Advertisement

Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa

  • Alain RoquesEmail author
  • Jérôme Rousselet
  • Mustafa Avcı
  • Dimitrios N. Avtzis
  • Andrea Basso
  • Andrea Battisti
  • Mohamed Lahbib Ben Jamaa
  • Atia Bensidi
  • Laura Berardi
  • Wahiba Berretima
  • Manuela Branco
  • Gahdab Chakali
  • Ejup Çota
  • Mirza Dautbašić
  • Horst Delb
  • Moulay Ahmed El Alaoui El Fels
  • Saïd El Mercht
  • Mhamed El Mokhefi
  • Beat Forster
  • Jacques Garcia
  • Georgi Georgiev
  • Milka M. Glavendekić
  • Francis Goussard
  • Paula Halbig
  • Lars Henke
  • Rodolfo Hernańdez
  • José A. Hódar
  • Kahraman İpekdal
  • Maja Jurc
  • Dietrich Klimetzek
  • Mathieu Laparie
  • Stig Larsson
  • Eduardo Mateus
  • Dinka Matošević
  • Franz Meier
  • Zvi Mendel
  • Nicolas Meurisse
  • Ljubodrag Mihajlović
  • Plamen Mirchev
  • Sterja Nasceski
  • Cynthia Nussbaumer
  • Maria-Rosa Paiva
  • Irena Papazova
  • Juan Pino
  • Jan Podlesnik
  • Jean Poirot
  • Alex Protasov
  • Noureddine Rahim
  • Gerardo Sańchez Peña
  • Helena Santos
  • Daniel Sauvard
  • Axel Schopf
  • Mauro Simonato
  • Georgi Tsankov
  • Eiko Wagenhoff
  • Annie Yart
  • Regino Zamora
  • Mohamed Zamoum
  • Christelle Robinet
Chapter

Abstract

Pine processionary moth, Thaumetopea pityocampa, is a model insect indicator of global warming, the northwards and upwards range expansion of this Mediterranean species being directly associated with the recent warming up. The knowledge about the drivers of moth expansion is synthesized. A first standardized mapping of the northern expansion edge, from Western Europe to Turkey, is presented, then detailed for 20 countries of Europe, Asia Minor and North Africa, including future trends. Additional data about the responses of the other Thaumetopoea species are given. Finally, the chapter points out the importance of the man-mediated introductions in the expansion process.

Keywords

Global Warming Host Tree Flight Period Pinus Halepensis Paris Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abgrall, J. F. (2001). Le réseau surveillance processionnaire du pin en France 1969–1989. Conception – historique – résultats. Groupement de Nogent sur Vernisson: Cemagref, Division Ecosystèmes Forestiers et Paysages, 104 p.Google Scholar
  2. Acatay, A. (1953). Investigation of pine processionary moth (Thaumetopoea pityocampa Schiff. = Thaumetopoea wilkinsoni Tams) and its control on the islands. İstanbul University Faculty of Forestry Journal, 3(1–2), 29–47 [in Turkish].Google Scholar
  3. AEMET. (2009). Generación de escenarios regionalizados de cambio climático para España. Ministerio de Medio Ambiente, Medio Rural y Marino, 145 p.Google Scholar
  4. AFN. (2010). Inventário Florestal Nacional : Portugal Continental: IFN 5, 2005–2006. Autoridade Florestal Nacional, Lisboa, Portugal [online]. http://www.icnf.pt/portal/florestas/ifn/ifn5/relatorio-final-ifn5-florestat-1
  5. Agenjo, J. (1941). Mon ografía de la Familia Thaumetopoeidae (Lep.). EOS, Revista Española de Entomología, 17, 69–130.Google Scholar
  6. Akbulut, S., Yüksel, B., & Keten, A. (2002). Preliminary results of pine processionary moth control by using pheromone traps in Düzce Regional Forest Directory. In M. Kanat (Ed.), Proceedings of the symposium for pine processionary moth problem in Turkey and solutions, 24–25 April 2002, Kahramanmaraş, Turkey (pp. 52–59) [in Turkish].Google Scholar
  7. Al-Saghir, M., & Porter, D. (2012). Taxonomic revision of the genus Pistacia L. (Anacardiaceae). American Journal of Plant Sciences, 3, 12–32.Google Scholar
  8. Androić, M. (1957). Borov četnjak gnjezdar (Cnethocampa pityocampa Schiff) biološko ekološka studija. Glasnik za šumske pokuse, 13, 351–460.Google Scholar
  9. Androić, M. (1978). Neke bioekološke karakteristike borova četnjaka (Thaumatopoea pityocampa Schiff.) i mogućnosti njegova suzbijanja. Šumarski list, 8–10, 333–341.Google Scholar
  10. Arabatzis, T. H. (1998). Shrubs and Trees in Greece I. Drama: Oikologiki Kinisi Dramas, Technological Educational Institute of Kavala, 292 p [in Greek].Google Scholar
  11. Arnaldo, P. S., & Torres, L. M. (2006). Effect of different hosts on Thaumetopoea pityocampa populations in northeast Portugal. Phytoparasitica, 34, 523–530.Google Scholar
  12. Arnaldo, P. S., Chacim, S., & Lopes, D. (2010). Effects of defoliation by the pine processionary moth Thaumetopoea pityocampa on biomass growth of young stands of Pinus pinaster in northern Portugal. iForest -. Biogeosciences and Forestry, 3(6), 159–162.Google Scholar
  13. ARSO. (2012). Arhiv Državne meteorološke službe, Ministrstvo za okolje in prostor, Agencija RS za okolje. Retrieved December 13, 2012, from http://www.meteo.si/
  14. Avcı, M. (2011, 17–19 October). Altitude depending differentiation of flight period of Thaumetopoea wilkinsoni in southern Turkey. In URTICLIM/PCLIM joint meeting, Belgodère, Corsica, France.Google Scholar
  15. Avtzis, N. (1983). Das Auftreten von Thaumetopoea pityocampa Schiff. (Lep., Thaumetopoeidae) in Griechenland. Dasiki Ereyna, 2(4), 137–144.Google Scholar
  16. Avtzis, N. (1984). Bekämpfung von Thaumetopoea pityocampa Sciff. mit Dimilin, CME, 134.06 und Bactospeine-cream. Dasiki Ereyna, 2(5), 221–230.Google Scholar
  17. Avtzis, N. (1986). Development of Thaumetopoea pityocampa Schiff. (Lepidoptera: Thaumetopoeidae) in relation to food consumption. Forest Ecology and Management, 15, 65–68.Google Scholar
  18. Avtzis N., & Avtzis D. N. (2001). Control of the most dangerous insects of Greek forests and plantations. In A. M. Liebhold, M. L. McManus, I. S. Otvos, S. L. C. Fosbroke (Eds.), Proceedings of Integrated management and dynamics of forest defoliating insects, 15–19 August 1999, Victoria, B.C. (pp. 1–5).Google Scholar
  19. Bacallado Aránega, J. J., & Hernández Pacheco, J. J. (1990). Thaumetopoea herculeana Rambur, 1840 (Lepidoptera: Thaumetopoeidae) nueva especie para la fauna de Canarias. Revista de la Academia Canaria de Ciencias Folia Canariensis Academiae Scientiarum, 2(1), 93–97.Google Scholar
