Transformations of Dimethylsulfide

  • Ulrike KapplerEmail author
  • Hendrik Schäfer
Part of the Metal Ions in Life Sciences book series (MILS, volume 14)


Dimethylsulfide (DMS) is a naturally occurring chemical that is part of the biogeochemical sulfur cycle and has been implicated in climate-relevant atmospheric processes. In addition, DMS occurs in soil environments as well as in food stuff as a flavor compound and it can also be associated with disease states such as halitosis. A major environmental source of DMS is the marine algal osmoprotectant dimethylsulfoniopropionate (DMSP). A variety of bacterial enzyme systems lead either to the production of DMS from DMSP or dimethylsulfoxide (DMSO) or its oxidation to, e.g., DMSO. The interconversion of DMS and DMSO is catalyzed by molybdenum-containing metalloenzymes that have been very well studied, and recently another enzyme system, an NADH-dependent, flavin-containing monooxygenase, that produces formaldehyde and methanethiol from DMS has also been described.

DMS conversions are not limited to a specialized group of bacteria – evidence for DMS-based metabolism exists for heterotrophic, autotrophic and phototrophic bacteria and there is also evidence for the occurrence of this type of sulfur compound conversion in Archaea.


dimethylsulfide dimethylsulfoxide DMS dehydrogenase DMS monooxygenase DMSO reductase 



We would like to thank Dr. Megan Maher and Prof. Paul Bernhardt for their help in preparing this manuscript. HS is grateful to past and present coworkers and support from the UK-Natural Environment Research Council.


  1. 1.
    H. Schäfer, N. Myronova, R. Boden, J. Exp. Botan. 2010, 61, 315–334.Google Scholar
  2. 2.
    R. Bentley, T. G. Chasteen, Chemosphere 2004, 55, 291–317.PubMedGoogle Scholar
  3. 3.
    S. F. Watts, Atmos. Environ. 2000, 34, 761–779.Google Scholar
  4. 4.
    J. E. Lovelock, R. J. Maggs, R. A. Rasmussen, Nature 1972, 237, 452–453.Google Scholar
  5. 5.
    M. O. Andreae, Marine Chem. 1990, 30, 1–29.Google Scholar
  6. 6.
    D. P. Kelly, S. C. Baker, FEMS Microbiol. Rev. 1990, 87, 241–246.Google Scholar
  7. 7.
    F. J. Zhao, J. S. Knights, Z. Y. Hu, S. P. McGrath, J. Environ. Qual. 2003, 32, 33–39.PubMedGoogle Scholar
  8. 8.
    M. A. Kertesz, P. Mirleau, J. Exp. Botan. 2004, 55, 1939–1945.Google Scholar
  9. 9.
    R. J. Charlson, J. E. Lovelock, M. O. Andreae, S. G. Warren, Nature 1987, 326, 655–661.Google Scholar
  10. 10.
    P. K. Quinn, T. S. Bates, Nature 2011, 480, 51–56.PubMedGoogle Scholar
  11. 11.
    G. O. Kirst, C. Thiel, H. Wolff, J. Nothnagel, M. Wanzek, R. Ulmke, Marine Chem. 1991, 35, 381–388.Google Scholar
  12. 12.
    J. Stefels, J. Sea Res. 2000, 43, 183–197.Google Scholar
  13. 13.
    W. Sunda, D. J. Kieber, R. P. Kiene, S. Huntsman, Nature 2002, 418, 317–320.PubMedGoogle Scholar
  14. 14.
    A. R. J. Curson, J. D. Todd, M. J. Sullivan, A. W. B. Johnston, Nat. Rev. Microbiol. 2011, 9, 849–859.PubMedGoogle Scholar
  15. 15.
    A. Lana, T. G. Bell, R. Simo, S. M. Vallina, J. Ballabrera-Poy, A. J. Kettle, J. Dachs, L. Bopp, E. S. Saltzman, J. Stefels, J. E. Johnson, P. S. Liss, Global Biogeochem. Cycles 2011, 25, GB1004.Google Scholar
  16. 16.
    J. A. M. De Bont, J. P. van Dijken, W. Harder, J. Gen. Microbiol. 1981, 127, 315–323.Google Scholar
  17. 17.
    J. M. M. de Zwart, P. N. Nelisse, J. G. Kuenen, FEMS Microbiol. Ecol. 1996, 20, 261–270.Google Scholar
  18. 18.
    R. Boden, D. P. Kelly, J. C. Murrell, H. Schäfer, Env. Microbiol. 2010, 12, 2688–2699.Google Scholar
  19. 19.
    R. Boden, J. C. Murrell, H. Schäfer, FEMS Microbiol. Lett. 2011, 322, 188–193.PubMedGoogle Scholar
  20. 20.
    D. H. Green, D. M. Shenoy, M. C. Hart, A. D. Hatton, Appl. Environ. Microbiol. 2011, 77, 3137–3140.PubMedCentralPubMedGoogle Scholar
  21. 21.
