Advertisement

Understanding and Harnessing Hydrogenases, Biological Dihydrogen Catalysts

  • Alison Parkin
Part of the Metal Ions in Life Sciences book series (MILS, volume 14)

Abstract

It has been estimated that 99 % of all organisms utilize dihydrogen (H2). Most of these species are microbes and their ability to use H2 as a metabolite arises from the expression of H2 metalloenzymes known as hydrogenases. These molecules have been the focus of intense biological, biochemical, and chemical research because hydrogenases are biotechnologically relevant enzymes.

Keywords

dihydrogen [FeFe] hydrogenase hydrogen technology [NiFe] 

Notes

Acknowledgment

A. Parkin would like to acknowledge the support provided by the University of York.

References

  1. 1.
    P. Atkins, T. Overton, J. Rourke, M. Weller, F. Armstrong, Shriver and Atkins’ Inorganic Chemistry, 5th edn., Oxford University Press, 2010.Google Scholar
  2. 2.
    W. Nitschke, S. E. McGlynn, E. J. Milner-White, M. J. Russell, Biochim. Biophys. Acta Bioenerg. 2013, 1827, 871–881.CrossRefGoogle Scholar
  3. 3.
    A. Volbeda, J. Fontecilla-Camps, in A Structural Perspective on Respiratory Complex I, Ed. L. Sazanov, Springer Netherlands, 2012, pp. 109–121.Google Scholar
  4. 4.
    F. Tian, O. B. Toon, A. A. Pavlov, H. De Sterck, Science 2005, 308, 1014–1017.PubMedCrossRefGoogle Scholar
  5. 5.
    R. Wordsworth, R. Pierrehumbert, Science 2013, 339, 64–67.PubMedCrossRefGoogle Scholar
  6. 6.
    P. Kharecha, J. Kasting, J. Siefert, Geobiology 2005, 3, 53–76.CrossRefGoogle Scholar
  7. 7.
    R. K. Thauer, A.-K. Kaster, M. Goenrich, M. Schick, T. Hiromoto, S. Shima, Annu. Rev. Biochem. 2010, 79, 507–536.PubMedCrossRefGoogle Scholar
  8. 8.
    F. H. Chapelle, K. O’Neill, P. M. Bradley, B. A. Methe, S. A. Ciufo, L. L. Knobel, D. R. Lovley, Nature 2002, 415, 312–315.PubMedCrossRefGoogle Scholar
  9. 9.
    M. K. Vollmer, S. Walter, J. Mohn, M. Steinbacher, S. W. Bond, T. Röckmann, S. Reimann, Atmos. Chem. Phys. 2012, 12, 6275–6289.Google Scholar
  10. 10.
    A. Jordan, B. Steinberg, Atmos. Meas. Tech. 2011, 4, 509–521.CrossRefGoogle Scholar
  11. 11.
    R. Lamichhane-Khadka, S. L. Benoit, S. E. Maier, R. J. Maier, Open Biol. 2013, 3.Google Scholar
  12. 12.
    L. Maier, R. Vyas, Carmen D. Cordova, H. Lindsay, Thomas Sebastian B. Schmidt, S. Brugiroux, B. Periaswamy, R. Bauer, A. Sturm, F. Schreiber, C. von Mering, Mark D. Robinson, B. Stecher, W.-D. Hardt, Cell Host Microbe 2013, 14, 641–651.Google Scholar
  13. 13.
    M. Stephenson, L. H. Stickland, Biochem. J. 1931, 25, 205–200.PubMedCentralPubMedGoogle Scholar
  14. 14.
    M. Stephenson, L. H. Stickland, Biochem. J. 1931, 25, 215–220.PubMedCentralPubMedGoogle Scholar
  15. 15.