  20. Baker, R., Caffier, D., Choiseul, J. W., De Clercq, P., Dormannsné-Simon, E., Gerowitt, B., Karadjova, O. E., Lövei, G., Lansink, A. O., Makowski, D., Manceau, C., Manici, L., Perdikis, D., Puglia, A. P., Schans, J., Schrader, G., Steffek, R., Strömberg, A., Tiilikkala, K., van Lenteren, J. C., & Vloutoglou, I. (2009). Evaluation of a pest risk analysis on Thaumetopoea processionea L., the Oak Processionary moth, prepared by the UK and extension of its scope to the EU territory, Scientific Opinion of the Panel on Plant Health, European Food Safety Authority. The EFSA Journal, 491, 1–63.Google Scholar
  21. Barbey, A. (1925). Traité d’entomologie forestière (2nd ed.). Paris: Berger-Levraut, 749 p.Google Scholar
  22. Barrento, M. J., Santos, H., Branco, M., & Paiva, M. R. (2008). Monitorização da processionária do pinheiro, Thaumetopoea pityocampa. In M. Branco, C. Valente, & M. R. Paiva (Eds.), Pragas e doenças em pinhal e eucaliptal – desafios para a sua gestão integrada. Lisboa: ISA Press, 234 p.Google Scholar
  23. Battisti, A., Stastny, M., Netherer, S., Robinet, C., Schopf, A., Roques, A., & Larsson, S. (2005). Expansion of geographic range in the pine processionary moth caused by increased winter temperatures. Ecological Applications, 15, 2084–2096.Google Scholar
  24. Battisti, A., Stastny, M., Buffo, E., & Larsson, S. (2006). A rapid altitudinal range expansion in the pine processionary moth produced by the 2003 climatic anomaly. Global Change Biology, 12, 662–671.Google Scholar
  25. Battisti, A., Holm, G., Fagrell, B., & Larsson, S. (2011). Urticating hairs in arthropods: Their nature and medical significance. Annual Review of Entomology, 56, 203–220.PubMedGoogle Scholar
  26. Beltram, V. (1947). Borov prelac (Cnethocampa pityocampa). Šumarski list, 4–5, 119–127.Google Scholar
  27. Ben Jamâa, M. L. (1992). Etude des facteurs de mortalité des œufs de la processionnaire du pin (Thaumetopoea pityocampa Schiff.) (Lép., Thaumetopoeidae) au Maroc et effet des traitements sur les parasitoïdes oophages. Mémoire de 3ème cycle., I.A.V Hassan II, déparement de Zoologie, Rabat, Maroc, 117 p.Google Scholar
  28. Ben Jamâa, M. L., & Jerraya, A. (1999). Essai de lutte contre la processionnaire du pin, Thaumetopoea pityocampa Schiff. (Lep., Thaumetopoeïdae), à l’aide de Bacillus thuringiensis Kurstaki (ECOTECH-PRO). Annales de l’INRGREF, 3, 3–12.Google Scholar
  29. Benazoun, A. E. (1976). Etude de quelques caractéristiques bioécologiques de la processionnaire du pin (Thaumetopoea pityocampa SCHIFF.) (Lép., Thaumetopoeidae) dans le peuplement de pin d’Alep dans l’Oriental. Mémoire de fin d’études d’Ingénieur Phytosanitaire, E.N.A., Meknès, Algérie, 43 p.Google Scholar
  30. Biliotti, E. (1956). Biologie de Phryxe caudata Rondani (Dipt. Larvaevoridae) parasite de la processionnaire du pin (Thaumetopoea pityocampa' Schiff.). Revue de Pathologie Végétale et Entomologie Agricole de France, 35, 50–65.Google Scholar
  31. Bouhot-Delduc, L. (2005). Dynamique des populations de la processionnaire du pin et extension de son aire de colonisation de 1981 à 2004 en France. In Les Cahier du DSF 1–2005, La santé des forêts (France) en 2003 et 2004, Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales, Paris, 6 p.Google Scholar
  32. Branco, M., Santos, M., Calvão, T., Telfer, G., & Paiva, M. R. (2008). Arthropod diversity sheltered in Thaumetopoea pityocampa (Lepidoptera: Notodontidae) larval nests. Insect Conservation and Diversity, 1, 215–221.Google Scholar
  33. Breuer, M., Devkota, B., Douma-Petridou, E., Koutsaftikis, A., & Schmidt, G. H. (1989). Studies on the exposition and temperature of nests of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) in Greece. Journal of Applied Entomology, 107, 370–375.Google Scholar
  34. Bryner, R. (2000). Thaumetopoeidae – Prozessionsspinner. In Pro Natura – Schweizerischer Bund für Naturschutz: Schmetterlinge und ihre Lebensräume, Fotorotar, Egg/Zürich, Switzerland (pp. 515–524).Google Scholar
  35. Buffo, E., Battisti, A., Stastny, M., & Larsson, S. (2007). Temperature as a predictor of survival of the pine processionary moth in the Italian Alps. Agricultural and Forest Entomology, 9, 65–72.Google Scholar
  36. Burić, D. (2011). Indexes of temperature and precipitation extremes in Podgorica on the period 1951–2008. Journal of the Geographical Institute “Jovan Cvijić” Belgrade, 61(1), 31–41.Google Scholar
  37. Buxton, R. D. (1983). Forest management and the pine processionary moth. Outlook on Agriculture, 12, 34–39.Google Scholar
  38. Buxton, R. D. (1990). The influence of host tree species on timing of pupation of Thaumetopoea pityocampa Schiff. (Lep., Thaumetopoeidae) and its exposure to parasitism by Phryxe caudata Rond. (Dipt., Larvaevoridae). Journal of Applied Entomology, 109, 302–310.Google Scholar
  39. Çanakçıoğlu, H., & Mol, T. (1998). Orman Entomolojisi Zararlı ve Yararlı Böcekler. İstanbul Üniversitesi Orman Ekolojisi, 541 p [in Turkish].Google Scholar
  40. Cassel-Lundhagen, A., Ronnås, C., Battisti, A., Wallén, J., & Larsson, S. (2013). Stepping-stone expansion and habitat loss explain a peculiar genetic structure and distribution of a forest insect. Molecular Ecology, 22, 3362–3375.PubMedGoogle Scholar
  41. Chown, S. L., Hoffmann, A. A., Kristensen, T. N., Angiletta, M. J., Stenseth, N. C., & Pertoldi, C. (2010). Adapting to climate change: A perspective from evolutionary physiology. Climate Research, 43, 3–15.Google Scholar
  42. Crozier, L. (2004). Warmer winters drive butterfly range expansion by increasing survivorship. Ecology, 85, 231–241.Google Scholar
  43. CTGREF-INRA. (1980). La chenille processionnaire du pin. Organisation de la surveillance en forêt à partir de 1980. CTGREF, Division de la Protection de la Nature, Saint Martin d’Hères & INRA, Station de Zoologie Forestière, Avignon, France, 40 p.Google Scholar
  44. Delepiney, J. (1939). Rapport sur la biologie de la chenille du cèdre Thaumetopoea pityocampa Schiff. au Maroc. Rabat: CNRF, 145p.Google Scholar
