Methods for Reconstructing Processes of Argumentation and Participation in Primary Mathematics Classroom Interaction

  • Götz KrummheuerEmail author
Part of the Advances in Mathematics Education book series (AME)


This paper presents two methods of analysis of interaction processes in mathematics classes—the analysis of argumentation and the analysis of participation –, and it furthermore explores the relationship between these methods and their resulting impact on the development of elements of an interaction theory of mathematics learning. The main theoretical assumption of this article is that learning mathematics depends on the student’s participation in processes of collective argumentation. On the empirical level such processes will be analyzed with methods that are based on Toulmin’s theory of argumentation (Toulmin, SE. (1969). The uses of argument. Cambridge, UK: Cambridge University Press) and Goffman’s idea of decomposition of the speaker’s role (Goffman, E. (1981). Footing. Forms of talk. ders. Philadelphia: University of Philadelphia Press). Different statuses of participation in processes of argumentation will be considered, which allow a theoretical description of different stages in the process of learning mathematics from the perspective of an interaction theory of mathematics learning.


Argumentation Interaction theory of learning mathematics Participation Production-design Social interaction 


  1. Brandt, B. (1998). Recipients in elementary mathematics classroom interaction. In: I. Schwank (Ed.), Proceedings of CERME 1. Osnabrück, Deutschland., 28–31 Aug 1998. Osnabrück: Forschungsinstitut für Mathematikdidaktik.Google Scholar
  2. Brandt, B., & Tatsis, K. (2009). Using Goffman’s concepts to explore collaborative interaction processes in elementary school mathematics. Research in Mathematics Education, 11(1), 39–56.CrossRefGoogle Scholar
  3. Bruner, J. (1982). The formats of language acquisition. American Journal of Semiotics, 1, 1–16.CrossRefGoogle Scholar
  4. Bruner, J. (1983). Child’s talk. Learning to use language. Oxford: Oxford University Press.Google Scholar
  5. Cobb, P., & Bauersfeld, H. (Eds.). (1995). The emergence of mathematical meaning: Interaction in classroom cultures. Hillsdale: Lawrence Erlbaum.Google Scholar
  6. Cobb, P., Yackel, E., et al. (1995). The teaching experiment classroom. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning. Interaction in classroom cultures (pp. 17–24). Hillsdale: Lawrence Erlbaum.Google Scholar
  7. Fetzer, M. (2011). Wie argumentieren Grundschulkinder im Mathematikunterricht? Eine argumentationstheoretische Perspektive. [How do primary school children argue in mathematics classes]. Journal für Mathematik-Didaktik, 32(1), 27–51.CrossRefGoogle Scholar
  8. Garfinkel, H. (1967). Studies in ethnomethodology. Englewood Cliffs: Prentice-Hall.Google Scholar
  9. Goffman, E. (1981). Footing. Forms of talk. ders. Philadelphia: University of Philadelphia Press.Google Scholar
  10. Hoyles, C., & Küchemann, D. (2002). Students’ understanding of logical implication. Educational Studies in Mathematics, 51(3), 193–223.CrossRefGoogle Scholar
  11. Inglis, M., & Mejia-Ramos, J. P. (2008). How persuaded are you? A typology of responses. Journal of Research in Mathematics Education, 10(2), 119–133.CrossRefGoogle Scholar
  12. Knipping, C. (2003). Beweisgespräche in der Unterrichtspraxis – Vergleichende Analysen von Mathematikunterricht in Deutschland und Frankreich [Talks about proof in classroom practice – comparing anayses of mathematics teaching in Germany and France]. Hildesheim: Franzbecker Google Scholar
  13. Knipping, C. (2010). Argumentation – sine qua non? In B. Brandt, M. Fetzer, & M. Schütte (Eds.), Auf den Spuren Interpretativer Unterrichtsforschung in der Mathematikdidaktik. Götz Krummheuer zum 60. Geburtstag (pp. 67–93). Münster/New York/München/Berlin: Waxmann.Google Scholar