    T. Omori, Y. Saiki, K. Kasuga, T. Kodama, Biosci. Biotechnol. Biochem. 1995, 59, 1195–1198.Google Scholar
  22. 22.
    H. Fuse, O. Takimura, K. Murakami, Y. Yamoaka, T. Omori, Appl. Environ. Microbiol. 2000, 66, 5527–5532.PubMedCentralPubMedGoogle Scholar
  23. 23.
    R. P. Kiene, T. S. Bates, Nature 1990, 345, 702–705.Google Scholar
  24. 24.
    B. P. Lomans, A. J. P. Smolders, L. M. Intven, A. Pol, H. J. M. Op Den Camp, C. Van Der Drift, Appl. Environ. Microbiol. 1997, 63, 4741–4747.PubMedCentralPubMedGoogle Scholar
  25. 25.
    H. Kadota, Y. Ishida, Annu. Rev. Microbiol. 1972, 26, 127–138.PubMedGoogle Scholar
  26. 26.
    R. P. Kiene, D. G. Capone, Microbiol. Ecol. 1988, 15, 275–291.Google Scholar
  27. 27.
    S. H. Zinder, T. D. Brock, Arch. Microbiol. 1978, 116, 35–40.PubMedGoogle Scholar
  28. 28.
    F. Bak, K. Finster, F. Rothfuß, Arch. Microbiol. 1992, 157, 529–534.Google Scholar
  29. 29.
    J.-U. Kreft, B. Schink, Arch. Microbiol. 1993, 159, 308–315.Google Scholar
  30. 30.
    B. P. Lomans, P. Leijdekkers, J.-J. Wesselink, P. Bakkes, A. Pol, C. van der Drift, H. J. Op den Camp, Appl. Environ. Microbiol. 2001, 67, 4017–4023.PubMedCentralPubMedGoogle Scholar
  31. 31.
    S. H. Zinder, T. D. Brock, Nature 1978, 273, 226–228.Google Scholar
  32. 32.
    V. Anesti, J. Vohra, S. Goonetilleka, I. R. McDonald, B. Sträubler, E. Stackebrandt, D. P. Kelly, A. P. Wood, Env. Microbiol. 2004, 8.Google Scholar
  33. 33.
    E. Borodina, D. P. Kelly, F. A. Rainey, N. L. Ward-Rainey, A. P. Wood, Arch. Microbiol. 2000, 173, 425–437.PubMedGoogle Scholar
  34. 34.
    H. G. Kim, N. V. Doronina, Y. A. Trotsenko, S. W. Kim, Int. J. Syst. Evol. Microbiol. 2007, 57, 2096–2101.PubMedGoogle Scholar
  35. 35.
    S. A. Moosvi, I. R. McDonald, D. A. Pearce, D. P. Kelly, A. P. Wood, Sys. Appl. Microbiol. 2005, 28, 541–554.Google Scholar
  36. 36.
    H. Schäfer, Appl. Environ. Microbiol. 2007, 73, 2580–2591.PubMedCentralPubMedGoogle Scholar
  37. 37.
    G. M. H. Suylen, J. G. Kuenen, Antonie van Leeuwenhoek 1986, 52, 281–293.PubMedGoogle Scholar
  38. 38.
    E. Borodina, D. P. Kelly, P. Schumann, F. A. Rainey, N. L. Ward-Rainey, A. P. Wood, Arch. Microbiol. 2002, 177, 173–183.PubMedGoogle Scholar
  39. 39.
    W. D. Gould, T. Kanagawa, J. Gen. Microbiol. 1992, 138, 217–221.Google Scholar
  40. 40.
    G. M. H. Suylen, P. J. Large, J. P. Vandijken, J. G. Kuenen, J. Gen. Microbiol. 1987, 133, 2989–2997.Google Scholar
  41. 41.
    C. Anthony, The Biochemistry of Methylotrophs, Academic Press, London, 1982.Google Scholar
  42. 42.
    T. Kanagawa, D. P. Kelly, FEMS Microbiol. Lett. 1986, 34, 13–19.Google Scholar
  43. 43.
    S. Sivelä, V. Sundman, Arch. Microbiol. 1975, 103, 303–304.Google Scholar
  44. 44.
    N. A. Smith, D. P. Kelly, J. Gen. Microbiol. 1988, 134, 1407–1417.Google Scholar
  45. 45.
    P. T. Visscher, B. F. Taylor, Appl. Environ. Microbiol. 1993, 59, 3784–3789.PubMedCentralPubMedGoogle Scholar
  46. 46.
    P. T. Visscher, B. F. Taylor, Appl. Environ. Microbiol. 1993, 59, 4083–4089.PubMedCentralPubMedGoogle Scholar
  47. 47.
    K. Finster, Y. Tanimoto, F. Bak, Arch. Microbiol. 1992, 157, 425–430.Google Scholar
  48. 48.
