Modeling the Spatio-temporal Dynamics of the Pine Processionary Moth



“This chapter summarizes several modeling studies conducted on the pine processionary moth range expansion in a spatio-temporally heterogeneous environment. These studies provide new approaches for analyzing and modeling range expansions and contribute to a better understanding of the effects of a wide variety of factors on the spatio-temporal dynamics of the pine processionary moth. These dynamics mostly depend on the dispersal, survival and reproduction characteristics of the species, and these characteristics fluctuate in time and space, depending on environmental and biological factors.”


Range Expansion Human Population Density Dispersal Kernel Fragmentation Rate Climate Envelope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Austerlitz, F., & Garnier-Géré, P. H. (2003). Modelling the impact of colonization on genetic diversity and differentiation of forest trees: Interaction of life cycle, pollen flow and seed long-distance dispersal. Heredity, 90(4), 282–290.PubMedCrossRefGoogle Scholar
  2. Barton, N. H., & Turelli, M. (2011). Spatial waves of advance with bistable dynamics: Cytoplasmic and genetic analogues of Allee effects. The American Naturalist, 178(3), 48–75.CrossRefGoogle Scholar
  3. Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., & Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15, 2084–2096.CrossRefGoogle Scholar
  4. Battisti, A., Stastny, M., Buffo, E., & Larsson, S. (2006). A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12, 662–671.CrossRefGoogle Scholar
  5. Berestycki, H., Roquejoffre, J.-M., & Rossi, L. (2013a). The influence of a line with fast diffusion on Fisher-KPP propagation. Journal of Mathematical Biology, 66(415), 743–766.PubMedCrossRefGoogle Scholar
  6. Berestycki, H., Roquejoffre, J.-M., & Rossi, L. (2013b). Fisher-KPP propagation in the presence of a line: Further effects. Nonlinearity, 26, 2623–2640.CrossRefGoogle Scholar
  7. Bouhot-Delduc, L. (2005). La gradation de la chenille processionnaire du pin a culminé sur la façade atlantique lors de l’hiver 2003–2004. In : Bilan de la Santé des Forêts en 2004, Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales, Paris, 7 p.Google Scholar
  8. Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Memoirs of the American Mathematical Society, 285, 190 p.Google Scholar
  9. Chandrasekhar, S. (1943). Stochastic problems in physics and astronomy. Reviews of Modern Physics, 15, 1–91.CrossRefGoogle Scholar
  10. Clark, J. S. (1998). Why trees migrate so fast: Confronting theory with dispersal biology and the paleorecord. The American Naturalist, 152, 204–224.PubMedCrossRefGoogle Scholar
  11. Clark, J. S., Fastie, C., Hurtt, G., Jackson, S. T., Johnson, C., King, G., Lewis, M., Lynch, J., Pacala, S., Prentice, I. C., Schupp, E. W., Webb, T., III, & Wyckoff, P. (1998). Reid’s paradox of rapid plant migration. BioScience, 48, 13–24.CrossRefGoogle Scholar
  12. Coville, J., & Dupaigne, L. (2007). On a nonlocal reaction diffusion equation arising in population dynamics. Proceedings of the Royal Society of Edinburgh A, 137, 1–29.CrossRefGoogle Scholar
  13. CTGREF-INRA. (1980). La chenille processionnaire du pin. Organisation de la surveillance en forêt à partir de 1980. CTGREF, Division de la Protection de la Nature, Saint Martin d’Hères & INRA, Station de Zoologie Forestière, Avignon, France, 40 p.Google Scholar
  14. Démolin, G. (1969). Bioecología de la procesionaria del pino. Thaumetopoea pityocampa Schiff. Incidencias de los factores climáticos. Boletin del Servicio de Plagas Forestales, 23, 9–24.Google Scholar
  15. Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R., & Mearns, L. O. (2000). Climate extremes: Observations, modeling, and impacts. Science, 289, 2068–2074.PubMedCrossRefGoogle Scholar
  16. Excoffier, L., Foll, M., & Petit, R. J. (2009). Genetic consequences of range expansions. Annual Review of Ecology, Evolution and Systematics, 40, 481–501.CrossRefGoogle Scholar
