Biochemistry of Methyl-Coenzyme M Reductase: The Nickel Metalloenzyme that Catalyzes the Final Step in Synthesis and the First Step in Anaerobic Oxidation of the Greenhouse Gas Methane

Part of the Metal Ions in Life Sciences book series (MILS, volume 14)

Abstract

Methane, the major component of natural gas, has been in use in human civilization since ancient times as a source of fuel and light. Methanogens are responsible for synthesis of most of the methane found on Earth. The enzyme responsible for catalyzing the chemical step of methanogenesis is methyl-coenzyme M reductase (MCR), a nickel enzyme that contains a tetrapyrrole cofactor called coenzyme F430, which can traverse the Ni(I), (II), and (III) oxidation states. MCR and methanogens are also involved in anaerobic methane oxidation. This review describes structural, kinetic, and computational studies aimed at elucidating the mechanism of MCR. Such studies are expected to impact the many ramifications of methane in our society and environment, including energy production and greenhouse gas warming.

Keywords

F430 methane oxidation methanogenesis nickel tetrapyrrole 

Notes

Acknowledgments

I thank those students, postdoctoral fellows and collaborators who have been working on the biochemistry of methane formation, with special thanks to Dariusz Sliwa for helping to generate Figure 1 for this paper. I gratefully acknowledge support (DE-FG02-08ER15931) from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy and from ARPA-E (DE-AR0000426).