    R. P. Kiene, R. S. Oremland, A. Catena, L. G. Miller, D. G. Capone, Appl. Environ. Microbiol. 1986, 52, 1037–1045.PubMedCentralPubMedGoogle Scholar
  49. 49.
    B. P. Lomans, R. Maas, R. Luderer, H. J. Op den Camp, A. Pol, C. van der Drift, G. D. Vogels, Appl. Environ. Microbiol. 1999, 65, 3641–3650.PubMedCentralPubMedGoogle Scholar
  50. 50.
    T. J. Lyimo, A. Pol, H. J. Op den Camp, H. R. Harhangi, G. D. Vogels, Int. J. Syst. Evol. Microbiol. 2000, 50, 171–178.PubMedGoogle Scholar
  51. 51.
    S. S. Ni, D. R. Boone, Int. J. Syst. Bacteriol. 1991, 41, 410–416.PubMedGoogle Scholar
  52. 52.
    Y. Tanimoto, F. Bak, Appl. Environ. Microbiol. 1994, 60, 2450–2455.PubMedCentralPubMedGoogle Scholar
  53. 53.
    B. P. Lomans, H. J. Op den Camp, A. Pol, C. van der Drift, G. D. Vogels, Appl. Environ. Microbiol. 1999, 65, 2116–2121.PubMedCentralPubMedGoogle Scholar
  54. 54.
    S. C. M. Haaijer, H. R. Harhangi, B. B. Meijerink, M. Strous, A. Pol, A. J. P. Smolders, K. Verwegen, M. S. M. Jetten, H. den Camp, ISME J. 2008, 2, 1231–1242.PubMedGoogle Scholar
  55. 55.
    P. T. Visscher, B. F. Taylor, R. P. Kiene, FEMS Microbiol. Ecol. 1995, 18, 145–153.Google Scholar
  56. 56.
    T. C. Tallant, J. A. Krzycki, J. Bacteriol. 1997, 179, 6902–6911.PubMedCentralPubMedGoogle Scholar
  57. 57.
    E. Oelgeschlaeger, M. Rother, Mol. Microbiol. 2009, 72, 1260–1272.Google Scholar
  58. 58.
    J. Zeyer, P. Eicher, S. G. Wakeham, R. P. Schwarzenbach, Appl. Environ. Microbiol. 1987, 53, 2026–2032.PubMedCentralPubMedGoogle Scholar
  59. 59.
    C. Vogt, A. Rabenstein, J. Rethmeier, U. Fischer, Microbiology 1997, 143, 767–773.Google Scholar
  60. 60.
    C. A. McDevitt, P. Hugenholtz, G. R. Hanson, A. G. McEwan, Mol. Microbiol. 2002, 44, 1575–1587.PubMedGoogle Scholar
  61. 61.
    L. Zhang, I. Kuniyoshi, M. Hirai, M. Shoda, Biotechnol. Lett. 1991, 13, 223–228.Google Scholar
  62. 62.
    J. M. González, F. Mayer, M. A. Moran, R. E. Hodson, W. B. Whitman, Int. J. Syst. Bacteriol. 1997, 47, 773–780.PubMedGoogle Scholar
  63. 63.
    D. Y. Sorokin, B. E. Jones, J. G. Kuenen, Extremophiles 2000, 4, 145–155.PubMedGoogle Scholar
  64. 64.
    L. Y. Juliette, M. R. Hyman, D. J. Arp, Appl. Environ. Microbiol. 1993, 59, 3718–3727.PubMedCentralPubMedGoogle Scholar
  65. 65.
    A. J. Holmes, A. Costello, M. E. Lidstrom, J. C. Murrell, FEMS Microbiol. Lett. 1995, 132, 203–208.PubMedGoogle Scholar
  66. 66.
    H. B. Stirling, H. Dalton, FEMS Microbiol. Lett. 1979, 5, 315–318.Google Scholar
  67. 67.
    M. Horinouchi, K. Kasuga, H. Nojiri, H. Yamane, T. Omori, FEMS Microbiol. Lett. 1997, 155, 99–105.PubMedGoogle Scholar
  68. 68.
    T. Endoh, K. Kasuga, M. Horinouchi, T. Yoshida, H. Habe, H. Nojiri, T. Omori, Appl. Microbiol. Biotechnol. 2003, 62.Google Scholar
  69. 69.
    C.-Y. Li, T.-D. Wei, S.-H. Zhang, X.-L. Chen, X. Gao, P. Wang, B.-B. Xie, H.-N. Su, Q.-L. Qin, X.-Y. Zhang, J. Yu, H.-H. Zhang, B.-C. Zhou, G.-P. Yang, Y.-Z. Zhang, Proc. Natl. Acad. Sci. USA 2014, in press.Google Scholar
  70. 70.
    C. Wagner, S. M. Lusty, H.-F. Kung, N. L. Rogers, J. Biol. Chem. 1967, 242, 1287–1293.PubMedGoogle Scholar
  71. 71.
