Biochemical Properties of Urea Transporters

  • Guangping ChenEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 73)


Urea and urea transporters (UT) are critical to the production of concentrated urine and hence in maintaining body fluid balance. The UT-A1 urea transporter is the major and most important UT isoform in the kidney. Native UT-A1, expressed in the terminal inner medullary collecting duct (IMCD) epithelial cells, is a glycosylated protein with two glycoforms of 117 and 97 kDa. Vasopressin is the major hormone in vivo that rapidly increases urea permeability in the IMCD through increases in phosphorylation and apical plasma-membrane accumulation of UT-A1. The cell signaling pathway for vasopressin-mediated UT-A1 phosphorylation and activity involves two cAMP-dependent signaling pathways: protein kinase A (PKA) and exchange protein activated by cAMP (Epac). In this chapter, we will discuss UT-A1 regulation by phosphorylation, ubiquitination, and glycosylation.


Urinary concentration Vasopressin Protein kinase A Phosphorylation Membrane trafficking Ubiquitination Protein degradation N-linked glycosylation 



This work was funded by NIH grants R01-DK087838.


  1. 1.
    Bagnasco SM, Peng T, Nakayama Y, Sands JM (2000) Differential expression of individual UT-A urea transporter isoforms in rat kidney. J Am Soc Nephrol 11(11):1980–1986PubMedGoogle Scholar
  2. 2.
    Bansal AD, Hoffert JD, Pisitkun T, Hwang S, Chou CL, Boja ES et al (2010) Phosphoproteomic profiling reveals vasopressin-regulated phosphorylation sites in collecting duct. J Am Soc Nephrol 21(2):303–315PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Blount MA, Mistry AC, Frohlich O, Price SR, Chen G, Sands JM et al (2008) Phosphorylation of UT-A1 urea transporter at serines 486 and 499 is important for vasopressin-regulated activity and membrane accumulation. Am J Physiol Renal Physiol 295(1):F295–F299PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Bos JL (2003) Epac: a new cAMP target and new avenues in cAMP research. Nat Rev Mol Cell Biol 4(9):733–738PubMedCrossRefGoogle Scholar
  5. 5.
    Bradford AD, Terris JM, Ecelbarger CA, Klein JD, Sands JM, Chou CL et al (2001) 97- and 117-kDa forms of collecting duct urea transporter UT-A1 are due to different states of glycosylation. Am J Physiol Renal Physiol 281(1):F133–F143PubMedGoogle Scholar
  6. 6.
    Brooks HL, Ageloff S, Kwon TH, Brandt W, Terris JM, Seth A et al (2003) cDNA array identification of genes regulated in rat renal medulla in response to vasopressin infusion. Am J Physiol Renal Physiol 284(1):F218–F228PubMedGoogle Scholar
  7. 7.
    Brown DA, London E (1998) Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol 14:111–136PubMedCrossRefGoogle Scholar
  8. 8.
    Cha SK, Ortega B, Kurosu H, Rosenblatt KP, Kuro OM, Huang CL (2008) Removal of sialic acid involving Klotho causes cell-surface retention of TRPV5 channel via binding to galectin-1. Proc Natl Acad Sci USA 105(28):9805–9810PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Chen G, Frohlich O, Yang Y, Klein JD, Sands JM (2006) Loss of N-linked glycosylation reduces urea transporter UT-A1 response to vasopressin. J Biol Chem 281(37):27436–27442PubMedCrossRefGoogle Scholar
  10. 10.