  17. Fedotov, S. (2001). Front propagation into an unstable state of reaction-transport systems. Physical Review Letters, 86(5), 926–929.PubMedCrossRefGoogle Scholar
  18. Garnier, J. (2011). Accelerating solutions in integro-differential equations. SIAM Journal on Mathematical Analysis, 43, 1955–1974.CrossRefGoogle Scholar
  19. Garnier, J., Giletti, T., Hamel, F., & Roques, L. (2012a). Inside dynamics of pulled and pushed fronts. Journal de Mathématiques Pures et Appliquées, 98(4), 428–449.CrossRefGoogle Scholar
  20. Garnier, J., Roques, L., & Hamel, F. (2012b). Success rate of a biological invasion in terms of the spatial distribution of the founding population. Bulletin of Mathematical Biology, 74, 453–473.PubMedCrossRefGoogle Scholar
  21. Goussard, F., Saintonge, F.-X., Géri, C., Auger-Rozenberg, M.-A., Pasquier-Barre, F., & Rousselet, J. (1999). Accroissement des risques de dégâts de la processionnaire du pin, Thaumetopoea pityocampa Denis & Schiff. en région Centre, dû au réchauffement climatique (Lepidoptera, Thaumetopoeidae). Annales de la Société Entomologique de France, 35, 341–343.Google Scholar
  22. Grindrod, P. (1996). Theory and applications of reaction-diffusion equations. Oxford: Clarendon Press, 275 p.Google Scholar
  23. Hamel, F., & Roques, L. (2010). Fast propagation for KPP equations with slowly decaying initial conditions. Journal of Differential Equations, 249, 1726–1745.CrossRefGoogle Scholar
  24. Hastings, A., Cuddington, K., Davies, K. F., Dugaw, C. J., Elmendorf, S., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B. A., Moore, K., Taylor, C., & Thomson, D. (2005). The spatial spread of invasions, new developments in theory and evidence’. Ecology Letters, 8(1), 91–101.CrossRefGoogle Scholar
  25. Hoch, G., Toffolo, E. P., Netherer, S., Battisti, A., & Schopf, A. (2009). Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology, 11, 313–320.CrossRefGoogle Scholar
  26. Huchon, H., & Démolin, G. (1970). La bioécologie de la processionnaire du pin. Dispersion potentielle – Dispersion actuelle. Revue Forestière Française (N° spécial “La lutte biologique en forêt”), 220–234.Google Scholar
  27. Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282–291.CrossRefGoogle Scholar
  28. Kareiva, P. M. (1983). Local movement in herbivorous insects: Applying a passive diffusion model to mark-recapture field experiments. Oecologia, 57, 322–327.CrossRefGoogle Scholar
  29. Kendall, D. G. (1965). Mathematical models of the spread of infection. In Mathematics and computer science in biology and medicine – Proceedings of the conference of the Medical Research Council, Oxford, 1964 (pp. 213–225). London: Stationery Office.Google Scholar
  30. Klein, E. K., Lavigne, C., & Gouyon, P.-H. (2006). Mixing of propagules from discrete sources at long distance, comparing a dispersal tail to an exponential. BMC Ecology, 6, 3.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Klein, E. K., Desassis, N., & Oddou-Muratorio, S. (2008). Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz. Whole inter-individual variance of male fecundity estimated jointly with dispersal kernel. Molecular Ecology, 17, 3323–3336.PubMedCrossRefGoogle Scholar
  32. Kolmogorov, A. N., Petrovskii, I. G., & Piskunov, N. S. (1937). A study of the diffusion equation with increase in the quantity of matter, and its application to a biological problem. Bulletin of Moscow University, Mathematics Series A, 1, 1–25.Google Scholar
  33. Kot, M., Lewis, M., & van den Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042.CrossRefGoogle Scholar
  34. Lewis, M. A., & Kareiva, P. (1993). Allee dynamics and the spread of invading organisms. Theoretical Population Biology, 43, 141–158.CrossRefGoogle Scholar
  35. Lewis, M. A., & Van Den Driessche, P. (1993). Waves of extinction from sterile insect release. Mathematical Biosciences, 116(2), 221–247.PubMedCrossRefGoogle Scholar