    P. Constant, S. P. Chowdhury, L. Hesse, J. Pratscher, R. Conrad, Appl. Environ. Microbiol. 2011, 77, 6027–6035.PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    K. Aschenbach, R. Conrad, K. Reháková, J. Doležal, K. Janatková, R. Angel, Front. Microbiol. 2013, 4, doi:  10.3389/fmicb.2013.00359.
  17. 17.
    H. Bothe, O. Schmitz, M. G. Yates, W. E. Newton, Microbiol. Mol. Biol. Rev. 2010, 74, 529–551.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    J. M. Petersen, F. U. Zielinski, T. Pape, R. Seifert, C. Moraru, R. Amann, S. Hourdez, P. R. Girguis, S. D. Wankel, V. Barbe, E. Pelletier, D. Fink, C. Borowski, W. Bach, N. Dubilier, Nature 2011, 476, 176–180.PubMedCrossRefGoogle Scholar
  19. 19.
    R. E. Macur, Z. J. Jay, W. P. Taylor, M. A. Kozubal, B. D. Kocar, W. P. Inskeep, Geobiology 2013, 11, 86–99.PubMedCrossRefGoogle Scholar
  20. 20.
    P. M. Vignais, B. Billoud, Chem. Rev. 2007, 107, 4206–4272.PubMedCrossRefGoogle Scholar
  21. 21.
    E. Oelgeschläger, M. Rother, Arch. Microbiol. 2008, 190, 257–269.PubMedCrossRefGoogle Scholar
  22. 22.
    K. Schuchmann, V. Müller, Science 2013, 342, 1382–1385.PubMedCrossRefGoogle Scholar
  23. 23.
    O. Lenz, M. Ludwig, T. Schubert, I. Bürstel, S. Ganskow, T. Goris, A. Schwarze, B. Friedrich, ChemPhysChem 2010, 11, 1107–1119.PubMedCrossRefGoogle Scholar
  24. 24.
    F. E. Rey, M. D. Gonzalez, J. Cheng, M. Wu, P. P. Ahern, J. I. Gordon, PNAS 2013, 110, 13582–13587.PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    F. Carbonero, A. C. Benefiel, H. R. Gaskins, Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 504–518.PubMedCrossRefGoogle Scholar
  26. 26.
    J. K. DiBaise, H. Zhang, M. D. Crowell, R. Krajmalnik-Brown, G. A. Decker, B. E. Rittmann, Mayo Clin. Proc. 2008, 83, 460–469.PubMedCrossRefGoogle Scholar
  27. 27.
    A. Strocchi, J. Furne, C. Ellis, M. D. Levitt, Gut 1994, 35, 1098–1101.PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    S. A. Angermayr, K. J. Hellingwerf, P. Lindblad, M. J. Teixeira de Mattos, Curr. Opin. Biotechnol. 2009, 20, 257–263.PubMedCrossRefGoogle Scholar
  29. 29.
    C. Pinske, M. Jaroschinsky, F. Sargent, G. Sawers, BMC Microbiol. 2012, 12, 134.PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science 2011, 332, 805–809.PubMedCrossRefGoogle Scholar
  31. 31.
    T. A. Faunce, W. Lubitz, A. W. Rutherford, D. MacFarlane, G. F. Moore, P. Yang, D. G. Nocera, T. A. Moore, D. H. Gregory, S. Fukuzumi, K. B. Yoon, F. A. Armstrong, M. R. Wasielewski, S. Styring, Energ. Environ. Sci. 2013, 6, 695–698.CrossRefGoogle Scholar
  32. 32.
    F. E. Osterloh, B. A. Parkinson, MRS Bulletin 2011, 36, 17–22.CrossRefGoogle Scholar
  33. 33.
    P. D. Tran, V. Artero, M. Fontecave, Energ. Environ. Sci. 2010, 3, 727–747.CrossRefGoogle Scholar