    Chen G, Howe AG, Xu G, Frohlich O, Klein JD, Sands JM (2011) Mature N-linked glycans facilitate UT-A1 urea transporter lipid raft compartmentalization. FASEB J 25(12):4531–4539PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Chen G, Huang H, Frohlich O, Yang Y, Klein JD, Price SR et al (2008) MDM2 E3 ubiquitin ligase mediates UT-A1 urea transporter ubiquitination and degradation. Am J Physiol Renal Physiol 295(5):F1528–F1534PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Dart C (2010) Lipid microdomains and the regulation of ion channel function. J Physiol 588(Pt 17):3169–3178PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    de Juan-Sanz J, Zafra F, Lopez-Corcuera B, Aragon C (2011) Endocytosis of the neuronal glycine transporter GLYT2: role of membrane rafts and protein kinase C-dependent ubiquitination. Traffic 12(12):1850–1867PubMedCrossRefGoogle Scholar
  14. 14.
    Debigare R, Price SR (2003) Proteolysis, the ubiquitin-proteasome system, and renal diseases. Am J Physiol Renal Physiol 285(1):F1–F8PubMedCrossRefGoogle Scholar
  15. 15.
    Eriksen J, Bjorn-Yoshimoto WE, Jorgensen TN, Newman AH, Gether U (2010) Postendocytic sorting of constitutively internalized dopamine transporter in cell lines and dopaminergic neurons. J Biol Chem 285(35):27289–27301PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Feng X, Huang H, Yang Y, Frohlich O, Klein JD, Sands JM et al (2009) Caveolin-1 directly interacts with UT-A1 urea transporter: the role of caveolae/lipid rafts in UT-A1 regulation at the cell membrane. Am J Physiol Renal Physiol 296(6):F1514–F1520PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Fenton RA, Stewart GS, Carpenter B, Howorth A, Potter EA, Cooper GJ et al (2002) Characterization of mouse urea transporters UT-A1 and UT-A2. Am J Physiol Renal Physiol 283(4):F817–F825PubMedCrossRefGoogle Scholar
  18. 18.
    Frohlich O, Klein JD, Smith PM, Sands JM, Gunn RB (2004) Urea transport in MDCK cells that are stably transfected with UT-A1. Am J Physiol Cell Physiol 286(6):C1264–C1270PubMedCrossRefGoogle Scholar
  19. 19.
    Frohlich O, Klein JD, Smith PM, Sands JM, Gunn RB (2006) Regulation of UT-A1-mediated transepithelial urea flux in MDCK cells. Am J Physiol Cell Physiol 291(4):C600–C606PubMedCrossRefGoogle Scholar
  20. 20.
    Gillin AG, Sands JM (1992) Characteristics of osmolarity-stimulated urea transport in rat IMCD. Am J Physiol 262(6 Pt 2):F1061–F1067PubMedGoogle Scholar
  21. 21.
    Gillin AG, Star RA, Sands JM (1993) Osmolarity-stimulated urea transport in rat terminal IMCD: role of intracellular calcium. Am J Physiol 265(2 Pt 2):F272–F277PubMedGoogle Scholar
  22. 22.
    Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I (2003) Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat Cell Biol 5(5):461–466PubMedCrossRefGoogle Scholar
  23. 23.
    Hartmann AM, Blaesse P, Kranz T, Wenz M, Schindler J, Kaila K et al (2009) Opposite effect of membrane raft perturbation on transport activity of KCC2 and NKCC1. J Neurochem 111(2):321–331PubMedCrossRefGoogle Scholar
  24. 24.
    Hendriks G, Koudijs M, van Balkom BW, Oorschot V, Klumperman J, Deen PM et al (2004) Glycosylation is important for cell surface expression of the water channel aquaporin-2 but is not essential for tetramerization in the endoplasmic reticulum. J Biol Chem 279(4):2975–2983PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffert JD, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) Quantitative phosphoproteomics of vasopressin-sensitive renal cells: regulation of aquaporin-2 phosphorylation at two sites. Proc Natl Acad Sci USA 103(18):7159–7164PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Honegger KJ, Capuano P, Winter C, Bacic D, Stange G, Wagner CA et al (2006) Regulation of sodium-proton exchanger isoform 3 (NHE3) by PKA and exchange protein directly activated by cAMP (EPAC). Proc Natl Acad Sci USA 103(3):803–808PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Hoorn EJ, Hoffert JD, Knepper MA (2005) Combined proteomics and pathways analysis of collecting duct reveals a protein regulatory network activated in vasopressin escape. J Am Soc Nephrol 16(10):2852–2863PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Hoover RS, Poch E, Monroy A, Vazquez N, Nishio T, Gamba G et al (2003) N-Glycosylation at two sites critically alters thiazide binding and activity of the rat thiazide-sensitive Na(+):Cl(−) cotransporter. J Am Soc Nephrol 14(2):271–282PubMedCrossRefGoogle Scholar
  29. 29.