    D. R. Warner, J. L. Hoffman, Biochemistry 1996, 35, 4480–4484.PubMedGoogle Scholar
  72. 72.
    N. M. Mozier, K. P. McConnell, J. L. Hoffman, J. Biol. Chem. 1988, 263, 4527–4531.PubMedGoogle Scholar
  73. 73.
    R. A. Rothery, G. J. Workun, J. H. Weiner, Biochim. Biophys. Acta 2008, 1778, 1897–1929.Google Scholar
  74. 74.
    D. Sambasivarao, H. A. Dawson, G. J. Zhang, G. Shaw, J. Hu, J. H. Weiner, J. Biol. Chem. 2001, 276, 20167–20174.PubMedGoogle Scholar
  75. 75.
    R. A. Rothery, C. A. Trieber, J. H. Weiner, J. Biol. Chem. 1999, 274, 13002–13009.PubMedGoogle Scholar
  76. 76.
    P. T. Bilous, S. T. Cole, W. F. Anderson, J. H. Weiner, Mol. Microbiol. 1998, 2, 785–795.Google Scholar
  77. 77.
    A. G. McEwan, J. P. Ridge, K. F. Aguey-Zinsou, P. V. Bernhardt, G. R. Hanson, J. Inorg. Biochem. 2003, 96, 54–54.Google Scholar
  78. 78.
    U. Kappler, W. M. Huston, A. G. McEwan, Microbiology 2002, 148, 605–614.PubMedGoogle Scholar
  79. 79.
    A. G. McEwan, J. P. Ridge, C. A. McDevitt, P. Hugenholtz, Geomicrobiol. J. 2002, 19, 3–21.Google Scholar
  80. 80.
    A. G. McEwan, G. R. Hanson, S. Bailey, Biochem. Soc. Trans. 1998, 26, 390–396.Google Scholar
  81. 81.
    H. K. Li, C. Temple, K. V. Rajagopalan, H. Schindelin, J. Am. Chem. Soc. 2000, 122, 7673–7680.Google Scholar
  82. 82.
    H. Schindelin, C. Kisker, J. Hilton, K. V. Rajagopalan, D. C. Rees, Science 1996, 272, 1615–1621.PubMedGoogle Scholar
  83. 83.
    F. Schneider, J. Loewe, R. Huber, H. Schindelin, C. Kisker, J. Knaeblein, J. Mol. Biol. 1996, 263, 53–69.PubMedGoogle Scholar
  84. 84.
    S. Grimaldi, B. Schoepp-Cothenet, P. Ceccaldi, B. Guigliarelli, A. Magalon, Biochim. Biophys. Acta 2013, 1827, 1048–1085.Google Scholar
  85. 85.
    A. Magalon, J. G. Fedor, A. Walburger, J. H. Weiner, Coord. Chem. Rev. 2011, 255, 1159–1178.Google Scholar
  86. 86.
    Y. Zhang, S. Rump, V. N. Gladyshev, Coord. Chem. Rev. 2011, 255, 1206–1217.PubMedCentralPubMedGoogle Scholar
  87. 87.
    P. J. Ellis, T. Conrads, R. Hille, P. Kuhn, Structure 2001, 9, 125–132.PubMedGoogle Scholar
  88. 88.
    M. Jormakka, K. Yokoyama, T. Yano, M. Tamakoshi, S. Akimoto, T. Shimamura, P. Curmi, S. Iwata, Nat. Struct. Mol. Biol. 2008, 15, 730–737.PubMedCentralPubMedGoogle Scholar
  89. 89.
    M. Jormakka, D. Richardson, B. Byrne, S. Iwata, Structure 2004, 12, 95–104.PubMedGoogle Scholar
  90. 90.
    M. Jormakka, S. Tornroth, B. Byrne, S. Iwata, Science 2002, 295, 1863–1868.PubMedGoogle Scholar
  91. 91.
    D. P. Kloer, C. Hagel, J. Heider, G. E. Schulz, Structure 2006, 14, 1377–1388.PubMedGoogle Scholar
  92. 92.
    J. J. R. Frausto da Silva, R. J. P. Williams, The Biological Chemistry of the Elements – The Inorganic Chemistry of Life, Oxford University Press, Oxford, 2001.Google Scholar
  93. 93.
    J. J. G. Moura, C. D. Brondino, J. Trincao, M. J. Romao, J. Biol. Inorg. Chem. 2004, 9, 791–799.PubMedGoogle Scholar
  94. 94.
    O. Kniemeyer, J. Heider, J. Biol. Chem. 2001, 276, 21381–21386.PubMedGoogle Scholar
  95. 95.
    J. Dermer, G. Fuchs, J. Biol. Chem. 2012, 287, 36905–36916.PubMedCentralPubMedGoogle Scholar
  96. 96.
    W. Reichenbecher, A. Brune, B. Schink, Biochim. Biophys. Acta 1994, 1204, 217–224.PubMedGoogle Scholar
  97. 97.