  45. Démolin, G. (1969a). Bioecología de la procesionaria del pino. Thaumetopoea pityocampa Schiff. Incidencias de los factores climáticos. Boletin del Servicio de Plagas Forestales, 23, 9–24.Google Scholar
  46. Démolin, G. (1969b). Comportement des adultes de Thaumetopoea pityocampa Schiff. Dispersion spatiale, importance écologique. Annales des Sciences Forestières, 26, 89–102.Google Scholar
  47. Démolin, G. (1990). Réflexions générales sur la diapause et les diapauses renforcées chez la processionnaire du pin, Thaumetopoea pityocampa Schiff. In Les Colloques de l’ INRA 52- Cycles saisonniers chez les invertébrés, Dourdan, France. 20–22 February 1990 (Oral communication, unpublished).Google Scholar
  48. Démolin, G., & Rivé, J. L. (1968). La processionnaire du pin en Tunisie. Les Annales de l’INRF Tunisie, 1(1), 1–19.Google Scholar
  49. Démolin, G., Abgrall, J. F., & Bouhot-Delduc, L. (1996). Evolution de l’aire de la processionnaire du pin en France. Les cahiers du DSF 1–1996, La santé des forêts en 1995. Ministère de l’Agriculture, de l’Alimentation, de la Pêche et des Affaires Rurales, Paris, 26–28.Google Scholar
  50. Devkota, B., & Schmidt, G. H. (1990). Larval development of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae) from Greece as influenced by different host plants under laboratory conditions. Journal of Applied Entomology, 109, 321–330.Google Scholar
  51. Dida, M., Ducci, F., & Zeneli, G. (2001). Black pine (Pinus nigra Arn.) in Albania. Forest Genetic Resources (FAO), 29, 45–49.Google Scholar
  52. Dissescu, G., & Ceianu, I. (1968). Cercetari asupra bioecologiei omizii procesionare a stejarului (Thaumetopoea processionea L.) (pp. 1–120). București: Centrul de Documentare tehnică pentru Economia Forestieră [in Romanian, Russian summary].Google Scholar
  53. Drenovsky, A. (1923). A harmful species of pine caterpillar in Bulgaria. Forestry Review, 7, 234–247 [in Bulgarian].Google Scholar
  54. Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., et al. (1997). Maximum and minimum temperature trends for the globe. Science, 277, 364–367.Google Scholar
  55. El Hassani, A., Graf, P., Hamdaoui, M., Harrachi, K., Messoussi, M., & Mzibri, A. (1994). Ravageurs et maladies des forêts au Maroc. In Guide pratique pour la protection phytosanitaire des forêts. Ministère de l’Agriculture et de la Mise en Valeur Agricole, Direction de la Protection des Végétaux, des Contrôles Techniques et de la Répression des Fraudes, Rabat, Morocco, 15–26.Google Scholar
  56. El Yousfi, M. (1982). Possibilités de traitement contre la processionnaire du pin à l’aide d’une préparation à base de Bacillus thuringiensis (BERL) en application au sol. Rabat: Station de Recherches Forestières, 6 p.Google Scholar
  57. El Yousfi M. (1983). Contribution à l’étude de la processionnaire du pin (Thaumetopoea pityocampa Schiff.), dans une cédraie du Moyen-Atlas. Station de Recherches Forestières, Rabat, Morocco, 8 p.Google Scholar
  58. EPPO. (2004). EPPO Standards: Thaumetopoea pityocampa- PM7/37. Bulletin OEPP/EPPO Bulletin, 34, 295–298.Google Scholar
  59. Evans, H. (2008, May 26–30). Increasing global trade and climate change: Co-factors increasing the international movement and establishment of forest pests. 2nd meeting of IUFRO working unit 7.03.12 Alien invasive species and international trade. Shepherdstown: National Conservation Training Center.Google Scholar
  60. Franzen, M. (2004). Interesting Macrolepidopteran finds in Sweden 2003. Entomologisk Tidskrift, 125, 27–42.Google Scholar
  61. Furth, D. G. (1985). The natural history of a Sumac tree, with an emphasis on the entomofauna. Transactions of the Connecticut Academy of Arts and Sciences, 46, 137–234.Google Scholar
  62. Furth, D., & Halperin, J. (1979). Observations on the phenology and biogeography of Thaumetopoea jordana (Stgr.) (Lep. Thaumetopoeidae). Israel Journal of Entomology, 13, 1–11.Google Scholar
  63. Gaston, K. J. (2003). The structure and dynamics of geographic ranges. Oxford: Oxford University Press.Google Scholar
  64. Georgevits, R. (1979). Vergleich der Ergebnisse zur Bekämpfung von Thaumetopoea pityocampa Schiff. mit Dimilin, Decis, Bactospeine, und Thuricide HP. Ministry of Agriculture, Anakinosis Idrimaton Dasikon Ereunon, 7(1), 7–34.Google Scholar
  65. Géri, C. (1980). Application des méthodes d’études démécologiques aux insectes défoliateurs forestiers. Cas de Diprion pini L. (Hyménoptère Diprionidae). Dynamique des populations de la processionnaire du pin Thaumetopoea pityocampa (Lépidoptère Thaumetopoeidae) dans l’île de Corse. Doctorat d’Etat, Université Paris Sud, Orsay, France, 289 p.Google Scholar
  66. Géri, C. (1983a). Répartition et évolution des populations de la processionnaire du pin, Thaumetopoea pityocampa Schiff, (Lep., Thaumetopoeidae) dans les montagnes corses. I. Regimes d’apparition de l’insecte et dynamique des populations. Acta Oecologica, Oecologia Applicata, 4, 247–268.Google Scholar
  67. Géri, C. (1983b). Dynamique de la processionnaire du pin dans la vallée de Niolo en Corse au cours des cycles 1965–1966, 1967–1968, 1969–1970. Rôle de certains caractères du milieu forestier. Annals of Forest Science, 40, 123–156.Google Scholar
  68. Ghaioule, M., Abourouh, M., Bakry, M., & Haddan, M. (1998). Insectes ravageurs des forêts au Maroc. Annales de la Recherche Forestière au Maroc, 31, 129–158.Google Scholar
  69. Glavendekić, M. (2010). Expansion of Thaumetopoea pityocampa Schiff. (Lepidoptera Thaumetopoeidae) an urticating pest with regard to climate change in Serbia and Montenegro. In International scientific conference on forest ecosystems and climate changes, 9–10 March 2010 (p. 133). Belgrade: Institute of Forestry (Abstract).Google Scholar
  70. Glavendekić, M., & Mihajlović, L. (2012). Distribution of Thaumetopoea pityocampa (Lepidoptera: Notodontidae) regarding to climate change in Serbia. In V. Nadykta & V. Ismailov (Eds.), Biological plant protection as the basis for agroecosystem stabilization (pp. 7, 57–60). Krasnodar.Google Scholar