  36. Markoff, A. A. (1912). Wahrscheinlichkeitsrechnung. Leipzig: Teubner, 318 p.Google Scholar
  37. Medlock, J., & Kot, M. (2003). Spreading disease: Integro-differential equations old and new. Mathematical Biosciences, 184(2), 201–222.PubMedCrossRefGoogle Scholar
  38. Meehl, G. A., Stocker, T. F., Collins, W. D., Friedlingstein, P., Gaye, A. T., Gregory, J. M., Kitoh, A., Knutti, R., Murphy, J. M., Noda, A., Raper, S. C. B., Watterson, I. G., Weaver, A. J., & Zhao, Z.-C. (2007). Global climate projections. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate change 2007, the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 747–845). Cambridge/New York: Cambridge University Press.Google Scholar
  39. Méndez, V., Pujol, T., & Fort, J. (2002). Dispersal probability distributions and the wavefront speed problem. Physical Review E, 65(4), 1–6.CrossRefGoogle Scholar
  40. Mollison, D. (1972). Possible velocities for a simple. Advances in Applied Probability, 4, 233–257.CrossRefGoogle Scholar
  41. Mollison, D. (1977). Spatial contact models for ecological and epidemic spread. Journal of the Royal Statistical Society, Series B, 39, 283–326.Google Scholar
  42. Nichols, R. A., & Hewitt, G. M. (1994). The genetic consequences of long distance dispersal during colonization. Heredity, 72, 312–317.CrossRefGoogle Scholar
  43. Perez-Contreras, T., Soler, J. J., & Soler, M. (2003). Why do pine processionary caterpillars Thaumetopoea pityocampa (Lepidoptera, Thaumetopoeidae) live in large groups? An experimental study. Annales Zoologici Fennici, 40(6), 505–515.Google Scholar
  44. Pluess, A. R. (2011). Pursuing glacier retreat, genetic structure of a rapidly expanding larix decidua population. Molecular Ecology, 20(3), 473–485.PubMedCrossRefGoogle Scholar
  45. Robinet, C. (2006). Modélisation mathématique des phénomènes d’invasion en écologie, exemple de la chenille processionnaire du pin. Thèse de doctorat, spécialité Mathématiques et Applications aux Sciences de l’Homme, Ecole des Hautes Études en Sciences Sociales (E.H.E.S.S.), Paris, France, 208 p.Google Scholar
  46. Robinet, C., & Liebhold, A. (2009). Dispersal polymorphism in an invasive forest pest affects its ability to establish. Ecological Applications, 19, 1935–1943.PubMedCrossRefGoogle Scholar
  47. Robinet, C., Baier, P., Pennerstorfer, J., Schopf, A., & Roques, A. (2007). Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Global Ecology and Biogeography, 16, 460–471.CrossRefGoogle Scholar
  48. Robinet, C., Roques, A., Pan, H. Y., Fang, G. F., Ye, J. R., Zhang, Y. Z., & Sun, J. H. (2009). Role of human- mediated dispersal in the spread of the pinewood nematode in China. PLoS One, 4(2), e4646. doi:  10.1371/journal.pone.0004646
  49. Robinet, C., Rousselet, J., Goussard, F., Garcia, J., & Roques, A. (2010a). Modelling the range expansion with global warming of an urticating moth: A case study from France. In J. Settele, L. Penev, T. Georgiev, R. Grabaum, V. Grobelnik, V. Hammen, S. Klotz, & I. Kühn (Eds.), Atlas of biodiversity risk (pp. 86–87). Sofia/Moscow: Pensoft Publishers.Google Scholar
  50. Robinet, C., Rousselet, J., Imbert, C.-E., Sauvard, D., Garcia, J., Goussard, F., & Roques, A. (2010b). Le réchauffement climatique et le transport accidentel par l’homme responsables de l’expansion de la chenille processionnaire du pin. Forêt Wallonne, 108, 19–27.Google Scholar
  51. Robinet, C., Imbert, C.-E., Rousselet, J., Sauvard, D., Garcia, J., Goussard, F., & Roques, A. (2012). Human-mediated long-distance jumps of the pine processionary moth in Europe. Biological Invasions, 14, 1557–1569.CrossRefGoogle Scholar
  52. Robinet, C., Rousselet, J., Pineau, P., Miard, F., & Roques, A. (2013). Are heatwaves susceptible to mitigate the expansion of a species progressing with global warming? Ecology and Evolution, 3, 2947–2957.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Robinet, C., Rousselet, J., & Roques, A. (2014). Potential spread of the pine processionary moth in France: Preliminary results from a simulation model and future challenges. Annals of Forest Science, 71, 149–160.CrossRefGoogle Scholar