    Huang F, Kirkpatrick D, Jiang X, Gygi S, Sorkin A (2006) Differential regulation of EGF receptor internalization and degradation by multiubiquitination within the kinase domain. Mol Cell 21(6):737–748PubMedCrossRefGoogle Scholar
  30. 30.
    Huang H, Feng X, Zhuang J, Frohlich O, Klein JD, Cai H et al (2010) Internalization of UT-A1 urea transporter is dynamin dependent and mediated by both caveolae- and clathrin-coated pit pathways. Am J Physiol Renal Physiol 299(6):F1389–F1395PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Hwang S, Gunaratne R, Rinschen MM, Yu MJ, Pisitkun T, Hoffert JD et al (2010) Vasopressin increases phosphorylation of Ser84 and Ser486 in Slc14a2 collecting duct urea transporters. Am J Physiol Renal Physiol 299(3):F559–F567PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Ilori TO, Wang Y, Blount MA, Martin CF, Sands JM, Klein JD (2012) Acute calcineurin inhibition with tacrolimus increases phosphorylated UT-A1. Am J Physiol Renal Physiol 302(8):F998–F1004PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Kamsteeg EJ, Hendriks G, Boone M, Konings IB, Oorschot V, van der Sluijs P et al (2006) Short-chain ubiquitination mediates the regulated endocytosis of the aquaporin-2 water channel. Proc Natl Acad Sci USA 103(48):18344–18349PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Kato A, Naruse M, Knepper MA, Sands JM (1998) Long-term regulation of inner medullary collecting duct urea transport in rat. J Am Soc Nephrol 9(5):737–745PubMedGoogle Scholar
  35. 35.
    Kim D, Sands JM, Klein JD (2003) Changes in renal medullary transport proteins during uncontrolled diabetes mellitus in rats. Am J Physiol Renal Physiol 285(2):F303–F309PubMedGoogle Scholar
  36. 36.
    Kim D, Sands JM, Klein JD (2004) Role of vasopressin in diabetes mellitus-induced changes in medullary transport proteins involved in urine concentration in Brattleboro rats. Am J Physiol Renal Physiol 286(4):F760–F766PubMedCrossRefGoogle Scholar
  37. 37.
    Klein JD, Blount MA, Frohlich O, Denson CE, Tan X, Sim JH et al (2010) Phosphorylation of UT-A1 on serine 486 correlates with membrane accumulation and urea transport activity in both rat IMCDs and cultured cells. Am J Physiol Renal Physiol 298(4):F935–F940PubMedCentralPubMedCrossRefGoogle Scholar
  38. 38.
    Klein JD, Martin CF, Kent KJ, Sands JM (2012) Protein kinase C-alpha mediates hypertonicity-stimulated increase in urea transporter phosphorylation in the inner medullary collecting duct. Am J Physiol Renal Physiol 302(9):F1098–F1103PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Kudo LH, Cesar KR, Ping WC, Rocha AS (1992) Effect of peritubular hypertonicity on water and urea transport of inner medullary collecting duct. Am J Physiol 262(3 Pt 2):F338–F347PubMedGoogle Scholar
  40. 40.