  71. Gómez-Bustillo, M. R. (1979). Mariposas de la península Ibérica, Volume 4, Heteróceros II. Madrid: Instituto Nacional para la Conservación de la Naturaleza, Ministerio de Agricultura, 280 p.Google Scholar
  72. Gómez de Aizpúrua, C. (1986). Biología y morfología de las orugas, Lepidoptera; Cossidae, Sphingidae, Thaumetopoeidae, Lymantriidae, Arctiidae (Vol. 2, serie 6). Madrid: Ministerio de Agricultura, Pesca y Alimentación, 239 p.Google Scholar
  73. Goussard, F., Saintonge, F. X., Géri, C., Auger-Rozenberg, M. A., Pasquier-Barre, F., & Rousselet, J. (1999). Accroissement des risques de dégâts de la processionnaire du pin, Thaumetopoea pityocampa Denis & Schiff. en région Centre, dû au réchauffement climatique (Lepidoptera, Thaumetopoeidae). Annales de la Société Entomologique de France, 35, 341–343.Google Scholar
  74. Groenen, F., & Meurisse, N. (2012). Historical distribution of the Oak Processionary moth Thaumetopoea processionea in Europe suggests recolonization instead of expansion. Agricultural and Forest Entomology, 14, 147–155.Google Scholar
  75. Halperin, J. (1968). Means of dispersion of Thaumetopoea wilkinsoni in Israel. La-Ya’aran, 18, 117–123 [in Hebrew with English summary].Google Scholar
  76. Halperin, J. (1990). Life history of Thaumetopoea spp. (Lep., Thaumetopoeidae) in Israel. Journal of Applied Entomology, 110, 1–6.Google Scholar
  77. Harapin, M. (1984). Parazitski kompleks borova četnjaka (Thaumetopoea pityocampa Schiff.) i njegov utjecaj na dinamiku populacije. Thesis, Šumarski fakultet Sveučilišta u Zagrebu, 186 p.Google Scholar
  78. Hickling, R., Roy, D. B., Hill, J. K., & Thomas, C. D. (2005). A northward shift of range margins in British Odonata. Global Change Biology, 11, 502–506.Google Scholar
  79. Hill, J. K., Thomas, C. D., Fox, R., Telfer, M. G., Willis, S. G., Asher, J., et al. (2002). Responses of butterflies to twentieth century climate warming: Implications for future ranges. Proceedings of the Royal Society of London Series B–Biological Sciences, 269, 2163–2171.Google Scholar
  80. Hoch, G., Toffolo, E. P., Netherer, S., Battisti, A., & Schopf, A. (2009). Survival at low temperature of larvae of the pine processionary moth Thaumetopoea pityocampa from an area of range expansion. Agricultural and Forest Entomology, 11, 313–320.Google Scholar
  81. Huchon, H., & Démolin, G. (1970). La bioécologie de la processionnaire du pin. Dispersion potentielle – Dispersion actuelle. Revue Forestière Française (N° spécial “La lutte biologique en forêt”), 220–234.Google Scholar
  82. İpekdal, K. (2012). Delimitation and phylogeography of the pine processionary moth species, Thaumetopoea pityocampa and T. wilkinsoni. Ph.D. dissertation, Hacettepe University, Institute of Science, Ankara, Turkey, 194 p. [in Turkish].Google Scholar
  83. Jurc, M. (2001). Harmful entomofauna (Coleoptera, Lepidoptera, Hymenoptera) on Austrian pine (Pinus nigra Arn.) in Slovenia. In Proceedings of the 5th Slovenian Conference on Plant Protection, Catez ob Savi, Slovenia, 6–8 March 2001 (pp. 276–283).Google Scholar
  84. Jurc, D., Jakša, J., Jurc, M., Mavsar, R., Matjašič, D., & Jonozovič, M. (2003). Forest health – Slovenija 2002. Ljubljana: Slovenian Forestry Institute, Slovenian Forest Service, 69 p.Google Scholar
  85. Kafkas, S., & Perl-Treves, R. (2002). Inter-specific relationships in the genus Pistacia L. (Anacardiaceae) based on RAPD fingerprints. Horticulture Science, 37, 168–171.Google Scholar
  86. Kafol, A. (1951). The history of pine processionary moth. Slovenian Journal of Forestry, 9, 243–246.Google Scholar
  87. Kailidis, D. S. (1965). Control of the pine processionary caterpillar (Thaumetopoea pityocampa Schiff.) by helicopter in Greece during 1964. Athens: Ministry of Agriculture, No. 1.Google Scholar
  88. Kailidis, D. S. (1991). Forest entomology and zoology. Thessaloniki: Christodoulidi-Melenikou, 536 p [in Greek].Google Scholar
  89. Kanat, M., & Aknulut, S. (2005). Determination of some pest insect species damaging oak forests in the Southeast Anatolia Region (Kahramanmaraş) of Turkey. Science and Engineering, 8, 70–73.Google Scholar
  90. Keller, C. (1903). Untersuchungen über die Höhenverbreitung forstschädlicher Tiere in der Schweiz. Mitteilungen der Schweizerischen Anstalt für das Forstliche Versuchswesen, 8(1), 54–55.Google Scholar
  91. Kerdelhué, C., Zane, L., Simonato, M., Salvato, P., Rousselet, J., Roques, A., & Battisti, A. (2009). Quaternary history and contemporary patterns in a currently expanding species. BMC Evolutionary Biology, 9, 220.PubMedCentralPubMedGoogle Scholar
  92. Kerdelhué, C., Battisti, A., Burban, C., Branco, M., Cassel-Lundhagen, A., Ipekdal, K., Larsson, S., Lopez-Vaamonde, C., Magnoux, E., Mateus, E., Mendel, Z., Negrisolo, E., Paiva, M. R., Pivotto, I., Rocha, S., Ronnås, C., Roques, A., Rossi, J.-P., Rousselet, J., Salvato, P., Santos, H., Simonato, M., & Zane, L. (2014). Genetic diversity and structure at different spatial scales in the processionary moths. In A. Roques (Ed.), Processionary moths and climate change: An update. Dordrecht: Springer.Google Scholar
  93. Kusevska, M., Ivanov, B., & Donevski, L. (1978). Increase of population of the pine processionary (Thaumatopoea pityocampa Schiff.) in Macedonia (generation 1976/1977–1977/78). Sumarski pregled, 26(3–4), 3–23 [in Macedonian].Google Scholar
  94. Langhoffer, A. (1927). Šetočinje hrasta osim gubara [Contribution to the knowledge of the pest insects of the Croatian Coast]. Glasnik za Šumske pokuse [Annales Pro ExperimentisForesticis], 2, 150–185.Google Scholar
  95. Llubani, F., & Zadrima, F. (1989). Several biological aspects of the pine processionary moth and the means for its control. Buletini i Shkencave Bujqesore, 28(4), 107–113 [in Albanian].Google Scholar
  96. Luciano, P., Lentini, A., & Battisti, A. (2007). First record of Thaumetopoea pityocampa in Sardinia. In Proceedings of the Italian congress of entomology, 11–16 June 2007, Campobasso, Italy (p. 273).Google Scholar
  97. Liu, S. S., Zhang, G. M., & Zhu, J. (1995). Influence of temperature variations on rate of development in insects: Analysis of case studies from entomological literature. Annals of the Entomological Society of America, 88, 107–119.Google Scholar