  34. 34.
    T. Sakai, D. Mersch, E. Reisner, Angew. Chem. Int. Ed. 2013, 52, 12313–12316.CrossRefGoogle Scholar
  35. 35.
    C. E. Lubner, P. Knörzer, P. J. N. Silva, K. A. Vincent, T. Happe, D. A. Bryant, J. H. Golbeck, Biochemistry 2010, 49, 10264–10266.PubMedCrossRefGoogle Scholar
  36. 36.
    H. Krassen, A. Schwarze, B. R. Friedrich, K. Ataka, O. Lenz, J. Heberle, ACS Nano 2009, 3, 4055–4061.PubMedCrossRefGoogle Scholar
  37. 37.
    E. Reisner, D. J. Powell, C. Cavazza, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2009, 131, 18457–18466.PubMedCrossRefGoogle Scholar
  38. 38.
    M. Hambourger, M. Gervaldo, D. Svedruzic, P. W. King, D. Gust, M. Ghirardi, A. L. Moore, T. A. Moore, J. Am. Chem. Soc. 2008, 130, 2015–2022.PubMedCrossRefGoogle Scholar
  39. 39.
    M. L. Ghirardi, M. C. Posewitz, P.-C. Maness, A. Dubini, J. Yu, M. Seibert, Annu. Rev. Plant Biol. 2007, 58, 71–91.PubMedCrossRefGoogle Scholar
  40. 40.
    D. C. Ducat, J. C. Way, P. A. Silver, Trends Biotechnol. 2011, 29, 95–103.PubMedCrossRefGoogle Scholar
  41. 41.
    R. Razeghifard, Photosynth. Res. 2013, 117, 207–219.PubMedCrossRefGoogle Scholar
  42. 42.
    K. Gutekunst, X. Chen, K. Schreiber, U. Kaspar, S. Makam, J. Appel, J. Biol. Chem. 2014, 289, 1930–1937.PubMedCrossRefGoogle Scholar
  43. 43.
    M. Ortega-Ramos, T. Jittawuttipoka, P. Saenkham, A. Czarnecka-Kwasiborski, H. Bottin, C. Cassier-Chauvat, F. Chauvat, PLoS One 2014, 9, e89372.PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    A. Hemschemeier, A. Melis, T. Happe, Photosynth. Res. 2009, 102, 523–540.PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    W. Lubitz, H. Ogata, O. Rüdiger, E. Reijerse, Chem. Rev. 2014, 114, 4081–4148.PubMedCrossRefGoogle Scholar
  46. 46.
    J. Fritsch, O. Lenz, B. Friedrich, Nat. Rev. Microbiol. 2013, 11, 106–114.PubMedCrossRefGoogle Scholar
  47. 47.
    A. Parkin, F. Sargent, Curr. Opin. Chem. Biol. 2012, 16, 26–34.PubMedCrossRefGoogle Scholar
  48. 48.
    B. J. Murphy, F. Sargent, F. A. Armstrong, Energ. Environ. Sci. 2014, 7, 1426–1433.CrossRefGoogle Scholar
  49. 49.
    S. Krishnan, F. A. Armstrong, Chem. Sci. 2012, 3, 1015–1023.CrossRefGoogle Scholar
  50. 50.
    L. Xu, F. A. Armstrong, Energ. Environ. Sci. 2013, 6, 2166–2171.CrossRefGoogle Scholar
  51. 51.
    P. Constant, S. P. Chowdhury, J. Pratscher, R. Conrad, Environ. Microbiol. 2010, 12, 821–829.PubMedCrossRefGoogle Scholar
  52. 52.
    C. Greening, M. Berney, K. Hards, G. M. Cook, R. Conrad, PNAS 2014, 111, 4257–4261.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    C. Schäfer, B. Friedrich, O. Lenz, Appl. Environ. Microbiol. 2013, 79, 5137–5145.PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    L. Lauterbach, O. Lenz, J. Am. Chem. Soc. 2013, 135, 17897–17905.PubMedCrossRefGoogle Scholar