    Laroche-Joubert N, Marsy S, Michelet S, Imbert-Teboul M, Doucet A (2002) Protein kinase A-independent activation of ERK and H, K-ATPase by cAMP in native kidney cells: role of Epac I. J Biol Chem 277(21):18598–18604PubMedCrossRefGoogle Scholar
  41. 41.
    Li LB, Chen N, Ramamoorthy S, Chi L, Cui XN, Wang LC et al (2004) The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J Biol Chem 279(20):21012–21020PubMedCrossRefGoogle Scholar
  42. 42.
    Li M, Chen D, Shiloh A, Luo J, Nikolaev AY, Qin J et al (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature 416(6881):648–653PubMedCrossRefGoogle Scholar
  43. 43.
    Li X, Yang B, Chen M, Klein JD, Sands JM, Chen G (2014) Activation of PKC-α and Src increases UT-A1 α-2, 6 sialylation. J Am Soc Nephrol 25 (in press)Google Scholar
  44. 44.
    Li Y, Konings IB, Zhao J, Price LS, de Heer E, Deen PM (2008) Renal expression of exchange protein directly activated by cAMP (Epac) 1 and 2. Am J Physiol Renal Physiol 295(2):F525–F533PubMedCrossRefGoogle Scholar
  45. 45.
    Lin DH, Yue P, Pan CY, Sun P, Zhang X, Han Z et al (2009) POSH stimulates the ubiquitination and the clathrin-independent endocytosis of ROMK1 channels. J Biol Chem 284(43):29614–29624PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Lingwood D, Simons K (2010) Lipid rafts as a membrane-organizing principle. Science 327(5961):46–50PubMedCrossRefGoogle Scholar
  47. 47.
    Mao Y, Shang Y, Pham VC, Ernst JA, Lill JR, Scales SJ et al (2011) Polyubiquitination of insulin-like growth factor I receptor (IGF-IR) activation loop promotes antibody-induced receptor internalization and down-regulation. J Biol Chem 286(48):41852–41861PubMedCentralPubMedCrossRefGoogle Scholar
  48. 48.
    Morenilla-Palao C, Pertusa M, Meseguer V, Cabedo H, Viana F (2009) Lipid raft segregation modulates TRPM8 channel activity. J Biol Chem 284(14):9215–9224PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Musch MW, Puffer AB, Goldstein L (2008) Volume expansion stimulates monoubiquitination and endocytosis of surface-expressed skate anion-exchanger isoform. Am J Physiol Regul Integr Comp Physiol 294(5):R1657–R1665PubMedCrossRefGoogle Scholar
  50. 50.
    Nielsen S, Knepper MA (1993) Vasopressin activates collecting duct urea transporters and water channels by distinct physical processes. Am J Physiol 265(2 Pt 2):F204–F213PubMedGoogle Scholar
  51. 51.
    Nielsen S, Terris J, Smith CP, Hediger MA, Ecelbarger CA, Knepper MA (1996) Cellular and subcellular localization of the vasopressin-regulated urea transporter in rat kidney. Proc Natl Acad Sci USA 93(11):5495–5500PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    Pech V, Klein JD, Kozlowski SD, Wall SM, Sands JM (2005) Vasopressin increases urea permeability in the initial IMCD from diabetic rats. Am J Physiol Renal Physiol 289(3):F531–F535PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Rinschen MM, Yu MJ, Wang G, Boja ES, Hoffert JD, Pisitkun T et al (2010) Quantitative phosphoproteomic analysis reveals vasopressin V2-receptor-dependent signaling pathways in renal collecting duct cells. Proc Natl Acad Sci USA 107(8):3882–3887PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Sands JM, Blount MA, Klein JD (2011) Regulation of renal urea transport by vasopressin. Trans Am Clin Climatol Assoc 122:82–92PubMedCentralPubMedGoogle Scholar
  55. 55.