  98. Martin, J. C. (2005). La processionnaire du pin, Thaumatopoea pityocampa (Denis et Schiffermüller). Biologie et protection des forêts. Synthèse des recherches bibliographiques et des connaissances, INRA Avignon, France, 62 p. Retrieved November 23, 2010, from http://www.prodinra.inra.fr/prodinra/pinra/index.xsp
  99. Masutti, L., & Battisti, A. (1990). Thaumetopoea pityocampa (Den. & Schiff.) in Italy. Bionomics and perspectives of integrated control. Journal of Applied Entomology, 110, 229–234.Google Scholar
  100. Mateus, E., Farral, H., Zhang, Q.-H., & Paiva, M. R. (1998). Relationship between the attack level by the processionary moth Thaumetopoea pityocampa and volatile monoterpene composition for twelve pine species. In 13th annual meeting of the International Society of Chemical Ecology, 20–24 June 1998, Ithaca, New York (p. 54) (abstract).Google Scholar
  101. Mendel, Z. (1988). Host selection by the pine processionary caterpillar Thaumetopoea wilkinsoni. Phytoparasitica, 16, 101–108.Google Scholar
  102. Mendel, Z. (1990). On the origin of the pine processionary caterpillar, Thaumetopoea wilkinsoni Tams (Lepidoptera: Thaumetopoeidae) in Israel. Journal of Applied Entomology, 109, 311–314.Google Scholar
  103. Menu, F., & Debouzie, D. (1993). Coin-flipping plasticity and prolonged diapause in insects: Example of the chestnut weevil Curculio elephas (Coleoptera: Curculionidae). Oecologia, 93, 367–373.Google Scholar
  104. Messaoudi, J. (1982). Contribution à l’étude d’un aspect biologique de Thaumetopoea pityocampa (processionnaire du pin), “la diapause”, Thèse Doctorat, Station de Recherches Forestières, Rabat, Morocco, 43 p.Google Scholar
  105. Michaelakis, A., Milonas, P. G., Papachristos, D. P., Kontodimas, D. C., Karamaouna, F., Pontikakos, C. M., Raptopoulos, D., Babilis, N., & Konstantopoulou, M. A. (2011, 11–14 October). Monitoring Thaumetopoea pityocampa populations and their management by employing mating disruption. In Proceedings of the 14th Panhellenic Symposium on Entomology, Nafplio, Greece.Google Scholar
  106. Mihajlović, L., & Roganović, D. (1997). Parasitoids of eggs of Thaumetopoea pityocampa Schiff. (Lepidoptera, Thaumetopoeidae) at the area of Metohija (Serbia, Yugoslavia). In Simpozijum entomologa Srbije 1997, 2–4 October1997, Goc, Zbornik rezimea (abstract book) (p. 34) [in Serbian].Google Scholar
  107. Mijušković, M. (1961). Neki momenti iz biologije borovog četnika, s posebnim osvrtom na značaj jajnog parazita Ooencyrtus pityocampae Mercet. Naša poljoprivreda i šumarstvo, 4, 31–40.Google Scholar
  108. Mijušković, M. (2002). Velike štete od borovog litijaša, (Cnethocampa pityocampa Schiff.) u 1969–70. In M. Mijuškovic (Ed.), Prilozi poznavanju biljnih štetočina u Crnoj Gori (pp. 257–260). Podgorica: Univerzitet Crne Gore Biotehnički Institut.Google Scholar
  109. Miranda, P. M. A., Coelho, F. E. S., Tomé, A. R., Valente, M. A., Carvalho, A., Pires, C., Pires, H. O., Pires, V. C., & Ramalho, C. (2002). 20th century Portuguese climate and climate scenarios. In F. D. Santos, K. Forbes, & R. Moita (Eds.), Climate change in Portugal: Scenarios, impacts and adaptation measures (SIAM Project) (pp. 23–83). Lisboa: Gradiva.Google Scholar
  110. Mirchev, P., Tsankov, G., & Balov, S. (2000). Factors influencing changes in the distribution and the economic importance of the pine processionary moth Thaumetopoea pityocampa Den. et Schiff. in Bulgaria. Forest Science, 2/3, 15–24 [in Bulgarian, English summary].Google Scholar
  111. Mirchev, P., Georgiev, G., & Matova, M. (2011). Prerequisites for expansion of Pine Processionary Moth, Thaumetopoea pityocampa (Den. & Schiff.) in Bulgaria. Journal of Balkan Ecology, 14(2), 117–130.Google Scholar
  112. Mol, T., & Küçükosmanoğlu, A. (2002). Control methods used against Thaumetopoea pityocampa (Den. and Schiff.) in Turkey. In M. Kanat (Ed.), Proceedings of the Symposium for Pine Processionary Moth Problem in Turkey and Solutions 24–25 April 2002, Kahramanmaraş, Turkey (pp. 135–147) [in Turkish].Google Scholar
  113. Moneo, I., Battisti, A., Dufour, B., García-Ortiz, J. C., González-Muñoz, M., Moutou, F., Paolucci, P., Petrucco Toffolo, E., Rivière, J., Rodríguez-Mahillo, A. I., Roques, A., Roques, L., Vega, J. M., Vega, J., & Vega, J. M. (2014). Medical and veterinary impact of the urticating processionary larvae. In A. Roques (Ed.), Processionary moths and climate change: An update. Dordrecht: Springer.Google Scholar
  114. Montoya, R., & Hernández, R. (2003). La procesionaria del pino. In N. Romanyk & D. Cadahia (Eds.), Plagas de insectos de las masas forestales (pp. 59–73). Madrid: Mundi-Prensa.Google Scholar
  115. Muñoz López, C., Pérez Fortea, V., Cobos Suárez, P., Hernández Alonso, R., & Sánchez Peña, G. (2007). Sanidad forestal. Guía en imagenes de plagas, enfermedades y otros agentes presentes en los bosques (2nd ed.). Madrid: Mundi-Prensa, 575 p.Google Scholar
  116. Mzibri, M. (1991). Bioécologie de Thaumetopoea pityocampa SCHIFF. (Lép., Thaumetopoeidae) et son impact sur la productivité du cèdre Cedrus atlantica MAN. dans le Rif central (Forêt d’Iguermelt). Thèse de 3ème cycle Option Ecologie Animale, Faculté des Sciences Rabat, Morocco, 120 p.Google Scholar
  117. Özkazanç, O. (2002). Bio-ecology of Thaumetopoea pityocampa Schiff. (Lepidoptera, Thaumetopoeidae) in the Mediterranean Region. In M. Kanat (Ed.), Proceedings of the symposium for pine processionary moth problem in Turkey and solutions, 24–25 April 2002, Kahramanmaraş, Turkey (pp. 1–11) [in Turkish].Google Scholar
  118. Paiva, M. R., Mateus, E., Santos, M. H., & Branco, M. R. (2010). Pine processionary moth females use semiochemicals for host selection. IOBC/WPRS Bulletin, 72, 159–164.Google Scholar
  119. Palmqvist, G. (1984). Interesting finds of Macrolepidoptera in Sweden in 1983. Entomologic Tidskrift, 105, 81–88.Google Scholar
  120. Parmesan, C., Root, T. L., & Willig, M. R. (2000). Impacts of extreme weather and climate on terrestrial biota. Bulletin of the American Meteorological Society, 81, 443–450.Google Scholar