References

  1. 1.
    S. W. Ragsdale, J. Inorg. Biochem. 2007, 101, 1657–1666.PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    A. F. Miller, Acc. Chem. Res. 2008 , 41, 501–510.PubMedCrossRefGoogle Scholar
  3. 3.
    C. Holliger, A. J. Pierik, E. J. Reijerse, W. R. Hagen, J. Am. Chem. Soc. 1993, 115, 5651–5656.CrossRefGoogle Scholar
  4. 4.
    D. A. Rodionov, P. Hebbeln, M. S. Gelfand, T. Eitinger, J. Bacteriol. 2006, 188, 317–327.PubMedCentralPubMedCrossRefGoogle Scholar
  5. 5.
    S. Quiroz, J. K. Kim, S. B. Mulrooney, R. P. Hausinger, in Nickel and Its Surprising Impact in Nature, Vol. 2 of Metal Ions in Life Sciences, Eds A. Sigel, H. Sigel, R. K. O. Sigel, John Wiley and Sons, Chichester, UK, 2007, pp 519–544.Google Scholar
  6. 6.
    C. M. Phillips, E. R. Schreiter, Y. Guo, S. C. Wang, D. B. Zamble, C. L. Drennan, Biochemistry 2008, 47, 1938–1946.PubMedCrossRefGoogle Scholar
  7. 7.
    S. K. Atreya, P. R. Mahaffy, A. S. Wong, Planet. Space Sci. 2007, 55, 358–369.CrossRefGoogle Scholar
  8. 8.
    U. Deppenmeier, Prog. Nucleic Acid Res. Mol. Biol. 2002, 71, 223–283.PubMedCrossRefGoogle Scholar
  9. 9.
    R. K. Thauer, Microbiology 1998, 144, 2377–2406.PubMedCrossRefGoogle Scholar
  10. 10.
    C. R. Woese, L. J. Magrum, G. E. Fox, J. Mol. Evol. 1978, 11, 245–251.PubMedCrossRefGoogle Scholar
  11. 11.
    C. R. Woese, O. Kandler, M. L. Wheelis, Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579.PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    G. E. Fox, E. Stackebrandt, R. B. Hespell, J. Gibson, J. Maniloff, T. A. Dyer, R. S. Wolfe, W. E. Balch, R. S. Tanner, L. J. Magrum, L. B. Zablen, R. Blakemore, R. Gupta, L. Bonen, B. J. Lewis, D. A. Stahl, K. R. Luehrsen, K. N. Chen, C. R. Woese, Science 1980, 209, 457–463.PubMedCrossRefGoogle Scholar
  13. 13.
    R. K. Thauer, S. Shima, Ann. N. Y. Acad. Sci. 2008, 1125, 158–170.PubMedCrossRefGoogle Scholar
  14. 14.
    J. L. Garcia, B. K. Patel, B. Ollivier, Anaerobe, 2000 6, 205–226.PubMedCrossRefGoogle Scholar
  15. 15.
    R. S. Hanson, T. E. Hanson, Microbiol. Rev. 1996, 60, 439–471.PubMedCentralPubMedGoogle Scholar
  16. 16.
    S. J. Hallam, N. Putnam, C. M. Preston, J. C. Detter, D. Rokhsar, P. M. Richardson, E. F. DeLong, Science 2004, 305, 1457–1462.PubMedCrossRefGoogle Scholar
  17. 17.
    M. Kruger, A. Meyerdierks, F. O. Glockner, R. Amann, F. Widdel, M. Kube, R. Reinhardt, J. Kahnt, R. Bocher, R. K. Thauer, S. Shima, Nature 2003, 426, 878–881.PubMedCrossRefGoogle Scholar
  18. 18.
    W. Michaelis, R. Seifert, K. Nauhaus, T. Treude, V. Thiel, M. Blumenberg, K. Knittel, A. Gieseke, K. Peterknecht, T. Pape, A. Boetius, R. Amann, B. B. Jorgensen, F. Widdel, J. Peckmann, N. V. Pimenov, M. B. Gulin, Science 2002, 297, 1013–1015.PubMedCrossRefGoogle Scholar
  19. 19.
    K. Nauhaus, A. Boetius, M. Kruger, F. Widdel, Environ. Microbiol. 2002, 4, 296–305.PubMedCrossRefGoogle Scholar
  20. 20.