    P. M. H. Kroneck, D. J. Abt, H. Niessen, B. Schink, J. Inorg. Biochem. 2001, 86, 300–300.Google Scholar
  98. 98.
    G. B. Seiffert, G. M. Ullmann, A. Messerschmidt, B. Schink, P. M. H. Kroneck, O. Einsle, Proc. Natl. Acad. Sci. USA 2007, 104, 3073–3077.PubMedCentralPubMedGoogle Scholar
  99. 99.
    B. M. Martins, H. Dobbek, I. Çinkaya, W. Buckel, A. Messerschmidt, Proc. Natl. Acad. Sci. USA 2004, 101, 15645–15649.PubMedCentralPubMedGoogle Scholar
  100. 100.
    S. M. McCrindle, U. Kappler, A. G. McEwan, Adv. Microb. Phys. 2005, 50, 147–198.Google Scholar
  101. 101.
    M. J. Romao, Dalton Trans. 2009, 4053–4068.Google Scholar
  102. 102.
    R. J. Turner, A. L. Papish, F. Sargent, Can. J. Microbiol. 2004, 50, 225–238.PubMedGoogle Scholar
  103. 103.
    K. J. Sarfo, T. L. Winstone, A. L. Papish, J. M. Howell, H. Kadir, H. J. Vogel, R. J. Turner, Biochem. Biophys. Res. Comm. 2004, 315, 397–403.PubMedGoogle Scholar
  104. 104.
    A. L. Papish, C. L. Ladner, R. J. Turner, J. Biol. Chem. 2003, 278, 32501–32506.PubMedGoogle Scholar
  105. 105.
    N. Ray, J. Oates, R. J. Turner, C. Robinson, FEBS Lett. 2003, 534, 156–160.PubMedGoogle Scholar
  106. 106.
    R. D. Fleischmann, M. D. Adams, O. White, R. A. Clayton, E. F. Kirkness, A. R. Kerlavage, C. J. Bult, J. F. Tomb, B. A. Dougherty, J. M. Merrick, K. McKenney, G. Sutton, W. Fitzhugh, C. Fields, J. D. Gocayne, J. Scott, R. Shirley, L. I. Liu, A. Glodek, J. M. Kelley, J. F. Weidman, C. A. Phillips, T. Spriggs, E. Hedblom, M. D. Cotton, T. R. Utterback, M. C. Hanna, D. T. Nguyen, D. M. Saudek, R. C. Brandon, L. D. Fine, J. L. Fritchman, J. L. Fuhrmann, N. S. M. Geoghagen, C. L. Gnehm, L. A. McDonald, K. V. Small, C. M. Fraser, H. O. Smith, J. C. Venter, Science 1995, 269, 496–512.PubMedGoogle Scholar
  107. 107.
    M. Xu, S. J. W. Busby, D. F. Browning, J. Bacteriol. 2009, 191, 3172–3176.PubMedCentralPubMedGoogle Scholar
  108. 108.
    S. P. Lubitz, J. H. Weiner, Arch. Biochem. Biophys. 2003, 418, 205–216.PubMedGoogle Scholar
  109. 109.
    I. J. Oresnik, C. L. Ladner, R. J. Turner, Mol. Microbiol. 2001, 40, 323–331.PubMedGoogle Scholar
  110. 110.
    M. F. Olmo-Mira, M. Gavira, D. J. Richardson, F. Castillo, C. Moreno-Vivián, M. D. Roldán, J. Biol. Chem. 2004, 279, 49727–49735.PubMedGoogle Scholar
  111. 111.
    A. G. McEwan, S. J. Ferguson, J. B. Jackson, Biochem. J. 1991, 274, 305–308.PubMedCentralPubMedGoogle Scholar
  112. 112.
    M. D. Moore, S. Kaplan, J. Bacteriol. 1989, 171, 4385–4394.PubMedCentralPubMedGoogle Scholar
  113. 113.
    T. Satoh, F. N. Kurihara, J. Biochem. (Tokyo) 1987, 102, 191–197.Google Scholar
  114. 114.
    A. L. Shaw, S. Leimkuehler, W. Klipp, G. R. Hanson, A. G. McEwan, Microbiology 1999, 145, 1409–1420.PubMedGoogle Scholar
  115. 115.
    N. J. Mouncey, M. Choudhary, S. Kaplan, J. Bacteriol. 1997, 179, 7617–7624.PubMedCentralPubMedGoogle Scholar
  116. 116.
    V. Mejean, C. Iobbi Nivol, M. Lepelletier, G. Giordano, M. Chippaux, M. C. Pascal, Mol. Microbiol. 1994, 11, 1169–1179.PubMedGoogle Scholar
  117. 117.
    H. Strnad, A. Lapidus, J. Paces, P. Ulbrich, C. Vlcek, V. Paces, R. Haselkorn, J. Bacteriol. 2010, 192, 3545–3546.PubMedCentralPubMedGoogle Scholar
  118. 118.