  121. Parmesan, C., Ryrholm, N., Stefanescu, C., Hill, J. K., Thomas, C. D., Descimon, H., Huntley, B., Kaila, L., Kullberg, J., Tammaru, T., Tennent, W. J., Thomas, J. A., & Warren, M. (1999). Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature, 399, 579–583.Google Scholar
  122. Petrucco Toffolo, E., & Battisti, A. (2008). Performances of an expanding insect under elevated CO2 and snow cover in the Alps. iForest Biogeosciences and Forestry, 1, 126–131.Google Scholar
  123. Pimentel, C., Calvão, T., Santos, M., Ferreira, C., Neves, M., & Nilsson, J.-A. (2006). Establishment and expansion of a Thaumetopoea pityocampa (Den. & Schiff.) (Lep. Notodontidae) population with a shifted life cycle in a production pine forest, Central-Coastal Portugal. Forest ecology and Management, 233, 108–115.Google Scholar
  124. Popović, T. (2007). Trend promena temperatura vazduha i količine padavina na području Republike Srbije. In Šume i promene klime (Forests and climate change) (pp. 81–124), Zbornik radova, Belgrade, Serbia, [In Serbian, English summary].Google Scholar
  125. Questienne, P., & Miermont, Y. (1979). Contribution à la connaissance de Thaumetopoea pityocampa Schiff. Etude de la chenille du pin et du cèdre au Maroc. Annales de la Recherche Forestière au Maroc, 19, 80–147.Google Scholar
  126. Quezel, P. (1979). Analysis of the flora of the Mediterranean and Saharan Africa. Annals of the Missouri Botanical Garden, 65, 479–534.Google Scholar
  127. Radčenko, F. (1927). Cnethocampa pityocampa na borovim sastojinama. Šumarski list, 3, 130–132.Google Scholar
  128. Rattal, A. (1991). Bioécologie de Thaumetopoea pityocampa Schiff. (Lép., Thaumetopoeidae) et son impact sur la vitalité et la croissance de Pinus radiata D. dans la région de Cheffchaouen, thèse de doctorat de 3ème Cycle, option biologie animale, Faculté des Sciences de Rabat, Morocco, 50 p.Google Scholar
  129. Rivé, J. L. (1966). La processionnaire du pin, notions de biologie et principes de lutte. IR-Tunis. Note Technique Institut national de la Recherche Agronomique en Tunisie (I.R.T), 5, 8p.Google Scholar
  130. Rivé, J. L. (1967). Premiers résultats de l’essai destiné à évaluer les conséquences des attaques des chenilles processionnaires sur la croissance des jeunes pins d’Alep. Bulletin d’Information de l’Institut National de Recherches Forestières – Institut de Reboisement de Tunis, 6(7), 25–29.Google Scholar
  131. Robinet, C. (2006). Modélisation mathématique des phénomènes d’invasion en écologie, exemple de la chenille processionnaire du pin. Thèse de doctorat, spécialité Mathématiques et Applications aux Sciences de l’Homme, Ecole des Hautes Études en Sciences Sociales (E.H.E.S.S.), Paris, France, 208 p.Google Scholar
  132. Robinet, C., & Roques, A. (2005, 24–25 September). Mathematical evidence of an outbreak cycle in pine processionary moth. In Proceedings of the PROMOTH final open meeting “Global change and pine processionary moth, a new challenge for integrated pest management”, Belgodère, France. Retrieved October 15, 2012, from http://www.daapv.unipd.it/promoth/news.htm
  133. Robinet, C., Baier, P., Pennerstorfer, J., Schopf, A., & Roques, A. (2007). Modelling the effects of climate change on the potential feeding activity of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Notodontidae) in France. Global Ecology and Biogeography, 16, 460–471.Google Scholar
  134. Robinet, C., Rousselet, J., Goussard, F., Garcia, J., & Roques, A. (2010a). Modelling the range expansion with global warming of an urticating moth: A case study from France. In J. Settele, L. Penev, T. Georgiev, R. Grabaum, V. Grobelnik, V. Hammen, S. Klotz, & I. Kühn (Eds.), Atlas of biodiversity risk (pp. 86–87). Sofia/Moscow: Pensoft Publishers.Google Scholar
  135. Robinet, C., Rousselet, J., Imbert, C.-E., Sauvard, D., Garcia, J., Goussard, F., & Roques, A. (2010b). Le réchauffement climatique et le transport accidentel par l’homme responsables de l’expansion de la chenille processionnaire du pin. Forêt Wallonne, 108, 19–27.Google Scholar
  136. Robinet, C., Imbert, C.-E., Rousselet, J., Sauvard, D., Garcia, J., Goussard, F., & Roques, A. (2012). Human-mediated long-distance jumps of the pine processionary moth in Europe. Biological Invasions, 14, 1557–1569.Google Scholar
  137. Robinet, C., Rousselet, J., Pineau, P., Miard, F., & Roques, A. (2013). Are heatwaves susceptible to mitigate the expansion of a species progressing with global warming? Ecology and Evolution, 3, 2947–2957.PubMedCentralPubMedGoogle Scholar
  138. Robinet, C., Rousselet, J., & Roques, A. (2014). Potential spread of the pine processionary moth in France, preliminary results from a simulation model and future challenges. Annals of Forest Science, 71, 149–160.Google Scholar
  139. Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421, 57–60.PubMedGoogle Scholar
  140. Roques, L., Soubeyrand, S., & Rousselet, J. (2011). A statistical-reaction-diffusion approach for analyzing expansion processes. Journal of Theoretical Biology, 274, 43–51.PubMedGoogle Scholar
  141. Rosenzweig, C., Casassa, G., Karoly, D. J., Imeson, A., Liu, C., Menzel, A., Rawlins, S., Root, T. L., Seguin, B., & Tryjanowski, P. (2007). Assessment of observed changes and responses in natural and managed systems. In M. L. Parry et al. (Eds.), Assessment of observed changes and responses in natural and managed systems. Climate change 2007: Impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 79–131). Cambridge: Cambridge University Press.Google Scholar
  142. Santos, H., Burban, C., Rousselet, J., Rossi, J.-P., Branco, M., & Kerdelhué, C. (2011a). Incipient allochronic speciation in the pine processionary moth Thaumetopoea pityocampa (Lepidoptera, Notodontidae). Journal of Evolutionary Biology, 24(1), 146–158.PubMedGoogle Scholar
  143. Santos, H., Paiva, M. R., Tavares, C., Kerdelhué, C., & Branco, M. (2011b). Temperature niche shift observed in a Lepidoptera population under allochronic divergence. Journal of Evolutionary Biology, 24(9), 1897–1905.PubMedGoogle Scholar