    A. A. Raghoebarsing, A. Pol, K. T. van de Pas-Schoonen, A. J. Smolders, K. F. Ettwig, W. I. Rijpstra, S. Schouten, J. S. Damste, H. J. Op den Camp, M. S. Jetten, M. Strous, Nature 2006, 440, 918–921.PubMedCrossRefGoogle Scholar
  21. 21.
    S. J. Hallam, P. R. Girguis, C. M. Preston, P. M. Richardson, E. F. DeLong, Appl. Environ. Microbiol. 2003, 69, 5483–5491.PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    E. F. DeLong, Nature 2000, 407, 577–579.PubMedCrossRefGoogle Scholar
  23. 23.
    D. R. Blake, F. Sherwood Rowland, Science 1988, 239, 1129–1131.PubMedCrossRefGoogle Scholar
  24. 24.
    D. A. Lashoff, D. Ahuja, Nature 1990, 344, 213–242.Google Scholar
  25. 25.
    J. Schimel, Nature 2000, 403, 375, 377.Google Scholar
  26. 26.
    R. S. Wolfe, Am. Soc. Microbiol. News 1996, 62, 529–534.Google Scholar
  27. 27.
    H. A. Barker, Bacterial Fermentations, Wiley, New York, 1956.Google Scholar
  28. 28.
    N. L. Söhngen, Recl. Trav. Chim. Pays Bas. 1910, 29, 238–250.CrossRefGoogle Scholar
  29. 29.
    R. E. Hungate, in Methods in Microbiology, Eds J. R. Norris, D. W. Ribbons, Academic Press, Inc., New York, 1969, pp 117–132.Google Scholar
  30. 30.
    W. E. Balch, G. E. Fox, L. J. Magrum, C. R. Woese, R. S. Wolfe, Microbiol. Rev. 1979, 43, 260–296.PubMedCentralPubMedGoogle Scholar
  31. 31.
    R. S. Wolfe, Methods Enzymol. 2011, 494, 1–22.PubMedCrossRefGoogle Scholar
  32. 32.
    J. G. Zeikus, R. S. Wolfe, J. Bacteriol. 1972, 109, 707–715.PubMedCentralPubMedGoogle Scholar
  33. 33.
    A. C. Rosenzweig, S. W. Ragsdale, Eds, Methods in Methane Metabolism, Vol. 494, Elsevier, Academic Press, Amsterdam, 2011.Google Scholar
  34. 34.
    A. A. DiMarco, T. A. Bobik, R. S. Wolfe, Ann. Rev. Biochem. 1990, 59, 355–394.PubMedCrossRefGoogle Scholar
  35. 35.
    G. Diekert, B. Klee, R. K. Thauer, Arch. Microbiol. 1980 , 124, 103–106.PubMedCrossRefGoogle Scholar
  36. 36.
    G. Diekert, R. Jaenchen, R. K. Thauer, FEBS Letters 1980, 119, 118–120.PubMedCrossRefGoogle Scholar
  37. 37.
    W. B. Whitman, R. S. Wolfe, Biochem. Biophys. Res. Comm. 1980, 92, 1196–1201.PubMedCrossRefGoogle Scholar
  38. 38.
    G. Diekert, U. Konheiser, K. Piechulla, R. K. Thauer, J. Bacteriol. 1981, 148, 459–464.PubMedCentralPubMedGoogle Scholar
  39. 39.
    J. Telser, in Structure and Bonding, Ed R. J. P. Williams, Springer Verlag, Heidelberg, 1998, pp 32–63.Google Scholar
  40. 40.
    B. Jaun, Met. Ions Biol. Syst. 1993, 29, 287–337.Google Scholar
  41. 41.
    J. Telser, J. Braz. Chem. Soc. 2010, 21, 1139–1157.CrossRefGoogle Scholar
  42. 42.
    A. Pfaltz, B. Juan, A. Fassler, A. Eschenmoser, R. Jaenchen, H. H. Gilles, G. Diekert, R. K. Thauer, Helv. Chim. Acta 1982, 65, 828–865.CrossRefGoogle Scholar
  43. 43.
    G. Färber, W. Keller, C. Kratky, B. Jaun, A. Pfaltz, C. Spinner, A. Kobelt, A. Eschenmoser, Helv. Chim. Acta 1991, 74, 697–716.CrossRefGoogle Scholar
  44. 44.