    P. S. Solomon, A. L. Shaw, I. Lane, G. R. Hanson, T. Palmer, A. G. McEwan, Microbiology 1999, 145, 1421–1429.PubMedGoogle Scholar
  119. 119.
    P. S. Solomon, A. L. Shaw, M. D. Young, S. Leimkuehler, G. R. Hanson, W. Klipp, A. G. McEwan, FEMS Microbiol. Lett. 2000, 190, 203–208.PubMedGoogle Scholar
  120. 120.
    W. S. Kontur, W. S. Schackwitz, N. Ivanova, J. Martin, K. LaButti, S. Deshpande, H. N. Tice, C. Pennacchio, E. Sodergren, G. M. Weinstock, D. R. Noguera, T. J. Donohue, J. Bacteriol. 2012, 194, 7016–7017.PubMedCentralPubMedGoogle Scholar
  121. 121.
    S. Zhou, E. Kvikstad, A. Kile, J. Severin, D. Forrest, R. Runnheim, C. Churas, J. W. Hickman, C. Mackenzie, M. Choudhary, T. Donohue, S. Kaplan, D. C. Schwartz, Genome Res. 2003, 13, 2142–2151.PubMedCentralPubMedGoogle Scholar
  122. 122.
    N. J. Mouncey, S. Kaplan, J. Bacteriol. 1998, 180, 5612–5618.PubMedCentralPubMedGoogle Scholar
  123. 123.
    I. Yamamoto, T. Ujiiye, Y. Ohshima, T. Satoh, Plant Cell Physiol. 2001, 42, 703–709.PubMedGoogle Scholar
  124. 124.
    I. Yamamoto, K. Takamatsu, Y. Ohshima, T. Ujiiye, T. Satoh, Biochim. Biophys. Acta 1999, 1447, 57–63.PubMedGoogle Scholar
  125. 125.
    T. Ujiiye, I. Yamamoto, T. Satoh, Biochim. Biophys. Acta 1997, 1353, 84–92.PubMedGoogle Scholar
  126. 126.
    N. J. Mouncey, S. Kaplan, J. Bacteriol. 1998, 180, 2924–2930.PubMedCentralPubMedGoogle Scholar
  127. 127.
    J. H. Zeilstra-Ryalls, K. Gabbert, N. J. Mouncey, S. Kaplan, R. G. Kranz, J. Bacteriol. 1997, 179, 7264–7273.PubMedCentralPubMedGoogle Scholar
  128. 128.
    S. Elsen, L. R. Swem, D. L. Swem, C. E. Bauer, Microbiol. Mol. Biol. Rev. 2004, 68, 263–279.PubMedCentralPubMedGoogle Scholar
  129. 129.
    C. Bauer, S. Elsen, L. R. Swem, D. L. Swem, S. Masuda, Philos. Trans. Roy. Soc. B 2003, 358, 147–153.Google Scholar
  130. 130.
    S. Elsen, W. Dischert, A. Colbeau, C. E. Bauer, J. Bacteriol. 2000, 182, 2831–2837.PubMedCentralPubMedGoogle Scholar
  131. 131.
    J. Gregor, T. Zeller, A. Balzer, K. Haberzettl, G. Klug, J. Mol. Micobiol. Biotechnol. 2007, 13, 126–139.Google Scholar
  132. 132.
    A. W. Dangel, F. R. Tabita, Mol. Microbiol. 2009, 71, 717–729.PubMedGoogle Scholar
  133. 133.
    J. Wu, C. E. Bauer, mBio 2010, 1, e00272–00210-e00272–00218.Google Scholar
  134. 134.
    P. M. McNicholas, R. C. Chiang, R. P. Gunsalus, Mol. Microbiol. 1998, 27, 197–208.PubMedGoogle Scholar
  135. 135.
    P. McNicholas, S. Rech, R. Gunsalus, FASEB Journal 1997, 11, A1378–A1378.Google Scholar
  136. 136.
    J. L. SimalaGrant, J. H. Weiner, Eur. J. Biochem. 1998, 251, 510–515.Google Scholar
  137. 137.
    J. L. SimalaGrant, J. H. Weiner, Microbiology 1996, 142, 3231–3239.Google Scholar
  138. 138.
    R. W. Jones, P. B. Garland, Biochem. J. 1977, 164, 199–211.PubMedCentralPubMedGoogle Scholar
  139. 139.
    S. P. Hanlon, T. H. Toh, P. S. Solomon, R. A. Holt, A. G. McEwan, Eur. J. Biochem. 1996, 239, 391–396.PubMedGoogle Scholar
  140. 140.
    R. C. Bray, B. Adams, A. T. Smith, R. L. Richards, D. J. Lowe, S. Bailey, Biochemistry 2001, 40, 9810–9820.PubMedGoogle Scholar
  141. 141.
    B. Adams, A. T. Smith, S. Bailey, A. G. McEwan, R. C. Bray, Biochemistry 1999, 38, 8501–8511.PubMedGoogle Scholar
  142. 142.