  55. 55.
    M. Horch, L. Lauterbach, O. Lenz, P. Hildebrandt, I. Zebger, FEBS Lett. 2012, 586, 545–556.PubMedCrossRefGoogle Scholar
  56. 56.
    C. L. McIntosh, F. Germer, R. Schulz, J. Appel, A. K. Jones, J. Am. Chem. Soc. 2011, 133, 11308–11319.PubMedCrossRefGoogle Scholar
  57. 57.
    P.-P. Liebgott, A. L. de Lacey, B. Burlat, L. Cournac, P. Richaud, M. Brugna, V. M. Fernandez, B. Guigliarelli, M. Rousset, C. Léger, S. Dementin, J. Am. Chem. Soc. 2010, 133, 986–997.PubMedCrossRefGoogle Scholar
  58. 58.
    T. Lautier, P. Ezanno, C. Baffert, V. Fourmond, L. Cournac, J. C. Fontecilla-Camps, P. Soucaille, P. Bertrand, I. Meynial-Salles, C. Leger, Faraday Discuss. 2011, 148, 385–407.PubMedCrossRefGoogle Scholar
  59. 59.
    C. S. A. Baltazar, M. C. Marques, C. M. Soares, A. M. DeLacey, I. A. C. Pereira, P. M. Matias, Eur. J. Inorg. Chem. 2011, 2011, 948–962.CrossRefGoogle Scholar
  60. 60.
    A. Parkin, G. Goldet, C. Cavazza, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2008, 130, 13410–13416.PubMedCrossRefGoogle Scholar
  61. 61.
    R. M. Evans, A. Parkin, M. M. Roessler, B. J. Murphy, H. Adamson, M. J. Lukey, F. Sargent, A. Volbeda, J. C. Fontecilla-Camps, F. A. Armstrong, J. Am. Chem. Soc. 2013, 135, 2694–2707.PubMedCrossRefGoogle Scholar
  62. 62.
    L. Forzi, R. G. Sawers, Biometals 2007, 20, 565–578.PubMedCrossRefGoogle Scholar
  63. 63.
    S. T. Stripp, B. Soboh, U. Lindenstrauss, M. Braussemann, M. Herzberg, D. H. Nies, R. G. Sawers, J. Heberle, Biochemistry 2013, 52, 3289–3296.PubMedCrossRefGoogle Scholar
  64. 64.
    I. Bürstel, P. Hummel, E. Siebert, N. Wisitruangsakul, I. Zebger, B. Friedrich, O. Lenz, J. Biol. Chem. 2011, 286, 44937–44944.PubMedCentralPubMedCrossRefGoogle Scholar
  65. 65.
    J. Fritsch, E. Siebert, J. Priebe, I. Zebger, F. Lendzian, C. Teutloff, B. Friedrich, O. Lenz, J. Biol. Chem. 2014, 289, 7982–7993.PubMedCrossRefGoogle Scholar
  66. 66.
    C. E. Foster, T. Krämer, A. F. Wait, A. Parkin, D. P. Jennings, T. Happe, J. E. McGrady, F. A. Armstrong, J. Am. Chem. Soc. 2012, 134, 7553–7557.PubMedCrossRefGoogle Scholar
  67. 67.
    S. T. Stripp, G. Goldet, C. Brandmayr, O. Sanganas, K. A. Vincent, M. Haumann, F. A. Armstrong, T. Happe, PNAS 2009, 106, 17331–17336.PubMedCentralPubMedCrossRefGoogle Scholar
  68. 68.
    J. M. Kuchenreuther, W. K. Myers, D. L. M. Suess, T. A. Stich, V. Pelmenschikov, S. A. Shiigi, S. P. Cramer, J. R. Swartz, R. D. Britt, S. J. George, Science 2014, 343, 424–427.PubMedCrossRefGoogle Scholar
  69. 69.
    S. Shima, O. Pilak, S. Vogt, M. Schick, M. S. Stagni, W. Meyer-Klaucke, E. Warkentin, R. K. Thauer, U. Ermler, Science 2008, 321, 572–575.PubMedCrossRefGoogle Scholar