  144. Sbabdji, M., & Kadik, B. (2011). Effects of Atlas cedar (Cedrus atlantica) defoliation on performance of the pine processionary moth (Thaumetopoea pityocampa). Journal of Pest Science, 84, 213–217.Google Scholar
  145. Schiller, G., Korol, L., & Shklar, G. (2004). Habitat effects on adaptive genetic variation in Pinus halepensis Mill. provenances. Forest Genetics, 11, 325–335.Google Scholar
  146. Schmidt, G. H. (1989). Wirtspflanzen, Frassverhalten und Raupenentwicklung des Kiefernprozessionsspiners Thaumetopoea pityocampa (Den. & Schiff.) (Lepidoptera, Thaumetopoeidae) aus Südgriechenland. Mitteillungen der Deutschen Gesselschaft für Allegemeine und Angewandte Entomologie, 7, 353–363.Google Scholar
  147. Schmidt, G. H. (1990). The egg-batch of Thaumetopoea pityocampa (Den. & Schiff.) (Lep., Thaumetopoeidae). Structure, hatching of the larvae and parasitism in southern Greece. Journal of Applied Entomology, 110, 217–228.Google Scholar
  148. Schmuker, T. (1942). Silvae Orbis. Berlin-Vannsee: Centre International de Silviculture, 156p.Google Scholar
  149. Schopf, R., & Avtzis, N. (1987). Die Bedeutung von Nadelinhaltstoffen für die Disposition von fünf Kiefernarten genenüber Thaumetopoea pityocampa (Schiff.). Journal of Applied Entomology, 105, 340–350.Google Scholar
  150. Seitz, A. (1930). The Macrolepidoptera of the world. A systematic description of the hitherto known Macrolepidoptera. The African Bombyces and Sphinges, volume 14 (p. 396). Stuggart: Alfred Kernen.Google Scholar
  151. Seitz, A. (1933). The Macrolepidoptera of the world. A systematic description of the hitherto known Macrolepidoptera. The Indo- Australian Bombyces and Sphinges, volume 10 (p. 388). Stuggart: Alfred Kernen.Google Scholar
  152. Seixas Arnaldo, P., Oliveira, I., Santos, J., & Leite, S. (2011). Climate change and forest plagues, the case of the pine processionary moth in Northeastern Portugal. Forest Systems, 20(3), 508–515.Google Scholar
  153. Sekendiz, O. A., & Varlı, S. V. (2002). Experiences on the pine processionary moth management in Turkey. In M. Kanat (Ed.), Proceedings of the symposium for pine processionary moth problem in Turkey and solutions, 24–25 April 2002, Kahramanmaraş, Turkey (pp. 19–27) [in Turkish].Google Scholar
  154. Selmi, K. (2006). Utilisation des données et résultats de l’inventaire forestier national pour la gestion des forêts de chêne-liège en Tunisie. Annales de l’INRGREF, N o Spécial 1, 21–30.Google Scholar
  155. Serafimovski, A. (1959). Some typical features of Thaumetopoea pityocampa. Nekoi karakteristicni osobini na boroviot cetnik kaj nas. Godisnik Šumarski Institut Skopje, 63–78.Google Scholar
  156. Sghaier, T., Khouja, M. L., & Ben Jamâa, M. L. (1999). Effet de la hauteur des arbres sur le comportement des provenances de pin d’Alep vis à vis des attaques de la processionnaire. Annales de l’INRGREF, 3, 21–31.Google Scholar
  157. Simonato, M., Mendel, Z., Kerdelhué, C., Rousselet, J., Magnoux, E., Salvato, P., Roques, A., Battisti, A., & Zane, L. (2007). Phylogeography of the pine processionary moth Thaumetopoea wilkinsoni in the Near East. Molecular Ecology, 16, 2273–2283.PubMedGoogle Scholar
  158. Slovenian Forest Service. (2011). Report on the protection of forests 1995–2011. Postojna: Regional Office Tolmin.Google Scholar
  159. Stamatović, D. (1961). Thaumatopoea pityocampa (borov litijaš ili četnik) opasan štetočina borovih sastojina. Naša poljoprivreda i šumarstvo, 7(2), 31–35.Google Scholar
  160. Stastny, M., Battisti, A., Petrucco, T. E., Schlyter, F., & Larsson, S. (2006). Host-plant use in the range expansion of the pine processionary moth, Thaumetopoea pityocampa. Ecological Entomology, 31, 481–490.Google Scholar
  161. Tamburini, G., Marini, L., Hellrigl, K., Salvadori, C., & Battisti, A. (2013). Effects of climate and density-dependent factors on population dynamics of the pine processionary moth in the Southern Alps. Climatic Change, 121(4), 701–712.Google Scholar
  162. Taşolar, F. (2002). Management studies against pine processionary moth in Kahramanmaraş Regional Forest Directory. In Proceedings of the symposium for pine processionary moth problem in Turkey and solutions (pp. 129–134) [in Turkish].Google Scholar
  163. Titovšek, J. (1994). Gradation of harmful forest insects. Journal of Forestry and Wood Science, 43, 31–76.Google Scholar
  164. Townsend, M. (2007). Outbreaks of the Oak Processionary moth Thaumetopoea processionea (Linnaeus) (Lepidoptera, Thaumetopoeidae) in west London. Entomologist’s Gazette, 58, 226.Google Scholar
  165. Townsend, M. (2009). Report on survey and control of Oak Processionary Moth Thaumetopoea processionea (Linnaeus) (Lepidoptera, Thaumetopoeidae) (OPM) in London in 2008 [Online]. Retrieved September 3, 2013, from www.forestry.gov.uk/pdf/fcopmsurvey07.pdf
  166. Townsend, M. (2013). Oak Processionary moth in the United Kingdom. Outlooks on Pest Management, 24, 32–38.Google Scholar
  167. Trougth, T. (1954). The life history of Thaumetopoea jordana Staudinger. Entomologist’s Record, 66, 188–191.Google Scholar
  168. Turkish General Directorate of Forestry. (2003). Pine processionary moth management action plan from 2003–2004. Ankara: Forest General Directorate, 21 p. [in Turkish.]Google Scholar
  169. Turkish General Directorate of Forestry. (2006). Orman Varlığımız (Our forests). Ankara: Forest General Directorate, 160 p. [in Turkish.]Google Scholar
  170. Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., et al. (2002). Ecological responses to recent climate change. Nature, 416, 389–395.PubMedGoogle Scholar
  171. Walther, G. R., Roques, A., Hulme, P. E., Sykes, M. T., Pyšek, P., Kühn, I., Zobel, M., & Members of the ALARM Climate Change – Biological Invasions Working Group. (2009). Alien species in a warmer world, risks and opportunities. Trends in Ecology and Evolution, 24, 686–692.PubMedGoogle Scholar
  172. Wiltshire, E. P. (1980). The larger moths of Dhofar and their zoogeographic composition. Journal of Oman Studies Special Report, 2, 187–216.Google Scholar
