Spatial Computing for Design—an Artificial Intelligence Perspective

  • Mehul Bhatt
  • Christian Freksa
Conference paper


The articulation of the Science of Design by Herbert Simon and the paradigmatic relevance of Artificial Intelligence in that context are closely intertwined topics: Simon elaborates the ‘Sciences of the Artificial’ in the context of the design of artefacts. Situated in this AI-centric view of design, we characterize “spatial computing for design” as a specialisation concerned with the development of the general representational and computational apparatus necessary for solving modelling and reasoning problems in spatial design. Several representation and reasoning problems are dis-cussed in the backdrop of relevant examples involving the formal modelling of structural form with respect to a desired/anticipated artefactual function. The discussion, although applicable to any spatial design activity, is grounded in the domain of assistive decision-support in the context of a conventional computer-aided architecture design workflow.


Knowledge representation and reasoning Spatial and conceptual reasoning Diagnosis and recommendation Decision support for design architecture/spatial design Knowledge engineering for design Design semantics Computer-aided architecture design 



We gratefully acknowledge the funding and support by the Alexander von Humboldt Foundation (Germany), and the German Research Foundation (DFG). The paper has immensely benefitted from our discussions and ongoing collaborations with John Bateman, Frank Dylla, Gregory Flanagan, Joana Hois, and Oliver Kutz.