  70. 70.
    H. Tamura, M. Salomone-Stagni, T. Fujishiro, E. Warkentin, W. Meyer-Klaucke, U. Ermler, S. Shima, Angew. Chem. Int. Ed. 2013, 52, 9656–9659.CrossRefGoogle Scholar
  71. 71.
    M. Schick, X. Xie, K. Ataka, J. Kahnt, U. Linne, S. Shima, J. Am. Chem. Soc. 2012, 134, 3271–3280.PubMedCrossRefGoogle Scholar
  72. 72.
    T. J. Lie, K. C. Costa, D. Pak, V. Sakesan, J. A. Leigh, FEMS Microbiol. Lett. 2013, 343, 156–160.PubMedCrossRefGoogle Scholar
  73. 73.
    G. J. Kubas, Chem. Rev. 2007, 107, 4152–4205.PubMedCrossRefGoogle Scholar
  74. 74.
    C. Tard, C. J. Pickett, Chem. Rev. 2009, 109, 2245–2274.PubMedCrossRefGoogle Scholar
  75. 75.
    P. E. M. Siegbahn, J. W. Tye, M. B. Hall, Chem. Rev. 2007, 107, 4414–4435.PubMedCrossRefGoogle Scholar
  76. 76.
    M. L. Helm, M. P. Stewart, R. M. Bullock, M. R. DuBois, D. L. DuBois, Science 2011, 333, 863–866.PubMedCrossRefGoogle Scholar
  77. 77.
    S. Ogo, K. Ichikawa, T. Kishima, T. Matsumoto, H. Nakai, K. Kusaka, T. Ohhara, Science 2013, 339, 682–684.PubMedCrossRefGoogle Scholar
  78. 78.
    G. Berggren, A. Adamska, C. Lambertz, T. R. Simmons, J. Esselborn, M. Atta, S. Gambarelli, J. M. Mouesca, E. Reijerse, W. Lubitz, T. Happe, V. Artero, M. Fontecave, Nature 2013, 499, 66–69.PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Y. A. Small, D. L. DuBois, E. Fujita, J. T. Muckerman, Energ. Environ. Sci. 2011, 4, 3008–3020.CrossRefGoogle Scholar
  80. 80.
    R. M. Bullock, A. M. Appel, M. L. Helm, Chem. Comm. 2014, 50, 3125–3143.PubMedCrossRefGoogle Scholar
  81. 81.
    A. Pohlmann, W. F. Fricke, F. Reinecke, B. Kusian, H. Liesegang, R. Cramm, T. Eitinger, C. Ewering, M. Potter, E. Schwartz, A. Strittmatter, I. Vosz, G. Gottschalk, A. Steinbuchel, B. Friedrich, B. Bowien, Nat. Biotech. 2006, 24, 1257–1262.CrossRefGoogle Scholar
  82. 82.
    A. D. Poulpiquet, A. Ciaccafava, S. Benomar, M.-T. Giudici-Orticoni, E. Lojou, Carbon Nanotube-Enzyme Biohybrids in a Green Hydrogen Economy, Ed. S. Suzuki, InTech, http://www.intechopen.com/books/syntheses-and-applications-of-carbon-nanotubes-and-their-composites/carbon-nanotube-enzyme-biohybrids-in-a-green-hydrogen-economy, 2013.
  83. 83.
    D. Black, “Solar Fuels and Artificial Photosynthesis”, Royal Society of Chemistry, www.rsc.org/solar-fuels, 2012.
  84. 84.
    Sustaining Life on Planet Earth: Metalloenzymes Mastering Dioxygen and Other Chewy Gases, Eds P. M. H. Kroneck, M. E. Sosa Torres; Vol. 15 of Metal Ions in Life Sciences, Eds A. Sigel, H. Sigel, R. K. O. Sigel; Springer International Publishing AG, Cham, Switzerland, 2015, in press.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of YorkYorkUK

Personalised recommendations