Lessons and Perspectives of Ecological Intensification

  • François AffholderEmail author
  • Laurent Parrot
  • Patrick Jagoret


Consistently with Cassman’s (1999) original wording, ecological intensification is commonly defined as the imperative to attain high productivity per surface area unit and per time unit with a concomitant “ecological” commitment to protect the environment. For most authors who subscribe to this concept the principle of mobilizing ecosystem processes that support and regulate primary production is the key to overcoming this challenge (Egger 1987; Breman and Sissoko 1998; Affholder et al. 2008; Chevassus-au-Louis and Griffon 2008; Bonny 2011; Doré et al. 2011; Bommarco et al. 2013; Hochman et al. 2013). By accepting this sense, we are justified in using the expressions “ecological intensification” and “ecologically intensive agriculture” interchangeably, with the latter expression suggesting more explicitly the forceful mobilization of ecological processes for high yields, and not simply the search for a combination of increased intensification and low environmental impact.


Ecosystem Service Intensive Agriculture Family Farm Conservation Agriculture Farm Income 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Affholder, F. (1997). Empirically modelling the interaction between intensification and climatic risk in semiarid regions. Field Crops Research, 52, 79–93.CrossRefGoogle Scholar
  2. Affholder, F., Jourdain, D., Morize, M., Quang, D. D., & Ricome, A. (2008). Éco-intensification dans les montagnes du Vietnam. Contraintes à l’adoption de la culture sur couvertures végétales. Cahiers Agricultures, 17, 289–296.Google Scholar
  3. Affholder, F., Jourdain, D., Quang, D. D., Tuong, T. P., Morize, M., & Ricome, A. (2010). Constraints to farmers’ adoption of direct-seeding mulch-based cropping systems: A farm scale modeling approach applied to the mountainous slopes of Vietnam. Agricultural Systems, 103, 51–62.CrossRefGoogle Scholar
  4. Andriarimalala, J. H., Rakotozandriny, J. N., Andriamandroso, A. L. H., Penot, E., Naudin, K., Dugue, P., Tillard, E., Decruyenaere, V., & Salgado, P. (2013). Creating synergies between conservation agriculture and cattle production in crop-livestock farms: A study case in the lake Alaotra region of Madagascar. Experimental Agriculture, 49, 352–365.CrossRefGoogle Scholar
  5. Bainville, S., Affholder, F., Figuié, M., & Madeira, N. J. (2005). Les transformations de l’agriculture familiale de la commune de Silvânia: Une petite révolution agricole dans les Cerrados brésiliens. Cahiers Agricultures, 14, 103–110.Google Scholar
  6. Baldé, A. B., Scopel, E., Affholder, F., Corbeels, M., Silva, F. A. M. D., Xavier, J. H. V., & Wery, J. (2011). Agronomic performance of no-tillage relay intercropping with maize under smallholder conditions in Central Brazil. Field Crops Research, 124, 240–251.CrossRefGoogle Scholar
  7. Banerjee, A. V., & Duflo, E. (2009). L’approche expérimentale en économie du développement. Revue d'Economie Politique, 119, 691–726.Google Scholar
  8. Bergen, S. D., Bolton, S. M., & Fridley, L. J. (2001). Design principles for ecological engineering. Ecological Engineering, 18, 201–210.CrossRefGoogle Scholar
  9. Blanchart, E., Bernoux, M., Sarda, X., Siqueira, N. M., Cerri, C. C., Piccolo, M. D. C., Douzet, J.-M., & Scopel, E. (2007). Effect of direct seeding mulch-based systems on soil carbon storage and macrofauna in Central Brazil. Agriculturae Conspectus Scientificus, 72, 81–87.Google Scholar
  10. Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: Harnessing ecosystem services for food security. Trends in Ecology and Evolution, 28, 230–238.PubMedCrossRefGoogle Scholar
  11. Bonny, S. (2011). L’agriculture écologiquement intensive: Nature et défis. Cahiers Agricultures, 20(6), 451–462.Google Scholar
  12. Breman, H., & Sissoko, K. (1998). L’intensification agricole au Sahel (1000 pp.). Paris: Économie et développement, Karthala.Google Scholar
  13. Carberry, P. S., Liang, W. -L., Twomlow, S., Holzworth, D. P., Dimes, J. P., McClelland, T., Huth, N. I., Chen, F., Hochman, Z., & Keating, B. A. (2013). Scope for improved eco-efficiency varies among diverse cropping systems. Proceedings of the National Academy of Sciences, 110, 8381–8386.Google Scholar
  14. Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. National Academy of Sciences Colloquium, 96, 5952–5959.CrossRefGoogle Scholar
  15. Chevassus-au-Louis, B., & Griffon, M. (2008). La nouvelle modernité: Une agriculture productive à haute valeur écologique. Déméter, Économie et stratégies agricoles, 14, 7–48.Google Scholar
  16. Dalgaard, T., Hutchings, N. J., & Porter, J. R. (2003). Agroecology, scaling and interdisciplinarity. Agriculture, Ecosystems and Environment, 100, 39–51.CrossRefGoogle Scholar
  17. Demont, M., Jouve, P., Stessens, J., & Tollens, E. (2007). Boserup versus Malthus revisited: Evolution of farming systems in northern Cote d’Ivoire. Agricultural Systems, 93, 215–228.CrossRefGoogle Scholar