  14. Kopperschmidt, J. (1989). Methodik der Argumentationsanalyse [Methodology of the analysis of argumentation]. Frommann-Holzboog: Stuttgart-Bad Cannstatt.Google Scholar
  15. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning. Interaction in classroom cultures (pp. 229–269). Hillsdale: Lawrence Erlbaum.Google Scholar
  16. Krummheuer, G. (2007). Argumentation and participation in the primary mathematics classroom. Two episodes and related theoretical abductions. Journal of Mathematical Behavior, 26(1), 60–82.CrossRefGoogle Scholar
  17. Krummheuer, G. (2011). Representation of the notion “learning-as-participation” in everyday situations of mathematics classes. Zentralblatt für Didaktik der Mathematik (ZDM), 43(1/2), 81–90.CrossRefGoogle Scholar
  18. Krummheuer, G. (2013). The relationship between diagrammatic argumentation and narrative argumentation in the context of the development of mathematical thinking in the early years. Educational Studies in Mathematics. (in press). Published online: 12 Mar 2013, doi: 10.1007/s10649-10013-19471-10649
  19. Krummheuer, G., & Brandt, B. (2001). Paraphrase und Traduktion. Partizipationstheoretische Elemente einer Interaktionstheorie des Mathematiklernens in der Grundschule. Weinheim: Beltz.Google Scholar
  20. Krummheuer, G., & Fetzer, M. (2005). Der Alltag des Mathematikunterricht. Beobachten, Verstehen, Gestalten [Mathmatics education as everyday situation. Observing, interpreting, designing]. Heidelberg: Elsevier/Spektrum Akademischer Verlag.Google Scholar
  21. Levinson, S. C. (1988). Putting linguistics on a proper footing: Explorations in Goffman’s concepts of participation. In P. Drew & A. Wootton (Eds.), Ervin Goffman: Exploring the interaction order (pp. 161–227). Cambridge: Polity Press.Google Scholar
  22. Mehan, H. (1979). Learning lessons. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  23. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23–41.CrossRefGoogle Scholar
  24. Sacks, H. (1998). Lectures on conversation (3rd ed.). Malden: Blackwell.Google Scholar
  25. Schegloff, E. A. (1982). Discourse as an interactional achievement. Some uses of ‘uh huh’ and other things that come between sentences. In D. Tannen (Ed.), Analyzing discourse: Text and talk (pp. 71–93). Washington, DC: Georgtown University Press.Google Scholar
  26. Sfard, A. (2008). Thinking as communicating. Human development, the growth of discourses, and mathematizing. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  27. Stephan, M., & Rasmussen, C. (2002). Classroom mathematical practices in differential equations. The Journal of Mathematical Behavior, 21(4), 459–490.CrossRefGoogle Scholar
  28. Ten Have, P. (1999). Doing conversation analysis. London: Sage.Google Scholar
  29. Toulmin, S. E. (1969). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  30. Whitenack, J. W., & Knipping, C. (2001). Argumentation, instructional design theory and students’ mathematical learning: A case for coordinating interpretive lenses. The Journal of Mathematical Behavior, 21(4), 441–457.CrossRefGoogle Scholar
  31. Wood, T. (1995). An emerging practice of teaching. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning. Interaction in classroom cultures (pp. 203–228). Hillsdale: Lawrence Erlbaum.Google Scholar
  32. Yackel, E. (1995). Children’s talk in inquiry mathematics classrooms. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning. Interaction in classroom cultures (pp. 131–162). Hillsdale: Lawrence Erlbaum.Google Scholar
  33. Yackel, E. (2002). What we can learn from analyzing the teacher’s role in collective argumentation. The Journal of Mathematical Behavior, 21(4), 423–440.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Goethe University Frankfurt am MainFrankfurt am MainGermany

Personalised recommendations