  1. 1.
    Akin Ö (1993) Architects’ reasoning with structures and functions. Environ Plan B: Plan Des 20(3):273–294CrossRefMathSciNetGoogle Scholar
  2. 2.
    Alexander C, Ishikawa S, Silverstein M (1977) A pattern language: towns, buildings, construction. Oxford University Press, New York. ISBN 0195019199Google Scholar
  3. 3.
    Baader F, Calvanese D, McGuinness DL, Nardi D, Patel-Schneider PF (eds) (2003) The description logic handbook: theory, implementation, and applications. Cambridge University Press, Cambridge. ISBN 0-521-78176-0Google Scholar
  4. 4.
    Baldwin C (2007) Steps toward a science of design. In: NSF Principal Investigators Conference on the Science of Design, 2007.
  5. 5.
    Bayazit N (2004) Investigating design: a review of 40 years of design research. Des Issues 20(1)Google Scholar
  6. 6.
    Benedikt ML (1979) To take hold of space: isovists and isovist fields. Environ Plan B: Plan Des 6(1):47–65, January 1979. CrossRefGoogle Scholar
  7. 7.
    Bertel S, Freksa C, Vrachliotis G (2004) Aspectualize and conquer. In: Gero J, Tversky B, Knight T (eds) Visual and spatial reasoning in design III. Key Centre of Design Computing and Cognition, Sydney, pp 255-279Google Scholar
  8. 8.
    Bertel S, Freksa C, Vrachliotis G (2007) Aspect-oriented building design: towards computer-aided approaches to solving spatial constraint problems in architecture. In: Allen G (ed) Applied spatial cognition: from research to cognitive technology. Erlbaum, MahwahGoogle Scholar
  9. 9.
    Bhatt M (2009) Commonsense inference in dynamic spatial systems: phenomenal and reasoning requirements. In: Bratko I, abkar JŽ (eds) 23rd International Workshop on Qualitative Reasoning (QR 09), Ljubljana, Slovenia, June 2009, pp 1–6, 2009. (Part 1 of 2)Google Scholar
  10. 10.
    Bhatt M (2010a) Reasoning about space, actions and change: a paradigm for applications of spatial reasoning. In: Qualitative spatial representation and Reasoning: trends and future directions. IGI Global, USA, 2010a.
  11. 11.
    Bhatt M (2010b) Commonsense inference in dynamic spatial systems: epistemological requirements. In: FLAIRS Conference: special track on spatial and temporal reasoning. AAAI Press, 2010b. (Part 2 of 2).Google Scholar
  12. 12.
    Bhatt M, Ichim A, Flanagan G (2010) Dsim: a tool for assisted spatial design. In Proceedings of the 4th International conference on design computing and cognition (DCC’10), 2010. (to appear). BremLBO. Bremische landesbauordnung, 2003.
  13. 13.
    Bhatt M, Dylla F, Hois J (2009) Spatio-terminological inference for the design of ambient environments. In: Hornsby KS, Claramunt C, Denis M, Ligozat G (eds) Conference on spatial information theory (COSIT’09). Springer-Verlag, pp 371–391Google Scholar
  14. 14.
    Brown DC (1993) Intelligent computer-aided design (1998 revised version). In Williams JG, Sochats K (eds) Encyclopedia of computer science and technology. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Brown DC (2007) AI EDAM at 20. Artif Intell Eng Des Anal Manuf 21(1):1–2. ISSN 0890–0604. doi: CrossRefGoogle Scholar
  16. 16.
    Brown DC, Waldron MB, Yoshikawa H (eds) (1992) Intelligent Computer Aided Design, Proceedings of the IFIP WG 5.2 Working Conference on Intelligent Computer Aided Design (Int-CAD91), Columbus, OH, USA, 30 September—3 October 1991, volume B-4 of IFIP Transactions, 1992. North-Holland. ISBN 0-444-81560-0Google Scholar
  17. 17.
    Chandrasekaran B (1990) Design problem solving: a task analysis. AI Mag 11(4):59–71. ISSN 0738-4602Google Scholar
  18. 18.
    Cohn AG. Renz J (2007) Qualitative spatial reasoning. In: van Harmelen F, Lifschitz V, Porter B (eds) Handbook of knowledge representation. Elsevier, AmsterdamGoogle Scholar
  19. 19.
    Davis E, Morgenstern L (2004) Introduction: progress in formal commonsense reasoning. Artif Intell 153(1–2):1–12. ISSN 0004–3702CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Dorst K, Vermaas P (2005) John gero’s function-behaviour-structure model of designing a critical analysis. Res Eng Des 16(1):17–26, November 2005. doi:10.1007s00163-005-0058-z. CrossRefGoogle Scholar
  21. 21.
    Freksa C (1991) Qualitative spatial reasoning. In: Mark D, Frank A (eds) Cognitive and linguistic aspects of geographic space. Kluwer, Dordrecht, pp 361–372CrossRefGoogle Scholar
  22. 22.
    Freksa C (1992) Using orientation information for qualitative spatial reasoning. In: Proceedings of the Intl. Conf. GIS, From Space to Territory: theories and Methods of Spatio-Temporal Reasoning in Geographic Space. Springer-Verlag, Berlin, pp 162–178. ISBN 3-540-55966–3Google Scholar
  23. 23.
    Gero JS (1990) Design prototypes: a knowledge representation schema for design. AI Magazine 11(4):26–36CrossRefGoogle Scholar
  24. 24.
    Gero J (1991) Ten problems for AI in design. In: Workshop on AI in Design, IJCAI-91Google Scholar