    Sands JM, Flores FX, Kato A, Baum MA, Brown EM, Ward DT et al (1998) Vasopressin-elicited water and urea permeabilities are altered in IMCD in hypercalcemic rats. Am J Physiol 274(5 Pt 2):F978–F985PubMedGoogle Scholar
  56. 56.
    Sands JM, Layton HE (2014) Advances in understanding the urine-concentrating mechanism. Annu Rev Physiol 76:387–409PubMedCrossRefGoogle Scholar
  57. 57.
    Sands JM, Nonoguchi H, Knepper MA (1987) Vasopressin effects on urea and H2O transport in inner medullary collecting duct subsegments. Am J Physiol 253(5 Pt 2):F823–F832PubMedGoogle Scholar
  58. 58.
    Sands JM, Schrader DC (1991) An independent effect of osmolality on urea transport in rat terminal inner medullary collecting ducts. J Clin Invest 88(1):137–142PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Shayakul C, Knepper MA, Smith CP, DiGiovanni SR, Hediger MA (1997) Segmental localization of urea transporter mRNAs in rat kidney. Am J Physiol 272(5 Pt 2):F654–F660PubMedGoogle Scholar
  60. 60.
    Shayakul C, Steel A, Hediger MA (1996) Molecular cloning and characterization of the vasopressin-regulated urea transporter of rat kidney collecting ducts. J Clin Invest 98(11):2580–2587PubMedCentralPubMedCrossRefGoogle Scholar
  61. 61.
    Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11(10):688–699PubMedCrossRefGoogle Scholar
  62. 62.
    Star RA, Nonoguchi H, Balaban R, Knepper MA (1988) Calcium and cyclic adenosine monophosphate as second messengers for vasopressin in the rat inner medullary collecting duct. J Clin Invest 81(6):1879–1888PubMedCentralPubMedCrossRefGoogle Scholar
  63. 63.
    Stewart GS, O’Brien JH, Smith CP (2008) Ubiquitination regulates the plasma membrane expression of renal UT-A urea transporters. Am J Physiol Cell Physiol 295(1):C121–C129PubMedCrossRefGoogle Scholar
  64. 64.
    Su H, Carter CB, Frohlich O, Cummings RD, Chen G (2012) Glycoforms of UT-A3 urea transporter with poly-N-acetyllactosamine glycosylation have enhanced transport activity. Am J Physiol Renal Physiol 303(2):F201–F208PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    Su H, Carter CB, Laur O, Sands JM, Chen G (2012) Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells. Am J Physiol Renal Physiol 303(9):F1325–F1332PubMedCentralPubMedCrossRefGoogle Scholar
  66. 66.
    Su H, Chen M, Sands JM, Chen G (2013) Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation. Am J Physiol Renal Physiol 305(12):F1775–F1782PubMedCrossRefGoogle Scholar
  67. 67.
    Sun T, Guo J, Shallow H, Yang T, Xu J, Li W et al (2011) The role of monoubiquitination in endocytic degradation of human ether-a-go-go-related gene (hERG) channels under low K+ conditions. J Biol Chem 286(8):6751–6759PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    Terrell J, Shih S, Dunn R, Hicke L (1998) A function for monoubiquitination in the internalization of a G protein-coupled receptor. Mol Cell 1(2):193–202PubMedCrossRefGoogle Scholar
  69. 69.
    Thai TL, Blount MA, Klein JD, Sands JM (2012) Lack of protein kinase C-alpha leads to impaired urine concentrating ability and decreased aquaporin-2 in angiotensin II-induced hypertension. Am J Physiol Renal Physiol 303(1):F37–F44PubMedCentralPubMedCrossRefGoogle Scholar
  70. 70.
    Uawithya P, Pisitkun T, Ruttenberg BE, Knepper MA (2008) Transcriptional profiling of native inner medullary collecting duct cells from rat kidney. Physiol Genomics 32(2):229–253PubMedCentralPubMedCrossRefGoogle Scholar
  71. 71.