  18. Doré, T., Makowski, D., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., & Tittonell, P. (2011). Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 34, 197–210.CrossRefGoogle Scholar
  19. Egger, K. (1987). L’intensification écologique conservation (LAE) et amélioration des sols tropicaux par les systèmes agro-sylvo-pastoraux. Aménagements hydro-agricoles et systèmes de production, Montpellier, Cirad-DSA. Documents systèmes agraires, 2(6), 129–135.Google Scholar
  20. Francis, C., Breland, T. A., Østergaard, E., Lieblein, G., & Morse, S. (2013). Phenomenon-based learning in agroecology: A prerequisite for transdisciplinarity and responsible action. Agroecology and Sustainable Food Systems, 37(1), 60–75.Google Scholar
  21. Giller, K. E., Witter, E., Corbeels, M., & Tittonell, P. (2009). Conservation agriculture and smallholder farming in Africa: The heretics’ view. Field Crops Research, 114, 23–34.CrossRefGoogle Scholar
  22. Giller, K. E., Corbeels, M., Nyamangara, J., Triomphe, B., Affholder, F., Scopel, E., & Tittonell, P. (2011). A research agenda to explore the role of conservation agriculture in African smallholder farming systems. Field Crops Research, 124, 468–472.CrossRefGoogle Scholar
  23. Hochman, Z., Carberry, P. S., Robertson, M. J., Gaydon, D. S., Bell, L. W., & McIntosh, P. C. (2013). Prospects for ecological intensification of Australian agriculture. European Journal of Agronomy, 44, 109–123.CrossRefGoogle Scholar
  24. Jagoret, P., Michel-Dounias, I., & Malézieux, E. (2011). Long-term dynamics of cocoa agroforests: A case study in central Cameroon. Agroforestry Systems, 81, 267–278.CrossRefGoogle Scholar
  25. Jamont, M., Piva, G., & Fustec, J. (2013). Sharing N resources in the early growth of rapeseed intercropped with faba bean: Does N transfer matter? Plant Soil, 371, 641–653.CrossRefGoogle Scholar
  26. MacMynowski, D. P. (2007). Pausing at the brink of interdisciplinarity: Power and knowledge at the meeting of social and biophysical science. Ecology and Society, 12, 14.Google Scholar
  27. Maris, V. (2010). Philosophie de la biodiversité: Petite éthique pour une nature en péril (214 pp.). Buchet-Chastel.Google Scholar
  28. Méndez, V. E., & Bacon, C. M. (2013). Agroecology as a transdisciplinary, participatory, and action-oriented approach. Agroecology and Sustainable Food Systems, 37, 3–18.Google Scholar
  29. Naiman, R. J. (1999). A perspective on interdisciplinary science. Ecosystems, 2, 292–295.CrossRefGoogle Scholar
  30. Parks, S., & Gowdy, J. (2013). What have economists learned about valuing nature? A review essay. Ecosystem Services, 3, e1–e10.CrossRefGoogle Scholar
  31. Penot, É., Macdowall, C., & Domas, R. (2012). Modeling impact of conservation agriculture adoption on farming systems agricultural incomes. The case of lake Alaotra Region, Madagascar (9 pp.). RIME-PAMPA/CA2AFRICA project. Denmark: IFSA.Google Scholar
  32. Rapidel, B., DeClerck, F., Le Coq, J. -F., & Beer, J. (2011). Ecosystem services from agriculture and agroforestry: Measurement and payment (XIX-414 pp.). London: Earthscan Publications.Google Scholar
  33. Ratnadass, A., Michellon, R., Randriamanantsoa, R., & Séguy, L. (2006). Effects of soil and plant management on crop pests and diseases. In N. Uphoff, A. Ball, E. Fernandes, H. Herren, O. Husson, M. Laing, C. Palm, J. Pretty, P. Sanchez, N. Sanginga, & J. Thies (Eds.), Biological Approaches for Sustainable Soil Systems (pp. 589–602). Boca Raton: CRC Press.CrossRefGoogle Scholar
  34. Ratnadass, A., Blanchart, E., & Lecomte, P. (2013a). Ecological interactions within the biodiversity of cultivated systems. In É. Hainzelin (Ed.), Cultivating biodiversity to transform agriculture (pp. 141–180). Versailles: Quæ/Springer.CrossRefGoogle Scholar
  35. Rusinamhodzi, L., Corbeels, M., Nyamangara, J., & Giller, K. E. (2012). Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique. Field Crops Research, 136, 12–22.CrossRefGoogle Scholar
  36. Scopel, E., Triomphe, B., Affholder, F., Macena da Silva, F. A., Corbeels, M., Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., Mendes, I. D. C., & Tourdonnet, S. D. (2012). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development, 33, 113–130.CrossRefGoogle Scholar
  37. Torquebiau, E. F. (2000). A renewed perspective on agroforestry concepts and classification. Comptes rendus de l’Académie des sciences, Série III Sciences de la vie, 323, 1009–1017.Google Scholar
  38. Vakulabharanam, V. (2013). Fighting poverty through good governance using randomized experiments. Development and Change, 44(4), 1027–1037.CrossRefGoogle Scholar
  39. Wegner, G., & Pascual, U. (2011). Cost-benefit analysis in the context of ecosystem services for human well-being: A multidisciplinary critique. Global Environmental Change: Human and Policy Dimensions, 21, 492–504.CrossRefGoogle Scholar

Copyright information

© Éditions Quæ 2015

Authors and Affiliations

  • François Affholder
    • 1
    Email author
  • Laurent Parrot
    • 1
  • Patrick Jagoret
    • 1
  1. 1.PersystCiradMontpellierFrance

Personalised recommendations