    H. Won, M. F. Summers, K. Olson, R. S. Wolfe, J. Am. Chem. Soc. 1990, 112, 2178–2184.CrossRefGoogle Scholar
  45. 45.
    W. L. Ellefson, W. B. Whitman, R. S. Wolfe, Proc. Natl. Acad. Sci. USA 1982, 79, 3707–3710.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    B. Jaun, Helv. Chim. Acta 1990, 73, 2209–2216.CrossRefGoogle Scholar
  47. 47.
    B. Jaun, A. Pfaltz, J. Chem. Soc., Chem. Comm. 1986, 1327–1329.Google Scholar
  48. 48.
    U. Ermler, W. Grabarse, S. Shima, M. Goubeaud, R. K. Thauer, Science 1997, 278, 1457–1462.PubMedCrossRefGoogle Scholar
  49. 49.
    W. G. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, J. Mol. Biol. 2000, 303, 329–344.PubMedCrossRefGoogle Scholar
  50. 50.
    S. Shima, M. Krueger, T. Weinert, U. Demmer, J. Kahnt, R. K. Thauer, U. Ermler, Nature 2012, 481, 98–101.CrossRefGoogle Scholar
  51. 51.
    P. E. Cedervall, M. Dey, X. Li, R. Sarangi, B. Hedman, S. W. Ragsdale, C. M. Wilmot, J. Am. Chem. Soc. 2011, 133, 5626–5628.PubMedCentralPubMedCrossRefGoogle Scholar
  52. 52.
    W. G. Grabarse, F. Mahlert, E. C. Duin, M. Goubeaud, S. Shima, R. K. Thauer, V. Lamzin, U. Ermler, J. Mol. Biol. 2001, 309, 315–330.PubMedCrossRefGoogle Scholar
  53. 53.
    P. E. Cedervall, M. Dey, A. R. Pearson, S. W. Ragsdale, C. M. Wilmot, Biochemistry 2010, 49, 7683–7693.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    S. Shima, E. Warkentin, R. K. Thauer, U. Ermler, J. Biosci. Bioeng. 2002 , 93, 519–530.PubMedCrossRefGoogle Scholar
  55. 55.
    Y.-C. Horng, D. F. Becker, S. W. Ragsdale, Biochemistry 2001, 40, 12875–12885.PubMedCrossRefGoogle Scholar
  56. 56.
    S. Ebner, B. Jaun, M. Goenrich, R. K. Thauer, J. Harmer, J. Am. Chem. Soc. 2010, 132, 567–575.PubMedCrossRefGoogle Scholar
  57. 57.
    W. Grabarse, F. Mahlert, S. Shima, R. K. Thauer, U. Ermler, J. Mol. Biol. 2000, 303, 329–344.PubMedCrossRefGoogle Scholar
  58. 58.
    T. Selmer, J. Kahnt, M. Goubeaud, S. Shima, W. Grabarse, U. Ermler, R. K. Thauer, J. Biol. Chem. 2000, 275, 3755–3760.PubMedCrossRefGoogle Scholar
  59. 59.
    J. Kahnt, B. Buchenau, F. Mahlert, M. Kruger, S. Shima, R. K. Thauer, FEBS J. 2007, 274, 4913–4921.PubMedCrossRefGoogle Scholar
  60. 60.
    H. Won, K. D. Olson, D. R. Hare, R. S. Wolfe, C. Kratky, M. F. Summers, J. Am. Chem. Soc. 1992, 114, 6880–6892.CrossRefGoogle Scholar
  61. 61.
    C. L. Hamilton, R. A. Scott, M. K. Johnson, J. Biol. Chem. 1989, 264, 11605–11613.PubMedGoogle Scholar
  62. 62.
    B. Jaun, A. Pfaltz, J. Chem. Soc. Chem. Commun. 1988, 1327, 293–294.CrossRefGoogle Scholar
  63. 63.
    S.-K. Lin, B. Jaun, Helv. Chim. Acta 1992, 75, 1478–1490.CrossRefGoogle Scholar
  64. 64.
    S.-K. Lin, B. Jaun. Helv. Chim. Acta, 1991 74, 1725–1738.Google Scholar
  65. 65.
    Y. Zhou, D. A. Sliwa, S. W. Ragsdale, in Handbook of Porphyrin Science, Eds K. M. Kadish, K. M. Smith, R. Guilard, World Scientific Publishing, 2012, pp 1–42,Google Scholar
  66. 66.