    Umebayashi K, Stenmark H, Yoshimori T (2008) Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol Biol Cell 19(8):3454–3462PubMedCentralPubMedCrossRefGoogle Scholar
  72. 72.
    Varghese B, Barriere H, Carbone CJ, Banerjee A, Swaminathan G, Plotnikov A et al (2008) Polyubiquitination of prolactin receptor stimulates its internalization, postinternalization sorting, and degradation via the lysosomal pathway. Mol Cell Biol 28(17):5275–5287PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Wall SM, Han JS, Chou CL, Knepper MA (1992) Kinetics of urea and water permeability activation by vasopressin in rat terminal IMCD. Am J Physiol 262(6 Pt 2):F989–F998PubMedGoogle Scholar
  74. 74.
    Wang Y, Klein JD, Blount MA, Martin CF, Kent KJ, Pech V et al (2009) Epac regulates UT-A1 to increase urea transport in inner medullary collecting ducts. J Am Soc Nephrol 20(9):2018–2024PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    Wang Y, Klein JD, Froehlich O, Sands JM (2013) Role of protein kinase C-alpha in hypertonicity-stimulated urea permeability in mouse inner medullary collecting ducts. Am J Physiol Renal Physiol 304(2):F233–F238PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Wang Y, Klein JD, Liedtke CM, Sands JM (2010) Protein kinase C regulates urea permeability in the rat inner medullary collecting duct. Am J Physiol Renal Physiol 299(6):F1401–F1406PubMedCentralPubMedCrossRefGoogle Scholar
  77. 77.
    Welker P, Bohlick A, Mutig K, Salanova M, Kahl T, Schluter H et al (2008) Renal Na+-K+-Cl- cotransporter activity and vasopressin-induced trafficking are lipid raft-dependent. Am J Physiol Renal Physiol 295(3):F789–F802PubMedCentralPubMedCrossRefGoogle Scholar
  78. 78.
    Xiong Y, Antalffy G, Enyedi A, Strehler EE (2009) Apical localization of PMCA2w/b is lipid raft-dependent. Biochem Biophys Res Commun 384(1):32–36PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Yao L, Huang DY, Pfaff IL, Nie X, Leitges M, Vallon V (2004) Evidence for a role of protein kinase C-alpha in urine concentration. Am J Physiol Renal Physiol 287(2):F299–F304PubMedCrossRefGoogle Scholar
  80. 80.
    Ye S, Cihil K, Stolz DB, Pilewski JM, Stanton BA, Swiatecka-Urban A (2010) c-Cbl facilitates endocytosis and lysosomal degradation of cystic fibrosis transmembrane conductance regulator in human airway epithelial cells. J Biol Chem 285(35):27008–27018PubMedCentralPubMedCrossRefGoogle Scholar
  81. 81.
    You G, Smith CP, Kanai Y, Lee WS, Stelzner M, Hediger MA (1993) Cloning and characterization of the vasopressin-regulated urea transporter. Nature 365(6449):844–847PubMedCrossRefGoogle Scholar
  82. 82.
    Yu MJ, Pisitkun T, Wang G, Shen RF, Knepper MA (2006) LC-MS/MS analysis of apical and basolateral plasma membranes of rat renal collecting duct cells. Mol Cell Proteomics 5(11):2131–2145PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Zhang C, Sands JM, Klein JD (2002) Vasopressin rapidly increases phosphorylation of UT-A1 urea transporter in rat IMCDs through PKA. Am J Physiol Renal Physiol 282(1):F85–F90PubMedGoogle Scholar
  84. 84.
    Zhuo Y, Bellis SL (2011) Emerging role of alpha2,6-sialic acid as a negative regulator of galectin binding and function. J Biol Chem 286(8):5935–5941PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Physiology, and Renal Division Department of MedicineEmory University School of MedicineAtlantaUSA

Personalised recommendations