    J. P. Ridge, K. F. Aguey-Zinsou, P. V. Bernhardt, I. M. Brereton, G. R. Hanson, A. G. McEwan, Biochemistry 2002, 41, 15762–15769.PubMedGoogle Scholar
  143. 143.
    K. E. Johnson, K. V. Rajagopalan, J. Biol. Chem. 2001, 276, 13178–13185.PubMedGoogle Scholar
  144. 144.
    K. Heffron, C. Leger, R. A. Rothery, J. H. Weiner, F. A. Armstrong, Biochemistry 2001, 40, 3117–3126.PubMedGoogle Scholar
  145. 145.
    K. Heffron, J. H. Weiner, R. A. Rothery, F. A. Armstrong, J. Inorg. Biochem. 1999, 74, 157–157.Google Scholar
  146. 146.
    C. Léger, P. Bertrand, Chem. Rev. 2008, 108, 2379–2438.PubMedGoogle Scholar
  147. 147.
    K. F. Aguey-Zinsou, P. V. Bernhardt, A. G. McEwan, J. P. Ridge, J. Biol. Inorg. Chem. 2002, 7, 879–883.PubMedGoogle Scholar
  148. 148.
    C. A. Trieber, R. A. Rothery, J. H. Weiner, J. Biol. Chem. 1996, 271, 27339–27345.PubMedGoogle Scholar
  149. 149.
    A. S. McAlpine, A. G. McEwan, S. Bailey, J. Mol. Biol. 1998, 275, 613–623.PubMedGoogle Scholar
  150. 150.
    A. S. McAlpine, A. G. McEwan, A. L. Shaw, S. Bailey, J. Biol. Inorg. Chem. 1997, 2, 690–701.Google Scholar
  151. 151.
    F. Schneider, J. Löwe, R. Huber, H. Schindelin, C. Kisker, J. Knäblein, J. Mol. Biol. 1996, 263, 53–69.PubMedGoogle Scholar
  152. 152.
    G. R. Hanson, I. Lane, in Metals in Biology: Applications of High-Resolution Epr to Metalloenzymes, Eds G. Hanson, L. Berliner, Springer, Vol. 29, 2010, pp. 169–199.Google Scholar
  153. 153.
    R. C. Bray, B. Adams, A. T. Smith, B. Bennett, S. Bailey, Biochemistry 2000, 39, 11258–11269.PubMedGoogle Scholar
  154. 154.
    S. Metz, W. Thiel, Coord. Chem. Rev. 2011, 255, 1085–1103.Google Scholar
  155. 155.
    N. Cobb, C. Hemann, G. A. Polsinelli, J. P. Ridge, A. G. McEwan, R. Hille, J. Biol. Chem. 2007, 282, 35519–35529.PubMedGoogle Scholar
  156. 156.
    J. P. Ridge, K. F. Aguey-Zinsou, P. V. Bernhardt, G. R. Hanson, A. G. McEwan, FEBS Lett. 2004, 563, 197–202.PubMedGoogle Scholar
  157. 157.
    M. J. Pushie, G. N. George, Coord. Chem. Rev. 2011, 255, 1055–1084.Google Scholar
  158. 158.
    G. N. George, K. J. Nelson, H. H. Harris, C. J. Doonan, K. V. Rajagopalan, Inorg. Chem. 2007, 46, 3097–3104.PubMedCentralPubMedGoogle Scholar
  159. 159.
    N. Graham, C. J. Doonan, R. A. Rothery, N. Boroumand, J. H. Weiner, Inorg. Chem. 2007, 46, 2–4.Google Scholar
  160. 160.
    R. H. Holm, E. I. Solomon, A. Majumdar, A. Tenderholt, Coord. Chem. Rev. 2011, 255, 993–1015.Google Scholar
  161. 161.
    A. L. Tenderholt, J.-J. Wang, R. K. Szilagyi, R. H. Holm, K. O. Hodgson, B. Hedman, E. I. Solomon, J. Am. Chem. Soc. 2010, 132, 8359–8371.PubMedCentralPubMedGoogle Scholar
  162. 162.
    D. Guymer, J. Maillard, F. Sargent, Arch. Microbiol. 2009, 191, 519–528.PubMedGoogle Scholar
  163. 163.
    S. Gon, J. C. Patte, V. Mejean, C. Iobbi-Nivol, J. Bacteriol. 2000, 182, 5779–5786.PubMedCentralPubMedGoogle Scholar
  164. 164.
    A. del Campillo Campbell, A. Campbell, J. Mol. Evol. 1996, 42, 85–90.PubMedGoogle Scholar
  165. 165.