    J. Telser, R. Davydov, Y. C. Horng, S. W. Ragsdale, B. M. Hoffman, J. Am. Chem. Soc. 2001, 123, 5853–5860.PubMedCrossRefGoogle Scholar
  67. 67.
    F. Mahlert, C. Bauer, B. Jaun, R. K. Thauer, E. C. Duin, J. Biol. Inorg. Chem. 2002, 7, 500–513.PubMedCrossRefGoogle Scholar
  68. 68.
    S. Rospert, R. Böcher, S. P. J. Albracht, R. K. Thauer, FEBS Lett. 1991, 291, 371–375.PubMedCrossRefGoogle Scholar
  69. 69.
    E. C. Duin, N. J. Cosper, F. Mahlert, R. K. Thauer, R. A. Scott, J. Biol. Inorg. Chem. 2003, 8, 141–148.PubMedCrossRefGoogle Scholar
  70. 70.
    Y. Zhou, A. E. Dorchak, S. W. Ragsdale, Front. Microbiol. Chem. 2013, 4, 69.Google Scholar
  71. 71.
    D. F. Becker, S. W. Ragsdale, Biochemistry 1998, 37, 2639–2647.PubMedCrossRefGoogle Scholar
  72. 72.
    M. Goubeaud, G. Schreiner, R. K. Thauer, Eur. J. Biochem. 1997, 243, 110–114.PubMedCrossRefGoogle Scholar
  73. 73.
    D. Hinderberger, S. Ebner, S. Mayr, B. Jaun, M. Reiher, M. Goenrich, R. K. Thauer, J. Harmer, J. Biol. Inorg. Chem. 2008, 13, 1275–1289.PubMedCrossRefGoogle Scholar
  74. 74.
    R. Sarangi, M. Dey, S. W. Ragsdale. Biochemistry 2009, 48, 3146–3156.PubMedCentralPubMedCrossRefGoogle Scholar
  75. 75.
    D. I. Kern, M. Goenrich, B. Jaun, R. K. Thauer, J. Harmer, D. Hinderberger, J. Biol. Inorg. Chem. 2007, 12, 1097–1105.PubMedCrossRefGoogle Scholar
  76. 76.
    J. Harmer, C. Finazzo, R. Piskorski, S. Ebner, E. C. Duin, M. Goenrich, R. K. Thauer, M. Reiher, A. Schweiger, D. Hinderberger, B. Jaun, J. Am. Chem. Soc. 2008, 130, 10907–10920.PubMedCrossRefGoogle Scholar
  77. 77.
    C. Finazzo, J. Harmer, C. Bauer, B. Jaun, E. C. Duin, F. Mahlert, M. Goenrich, R. K. Thauer, S. Van Doorslaer, A. Schweiger, J. Am. Chem. Soc. 2003 , 125, 4988–4989.PubMedCrossRefGoogle Scholar
  78. 78.
    E. C. Duin, L. Signor, R. Piskorski, F. Mahlert, M. D. Clay, M. Goenrich, R. K. Thauer, B. Jaun, M. K. Johnson, J. Biol. Inorg. Chem. 2004, 9, 563–576.PubMedCrossRefGoogle Scholar
  79. 79.
    J. L. Craft, Y.-C. Horng, S. W. Ragsdale, T. C. Brunold, J. Am. Chem. Soc. 2004, 126, 4068–4069.PubMedCrossRefGoogle Scholar
  80. 80.
    M. Dey, X. Li, Y. Zhou, S. W. Ragsdale, Met. Ions Life Sci. 2010, 7, 71–110.PubMedCrossRefGoogle Scholar
  81. 81.
    G. K. Lahiri, A. M. Stolzenberg, Inorg. Chem. 1993, 32, 4409–4413.CrossRefGoogle Scholar
  82. 82.
    M. Dey, J. Telser, R. C. Kunz, N. S. Lees, S. W. Ragsdale, B. M. Hoffman, J. Am. Chem. Soc. 2007, 129, 11030–11032.PubMedCrossRefGoogle Scholar
  83. 83.
    N. Yang, M. Reiher, M. Wang, J. Harmer, E. C. Duin, J. Am. Chem. Soc. 2007, 129, 11028–11029.PubMedCrossRefGoogle Scholar
  84. 84.
    R. C. Kunz, Y.-C. Horng, S. W. Ragsdale, J. Biol. Chem. 2006, 281, 34663–34676.PubMedCrossRefGoogle Scholar
  85. 85.
    X. Li, J. Telser, B. M. Hoffman, G. Gerfen, S. W. Ragsdale, Biochemistry 2010, 49, 6866–6876.PubMedCentralPubMedCrossRefGoogle Scholar
  86. 86.