  54. Ronnås, C., Larsson, S., Pitacco, A., & Battisti, A. (2010). Effects of colony size on larval performance in a processionary moth. Ecological Entomology, 35, 436–445.Google Scholar
  55. Roques, L., Roques, A., Berestycki, H., & Kretzschmar, A. (2008). A population facing climate change, joint influences of Allee effects and environmental boundary geometry. Population Ecology, 50(2), 215–225.CrossRefGoogle Scholar
  56. Roques, L., Hamel, F., Fayard, J., Fady, B., & Klein, E. K. (2010). Recolonization by diffusion can generate increasing rates of spread. Theoretical Population Biology, 77, 205–212.PubMedCrossRefGoogle Scholar
  57. Roques, L., Soubeyrand, S., & Rousselet, J. (2011). A statistical-reaction-diffusion approach for analyzing expansion processes. Journal of Theoretical Biology, 274, 43–51.PubMedCrossRefGoogle Scholar
  58. Roques, L., Garnier, J., Hamel, F., & Klein, E. K. (2012). Allee effect promotes diversity in traveling waves of colonization. Proceedings of the National Academy of Sciences, 109, 8828–8833.CrossRefGoogle Scholar
  59. Rousselet, J., Zhao, R., Argal, D., Simonato, M., Battisti, A., Roques, A., & Kerdelhué, C. (2010). The role of topography in structuring the demographic history of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera, Notodontidae). Journal of Biogeography, 37, 1478–1490.Google Scholar
  60. Rousselet, J., Imbert, C.-E., Dekri, A., Garcia, J., Goussard, F., Vincent, B., Denux, O., Robinet, C., Dorkeld, F., Roques, A., & Rossi, J.-P. (2013). Assessing species distribution using Google Street View, a pilot study of the pine processionary moth. PLoS ONE, 8(10), e74918. doi: 10.1371/journal.pone.0074918
  61. Ruf, C., & Fieldler, K. (2000). Thermal gains through collective metabolic heat production in social caterpillars of Eriogaster lanestris. Naturwissenschaften, 87, 193–196.PubMedCrossRefGoogle Scholar
  62. Samalens, J.-C., & Rossi, J.-P. (2011). Does landscape composition alter the spatiotemporal distribution of the pine processionary moth in a pine plantation forest? Population Ecology, 53, 287–296.CrossRefGoogle Scholar
  63. Shigesada, N., & Kawasaki, K. (1997). Biological invasions, theory and practice (Oxford series in ecology and evolution). Oxford: Oxford University Press, 218 p.Google Scholar
  64. Soubeyrand, S., Laine, A. L., Hanski, I., & Penttinen, A. (2009a). Spatio-temporal structure of host-pathogen interactions in a metapopulation. The American Naturalist, 174, 308–320.PubMedCrossRefGoogle Scholar
  65. Soubeyrand, S., Neuvonen, S., & Penttinen, A. (2009b). Mechanical-statistical modeling in ecology, from outbreak detections to pest dynamics. Bulletin of Mathematical Biology, 71, 318–338.PubMedCrossRefGoogle Scholar
  66. Turchin, P. (1998). Quantitative analysis of movement, measuring and modeling population redistribution in animals and plants. Sunderland: Sinauer Associates, 396 p.Google Scholar
  67. Wikle, C. K. (2003). Hierarchical models in environmental science. International Statistical Review, 71, 181–199.CrossRefGoogle Scholar

Copyright information

© Éditions Quæ 2015

Authors and Affiliations

  1. 1.INRA, UR 546 Biostatistique et Processus SpatiauxAvignonFrance
  2. 2.INRA, UMR CBGP (Centre de Biologie pour la Gestion des Populations; INRA/CIRAD/IRD/Montpellier Supagro)Montferrier-sur-LezFrance
  3. 3.Ecole des Hautes Etudes en Sciences Sociales, CAMSParisFrance
  4. 4.INRA, UR633 URZF (Unité de Recherche Zoologie Forestière)F-45075 OrléansFrance
  5. 5.LAMA, UMR 5127 CNRSUniversité de SavoieLe Bourget-du-Lac CedexFrance
  6. 6.Institut de Mathématiques de ToulouseUniversité Paul SabatierToulouse Cedex 4France
  7. 7.Department of MathematicsUniversity of PaduaPaduaItaly

Personalised recommendations