987) Biotechnol Lett 9:709CrossRefGoogle Scholar
  5. 5.
    Kobayashi SJ (1999) Polym Sci Part A: Polym Chem 37:3041CrossRefGoogle Scholar
  6. 6.
    Runge M, O’Hagan D, Haufe G (2000) J Polym Sci Part A: Polym Chem 38:2004CrossRefGoogle Scholar
  7. 7.
    Binns F, Harffey P, Roberts SM, Taylor A (1999) J Chem Soc Perkin Trans 1:2671Google Scholar
  8. 8.
    Kobayashi S, Uyama H, Namekawa S, Hayakawa H (1998) Macromolecules 31:5655CrossRefGoogle Scholar
  9. 9.
    Matsumura S, Tsukana K, Toshima K (1997) Macromolecules 30:3122CrossRefGoogle Scholar
  10. 10.
    Al-Azemi TF, Bisht KS (1999) Macromolecules 32:6536CrossRefGoogle Scholar
  11. 11.
    Salis A, Meloni D, Ligas S, Casula MF, Monduzzi M, Solinas V Dumitriu E (2005) Langmuir 21:5511CrossRefGoogle Scholar
  12. 12.
    David AE, Wang NS, Yang VC, Yang AJ (2006) J Biotechnol 125:395CrossRefGoogle Scholar
  13. 13.
    Knezevic Z, Milosavic N, Bezbradica D, Jakovljevic Z, Prodanovic R (2006) Biochem Eng J 30:269–278Google Scholar
  14. 14.
    Ragheb AM, Brook MA, Hrynyk M (2005) Biomaterials 26:1653CrossRefGoogle Scholar
  15. 15.
    Chen B, Hu J, Miller EM, Xie W, Cai M, Gross RA (2008) Biomacromolecules 9:463CrossRefGoogle Scholar
  16. 16.
    Luckarift HR, Spain JC, Naik RR, Stone MO (2004) Nat Biotechnol 22:211CrossRefGoogle Scholar
  17. 17.
    Reetz MT, Zonta A, Simpelkamp J (1996) Biotechnol Bioeng 49:527CrossRefGoogle Scholar
  18. 18.
    Vandenberg ET, Bertilsson L, Liedberg B, Uvdal K, Erlandsson R, Elwing H, Lundstrtm I (1991) J Colloid Int Sci 147:103CrossRefGoogle Scholar
  19. 19.
    He F, Zhuo RX, Liu LJ, Jin DB, Feng J, Wang XL (2001) Reactive Functional Polym 47:153CrossRefGoogle Scholar
  20. 20.
    Hwang S, Lee KT, Park JW, Min BR, Haam S, Ahn IS, Jung JK (2004) Biochem Eng J 17:85CrossRefGoogle Scholar
  21. 21.
    Dragoi B, Dumitriu E (2008) Acta Chim Slov 55:277Google Scholar
  22. 22.
    Patwardhan SV (2011) Chemical Communications (2011), 47(27), 7567–7582Google Scholar
  23. 23.
    Forsyth C, Patwardhan SV (2013) J Mater Chem B 1:1164CrossRefGoogle Scholar
  24. 24.
    Poojari Y, Clarson SJ (2013) Biocat Agricult Biotechnol 2:7–11Google Scholar
  25. 25.
    Poojari Y, Beemat JS, Clarson SJ (2013) Polym Bull 70:1543–1552CrossRefGoogle Scholar
  26. 26.
    Uppenberg J, Hansen MT, Patkar S, Jones TA (1994) Structure 2:293CrossRefGoogle Scholar
  27. 27.
    Bradford MM (1976) Anal Biochem 72:248CrossRefGoogle Scholar
  28. 28.
    Caravajal GS, Leyden DE, Quinting GR, Maciel GE (1988) Anal Chem 60:1776CrossRefGoogle Scholar
  29. 29.
    Mei Y, Miller L, Gao W, Gross RA (2003) Biomacromolecules 4:70CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Stephen J. Clarson
    • 1
    Email author
  • Richard A. Gross
    • 2
  • Siddharth V. Patwardhan
    • 3
  • Yadagiri Poojari
    • 1
  1. 1.Department of Chemical and Materials Engineering and the Polymer Research CentreThe University of CincinnatiCincinnatiUSA
  2. 2.Department of Chemistry and BiologyRensselaer Polytechnic InstituteTroyUSA
  3. 3.Department of Chemical and Process EngineeringUniversity of StrathclydeGlasgowUK

Personalised recommendations