  25. 25.
    Gero JS (2007) AI EDAM at 20: artificial intelligence in designing. AI EDAM 21(1):17–18Google Scholar
  26. 26.
    Gero JS, Tham KW, Lee HS (1992) Behavior: a link between function and structure in design. In: Brown et al. pp 193–225. ISBN 0-444-81560-0Google Scholar
  27. 27.
    Giacomo GD, Levesque HJ (1999) An incremental interpreter for high-level programs with sensing. In: Levesque HJ, Pirri F (eds) Logical foundation for cognitive agents: contributions in honor of Ray Reiter. Springer, Berlin, pp 86–102CrossRefGoogle Scholar
  28. 28.
    Haarslev V, Möller R, Wessel M (2004) Querying the semantic web with Racer + nRQL. In Proceedings of the KI-2004 International Workshop on Applications of Description Logics (ADL’04)Google Scholar
  29. 29.
    Hirtz J, Stone R, McAdams D, Szykman S, Wood K (2002) A functional basis for engineering design: reconciling and evolving previous efforts. Res Eng Design 13(2):65–82Google Scholar
  30. 30.
    Hois J, Bhatt M, Kutz O (2009) Modular Ontologies for Architectural Design. In Proc. of the 4th Workshop on Formal Ontologies Meet Industry, FOMI-09, Vicenza. vol 198 of Frontiers in Artificial Intelligence and Applications. IOS, ItalyGoogle Scholar
  31. 31.
    Horridge M, Patel-Schneider PF (2008) Manchester OWL syntax for OWL 1. 1, 2008. OWL: Experiences and Directioins (OWLED 08 DC), Gaithersberg, MarylandGoogle Scholar
  32. 32.
    Jaffar J, Maher JM (1994) Constraint logic programming: a survey. J Log Program 19/20:503–581CrossRefMathSciNetGoogle Scholar
  33. 33.
    Kowalski R, Sergot M (1986) A logic-based calculus of events. New Gen Comput 4(1):67–95. ISSN 0288–3635CrossRefGoogle Scholar
  34. 34.
    Krishnamurti R (2006) Explicit design space?. Artif Intell Eng Des Anal Manuf 20(2):95–103. ISSN 0890-0604. doi: CrossRefGoogle Scholar
  35. 35.
    Loos A (1930) Ornament and crime. Reprint Vienna, InnsbruckGoogle Scholar
  36. 36.
    McCarthy J, Hayes PJ (1969) Some philosophical problems from the standpoint of artificial intelligence. In: Meltzer B, Michie D (eds) Machine intelligence 4. Edinburgh University Press, Edinburgh, pp 463–502Google Scholar
  37. 37.
    Moratz R (2006) Representing relative direction as a binary relation of oriented points. In: ECAI, pp 407–411Google Scholar
  38. 38.
    Mueller ET (2006) Commonsense reasoning. Morgan Kaufmann Inc., San Francisco. ISBN 0123693888Google Scholar
  39. 39.
    Randell DA, Cui Z, Cohn A (1992) A spatial logic based on regions and connection. In KR’92. Principles of knowledge representation and reasoning. Morgan Kaufmann, San Mateo, pp 165–176Google Scholar
  40. 40.
    Renz J, Nebel B (2007) Qualitative spatial reasoning and using constraint calculi. In: Handbook of spatial logics. Springer, Dordrecht, pp 161–215CrossRefGoogle Scholar
  41. 41.
    Simon H (1969) The sciences of the artificial [The Karl Taylor Compton lectures.]. Chapter 3: the science of design. MIT, CambridgeGoogle Scholar
  42. 42.
    Simon H (1996) The sciences of the artificial, 3rd edn. MIT, Cambridge, ISBN 0-262-69191–69194Google Scholar
  43. 43.
    Sirin E, Parsia B, Grau B, Kalyanpur A, Katz Y (2007) Pellet: a practical owl-dl reasoner. Web Semantics: Science, Services and Agents on the World Wide Web, 5(2):51–53, June 2007. ISSN 15708268. doi:10.1016/j.websem.2007.03.004.
  44. 44.
    Sullivan L (1896) The tall office building artistically considered. Lippincott’s MagazineGoogle Scholar
  45. 45.
    Thielscher M (1998) Introduction to the fluent calculus. Electron Trans Artif Intell 2:179–192MathSciNetGoogle Scholar
  46. 46.
    Thielscher M (2005) Flux: a logic programming method for reasoning agents. Theory Pract Log Program 5(4–5):533–565. ISSN 1471–0684CrossRefzbMATHGoogle Scholar
  47. 47.
    US GSA. US Courts Design Guide, 2007. URL Judicial Conference of the United States. US General Services Administration (GSA). April 23 2010
  48. 48.
    Vermaas P, Kroes P, Light A, Moore S (eds) (2008) Philosophy and design: from engineering to architecture. Springer, DordrechtGoogle Scholar
  49. 49.
    Vos MD (2009) ASP: the future is bright. In: LPNMR, pp 625–627Google Scholar
  50. 50.
    Wallgrün JO, Frommberger L, Wolter D, Dylla F, Freksa C (2007) Qualitative spatial representation and reasoning in the sparq-toolbox. In: Barkowsky T, Knauff M, Ligozat G, Montello D (eds) Spatial Cognition V: Reasoning, Action, Interaction: International Conference Spatial Cognition 2006, vol. 4387 of LNCS, pp 39–58. Springer-Verlag Berlin HeidelbergGoogle Scholar
  51. 51.
    Westphal M, Woelfl S, Gantner Z (2009) GQR: A fast solver for binary qualitative constraint networks. In: AAAI Spring symposium on benchmarking of qualitative spatial and temporal reasoning systemsGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.University of BremenBremenGermany

Personalised recommendations