  173. Wiltshire, E. P. (1982). Insects of Saudi Arabia. Lepidoptera, Fam. Cossidae, Zygaenidae, Sesiidae, Lasiocampidae, Bombycidae, Sphingidae, Thaumetopoeidae, Thyretidae, Notodontidae, Geometridae, Lymantriidae, Noctuidae, Ctenuchidae (Part 2). Fauna of Saudi Arabia, 4, 271–332.Google Scholar
  174. Zamoum, M. (1998). Données sur la bioécologie, les facteurs de mortalité et la dynamique de populations de Thaumetopoea pityocampa Denis et Schiffermuller (Lep. Thaumetopoeidae) dans les pineraies subsahariennes de la région de Djelfa (Algérie), Thèse de doctorat Rennes I France.Google Scholar
  175. Zohary, M. (1973). Geobotanical Foundations of the Middle East. Stuttgart: Springer, 738 p.Google Scholar

Copyright information

© Éditions Quæ 2015

Authors and Affiliations

  • Alain Roques
    • 1
    Email author
  • Jérôme Rousselet
    • 1
  • Mustafa Avcı
    • 2
  • Dimitrios N. Avtzis
    • 3
  • Andrea Basso
    • 4
  • Andrea Battisti
    • 4
  • Mohamed Lahbib Ben Jamaa
    • 5
  • Atia Bensidi
    • 6
  • Laura Berardi
    • 4
  • Wahiba Berretima
    • 7
  • Manuela Branco
    • 8
  • Gahdab Chakali
    • 7
  • Ejup Çota
    • 9
  • Mirza Dautbašić
    • 10
  • Horst Delb
    • 11
  • Moulay Ahmed El Alaoui El Fels
    • 12
  • Saïd El Mercht
    • 13
    • 14
  • Mhamed El Mokhefi
    • 7
  • Beat Forster
    • 15
  • Jacques Garcia
    • 1
  • Georgi Georgiev
    • 16
  • Milka M. Glavendekić
    • 17
  • Francis Goussard
    • 1
  • Paula Halbig
    • 11
    • 18
  • Lars Henke
    • 11
  • Rodolfo Hernańdez
    • 19
  • José A. Hódar
    • 20
  • Kahraman İpekdal
    • 21
  • Maja Jurc
    • 22
  • Dietrich Klimetzek
    • 18
  • Mathieu Laparie
    • 1
  • Stig Larsson
    • 23
  • Eduardo Mateus
    • 24
  • Dinka Matošević
    • 25
  • Franz Meier
    • 15
  • Zvi Mendel
    • 26
  • Nicolas Meurisse
    • 27
  • Ljubodrag Mihajlović
    • 17
  • Plamen Mirchev
    • 16
  • Sterja Nasceski
    • 28
  • Cynthia Nussbaumer
    • 29
  • Maria-Rosa Paiva
    • 24
  • Irena Papazova
    • 28
  • Juan Pino
    • 30
  • Jan Podlesnik
    • 31
  • Jean Poirot
    • 32
  • Alex Protasov
    • 33
  • Noureddine Rahim
    • 7
  • Gerardo Sańchez Peña
    • 34
  • Helena Santos
    • 8
    • 35
  • Daniel Sauvard
    • 1
  • Axel Schopf
    • 36
  • Mauro Simonato
    • 4
  • Georgi Tsankov
    • 16
  • Eiko Wagenhoff
    • 11
  • Annie Yart
    • 1
  • Regino Zamora
    • 20
  • Mohamed Zamoum
    • 6
  • Christelle Robinet
    • 1
  1. 1.INRA, UR0633 URZF (Unité de Recherche Zoologie Forestière)OrléansFrance
  2. 2.Orman FakültesiSüleyman Demirel ÜniversitesiIspartaTurkey
  3. 3.Forest Research InstituteHellenic Agricultural Organization “Demeter”ThessalonikiGreece
  4. 4.Department DAFNAE-EntomologyUniversity of PaduaLegnaroItaly
  5. 5.Gestion et Valorisation des Ressources ForestièresInstitut National de Recherche en Génie Rural, Eaux et Forêts (INRGREF)ArianaTunisia
  6. 6.Division de recherche en entomologie forestièreInstitut National de Recherche ForestièreAlgiersAlgeria
  7. 7.Département de Zoologie Agricole et ForestièreEcole Nationale Supérieure AgronomiqueAlgiersAlgeria
  8. 8.Centro de Estudos Florestais (CEF), Instituto Superior de Agronomia (ISA)University of LisbonLisbonPortugal
  9. 9.Plant Protection Department, Faculty of Agriculture and EnvironmentAgricultural University of TiranaTiranaAlbania
  10. 10.Faculty of ForestryUniversity of SarajevoSarajevoBosnia and Herzegovina
  11. 11.Forest Research Institute Baden-WürttembergFreiburg im BreisgauGermany
  12. 12.Laboratoire de Biotechnologies-Biochimie, Valorisation et Protection des PlantesFSSM & Muséum d’Histoire Naturelle de Marrakech, Université Cadi AyyadMarrakechMorocco
  13. 13.Centre Régional de la Recherche ForestièreMarrakechMorocco
  14. 14.Haut-Commissariat aux Eaux et Forêts et à la Lutte Contre la DésertificationRabatMorocco
  15. 15.Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
  16. 16.Forest Research InstituteBulgarian Academy of ScienceSofiaBulgaria
  17. 17.Faculty of ForestryUniversity of BelgradeBelgradeSerbia
  18. 18.Department of Biometry and Environmental System AnalysisUniversity of FreiburgFreiburg im BreisgauGermany
  19. 19.Laboratorio de Sanidad Forestal, Servicio Provincial de Agricultura Ganadería y Medio AmbienteDiputación General de AragónTeruelSpain
  20. 20.Departamento de Ecología, Facultad de CienciasUniversidad de GranadaGranadaSpain
  21. 21.Department of BiologyAhi Evran UniversityKirsehirTurkey
  22. 22.Department of Forestry and Renewable Forest Resources, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia
  23. 23.Department of EcologySwedish University of Agricultural SciencesUppsalaSweden
  24. 24.CENSE, Faculty of Sciences and TechnologyUniversidade Nova de LisboaCaparicaPortugal
  25. 25.Department for Forest ProtectionCroatian Forest Research InstituteJastrebarskoCroatia
  26. 26.Department of Entomology, Agricultural Research OrganizationVolcani CenterBet DaganIsrael
  27. 27.Scion ResearchRotoruaNew Zealand
  28. 28.Department of Forest ProtectionUniversity of ForestrySkopjeMacedonia
  29. 29.School of Agriculture, Forest and Food Sciences HAFLBern University of Applied ScienceZollikofenSwitzerland
  30. 30.VigoSpain
  31. 31.Faculty of Natural Sciences and MathematicsUniversity of MariborMariborSlovenia
  32. 32.Direction régionale de l’Alimentation, de l’Agriculture et de la ForêtLorraineFrance
  33. 33.Department of EntomologyAgricultural Research OrganizationBet DaganIsrael
  34. 34.Servicio de Sanidad Forestal y Equilibrios Biológicos, Dirección General de Sanidad de la Producción AgrariaMinisterio de Agricultura, Alimentación y Medio AmbienteMadridSpain
  35. 35.CENSE, Faculty of Sciences and TechnologyUniversidade Nova de LisboaCaparicaPortugal
  36. 36.Department of Forest and Soil Sciences, Institute of Forest Entomology, Forest Pathology and Forest ProtectionBOKU – University of Natural Resources and Life Sciences ViennaViennaAustria

Personalised recommendations