    B. Jaun, R. K. Thauer, Met. Ions Life Sci. 2009, 6, 115–132.PubMedCrossRefGoogle Scholar
  87. 87.
    R. C. Kunz, M. Dey, S. W. Ragsdale, Biochemistry 2008, 47, 2661–2667.PubMedCrossRefGoogle Scholar
  88. 88.
    J. Ellermann, A. Kobelt, A. Pfaltz, R. K. Thauer, FEBS Lett. 1987, 220, 358–362.PubMedCrossRefGoogle Scholar
  89. 89.
    Y. Ahn, J. A. Krzycki, H. G. Floss, J. Am. Chem. Soc. 1991, 113, 4700–4701.CrossRefGoogle Scholar
  90. 90.
    S. Scheller, M. Goenrich, R. K. Thauer, B. Jaun, J. Am. Chem. Soc. 2013, 135, 14985–14995.PubMedCrossRefGoogle Scholar
  91. 91.
    S. Scheller, M. Goenrich, R. K. Thauer, B. Jaun, J. Am. Chem. Soc. 2013, 135, 14975–14984.PubMedCrossRefGoogle Scholar
  92. 92.
    V. Pelmenschikov, M. R. A. Blomberg, P. E. M. Siegbahn, R. H. Crabtree, J. Am. Chem. Soc. 2002, 124, 4039–4049.PubMedCrossRefGoogle Scholar
  93. 93.
    M. Dey, X. Li, R. C. Kunz, S. W. Ragsdale, Biochemistry 2010, 49, 10902–10911.PubMedCrossRefGoogle Scholar
  94. 94.
    M. Goenrich, F. Mahlert, E. C. Duin, C. Bauer, B. Jaun, R. K. Thauer, J. Biol. Inorg. Chem. 2004, 9, 691–705.PubMedCrossRefGoogle Scholar
  95. 95.
    R. G. Matthews, Acc. Chem. Res. 2001, 34, 681–689.PubMedCrossRefGoogle Scholar
  96. 96.
    S. W. Ragsdale, in The Porphyrin Handbook, Eds K. M. Kadish, K. M. Smith, R. Guilard, Academic Press, New York, 2003, pp 205–228.Google Scholar
  97. 97.
    D. Hinderberger, R. P. Piskorski, M. Goenrich, R. K. Thauer, A. Schweiger, J. Harmer, B. Jaun, Angew. Chem. Int. Ed. Engl. 2006, 45, 3602–3607.PubMedCrossRefGoogle Scholar
  98. 98.
    M. Dey, R. C. Kunz, D. M. Lyons, S. W. Ragsdale, Biochemistry 2007, 46, 11969–11978.PubMedCentralPubMedCrossRefGoogle Scholar
  99. 99.
    A. Ghosh, T. Wondimagegn, H. Ryeng, Curr. Opin. Chem. Biol. 2001, 5, 744–750.PubMedCrossRefGoogle Scholar
  100. 100.
    V. Pelmenschikov, P. E. Siegbahn, J. Biol. Inorg. Chem. 2003, 8, 653–662.PubMedCrossRefGoogle Scholar
  101. 101.
    C. Finazzo, J. Harmer, B. Jaun, E. C. Duin, F. Mahlert, R. K. Thauer, S. Van Doorslaer, A. Schweiger, J. Biol. Inorg. Chem. 2003, 8, 586–593.PubMedGoogle Scholar
  102. 102.
    S.-L. Chen, M. R. A. Blomberg, P. E. M. Siegbahn, Chem. Eur. J. 2012, 18, 6309–6315.PubMedCrossRefGoogle Scholar
  103. 103.
    S. Scheller, M. Goenrich, R. Boecher, R. K. Thauer, B. Jaun, Nature 2010, 465, 606–608.PubMedCrossRefGoogle Scholar
  104. 104.
    M. Dey, X. Li, R. C. Kunz, S. W. Ragsdale, Biochemistry 2010, 49, 10902–10911.PubMedCrossRefGoogle Scholar
  105. 105.
    M. Goenrich, E. C. Duin, F. Mahlert, R. K. Thauer, J. Biol. Inorg. Chem. 2005, 10, 333–342.PubMedCrossRefGoogle Scholar
  106. 106.
    C. A. Haynes, R. Gonzalez, Nat. Chem. Biol. 2014, 10, 331–339.PubMedCrossRefGoogle Scholar
  107. 107.
    R. J. Conrado, R. Gonzalez, Science 2014, 343, 621–623.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Biological ChemistryUniversity of Michigan Medical SchoolAnn ArborUSA

Personalised recommendations