    J. F. Heidelberg, I. T. Paulsen, K. E. Nelson, E. J. Gaidos, W. C. Nelson, T. D. Read, J. A. Eisen, R. Seshadri, N. Ward, B. Methe, R. A. Clayton, T. Meyer, A. Tsapin, J. Scott, M. Beanan, L. Brinkac, S. Daugherty, R. T. DeBoy, R. J. Dodson, A. S. Durkin, D. H. Haft, J. F. Kolonay, R. Madupu, J. D. Peterson, L. A. Umayam, O. White, A. M. Wolf, J. Vamathevan, J. Weidman, M. Impraim, K. Lee, K. Berry, C. Lee, J. Mueller, H. Khouri, J. Gill, T. R. Utterback, L. A. McDonald, T. V. Feldblyum, H. O. Smith, J. C. Venter, K. H. Nealson, C. M. Fraser, Nat. Biotech. 2002, 20, 1118–1123.Google Scholar
  166. 166.
    J. A. Gralnick, H. Vali, D. P. Lies, D. K. Newman, Proc. Natl. Acad. Sci. USA 2006, 103, 4669–4674.PubMedCentralPubMedGoogle Scholar
  167. 167.
    D. A. Saffarini, S. L. Blumerman, K. J. Mansoorabadi, J. Bacteriol. 2002, 184, 846–848.PubMedCentralPubMedGoogle Scholar
  168. 168.
    C. Schwalb, S. K. Chapman, G. A. Reid, Biochemistry 2003, 42, 9491–9497.PubMedGoogle Scholar
  169. 169.
    D. Coursolle, J. A. Gralnick, Mol. Microbiol. 2010, 77, 995–1008.Google Scholar
  170. 170.
    J. A. Gralnick, D. K. Newman, Mol. Microbiol. 2007, 65, 1–11.PubMedCentralPubMedGoogle Scholar
  171. 171.
    N. P. Shroff, M. A. Charania, D. A. Saffarini, J. Bacteriol. 2010, 192, 3227–3230.PubMedCentralPubMedGoogle Scholar
  172. 172.
    D. A. Saffarini, R. Schultz, A. Beliaev, J. Bacteriol. 2003, 185, 3668–3671.PubMedCentralPubMedGoogle Scholar
  173. 173.
    J. A. Gralnick, C. T. Brown, D. K. Newman, Mol. Microbiol. 2005, 56, 1347–1357.PubMedGoogle Scholar
  174. 174.
    J. A. Müller, S. DasSarma, J. Bacteriol. 2005, 187, 1659–1667.PubMedCentralPubMedGoogle Scholar
  175. 175.
    C. A. McDevitt, P. Hugenholtz, G. R. Hanson, A. G. McEwan, Mol. Microbiol. 2002, 44, 1576–1587.Google Scholar
  176. 176.
    A. G. McEwan, T. H. Toh, P. S. Solomon, A. L. Shaw, S. P. Hanlon, M. E. Lidstrom, F. R. Tabita, in Microbial Growth on C1 Compounds, Kluwer Academic Publishers, Dordrecht, 1995, pp. 41–48.Google Scholar
  177. 177.
    S. P. Hanlon, R. A. Holt, G. R. Moore, A. G. McEwan, Microbiology 1994, 140, 1953–1958.Google Scholar
  178. 178.
    N. L. Creevey, A. G. McEwan, P. V. Bernhardt, J. Biol. Inorg. Chem. 2008, 13, 1231–1238.PubMedGoogle Scholar
  179. 179.
    N. L. Creevey, A. G. McEwan, G. R. Hanson, P. V. Bernhardt, Biochemistry 2008, 47, 3770–3776.PubMedGoogle Scholar
  180. 180.
    A. G. McEwan, U. Kappler, C. A. McDevitt, D. Zannoni, in Respiration in Archaea and Bacteria, Ed Govindjee, Kluwer Academic Publishers, Dordrecht, 2004, Vol. 1, pp. 175–202.Google Scholar
  181. 181.
    T. P. Warelow, M. Oke, B. Schoepp-Cothenet, J. U. Dahl, N. Bruselat, G. N. Sivalingam, S. Leimkuehler, K. Thalassinos, U. Kappler, J. H. Naismith, J. M. Santini, PLoS ONE 2013, 8, e72535.PubMedCentralPubMedGoogle Scholar
  182. 182.
    M. Jormakka, B. Byrne, S. Iwata, FEBS Lett. 2003, 545, 25–30.PubMedGoogle Scholar
  183. 183.
    A. Pol, H. J. M. Op den Camp, S. G. M. Mees, M. A. S. H. Kersten, C. van der Drift, Biodeg. 1994, 5, 105–112.PubMedGoogle Scholar
  184. 184.
    R. Boden, E. Borodina, A. P. Wood, D. P. Kelly, J. C. Murrell, H. Schäfer, J. Bacteriol. 2011, 193, 1250–1258.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Chemistry and Molecular Biosciences, 76 Molecular Biosciences BuildingThe University of QueenslandSt. LuciaAustralia
  2. 2.School of Life Sciences, Gibbet Hill CampusUniversity of WarwickCoventryUK

Personalised recommendations