Structural and Physical Properties of Rare-Earth Clathrates

  • Silke PaschenEmail author
  • Matthias IkedaEmail author
  • Stevce StefanoskiEmail author
  • George S. NolasEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 199)


Clathrates that contain rare-earth elements as guest atoms have been of active interest since the discovery of intermetallic clathrates. A large body of work focussed on thermoelectric properties of Eu-containing clathrates. The very low lattice thermal conductivities that are reached in Eu-containing type-I clathrates are generally attributed to the pronounced rattling of Eu in oversized host cages and to the occurrence of split sites in the larger of the two cages of the structure. The potential of Eu-containing clathrates for magnetic refrigeration has been recognized more recently. Here, key features are the large magnetic moment of Eu, together with the second order character of the paramagnetic to ferromagnetic phase transition. The incorporation of other magnetic rare-earth elements into the clathrate cages has long remained elusive. Only very recently the successful synthesis of a cerium containing type-I clathrate was reported. Interestingly, a sizable enhancement of the thermopower is observed and attributed to a rattling enhanced Kondo interaction. This discovery may trigger a wealth of future investigations.


Thermoelectric Property Lattice Thermal Conductivity Charge Carrier Concentration Magnetic Entropy Change Magnetic Refrigeration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SP and MI acknowledge support by the Priority Program “Nanostructured Thermoelectric Materials: Theory, Model Systems and Controlled Synthesis” (SPP 1386) of the Deutsche Forschungsgemeinschaft and from the Austrian Science Fund (projects TRP 176-N22 and I623-N16). SS and GSN acknowledge support from the Army Research Office under Grant No. W911NF-08-1-0276 for research on Eu-clathrates for magnetocaloric applications.


  1. 1.
    J.S. Kasper, P. Hagenmüller, M. Pouchard, C. Cros, Clathrate structure of silicon Na8Si46 and NaxSi136 (x < 11). Science 150, 1713 (1965)CrossRefGoogle Scholar
  2. 2.
    M. Von Stackelberg, H.R. Müller, On the structure of gas hydrates. J. Chem. Phys. 19, 1319 (1951)Google Scholar
  3. 3.
    G.A. Jeffrey, Hydrate inclusion compounds, in Inclusion Compounds, 135, ed. by J.L. Atwood, J.E.D. Davies, D.D. MacNicol (Academic Press, New York, 1984)Google Scholar
  4. 4.
    T.C.W. Mak, G.D. Zhou, Crystallography in Modern Chemistry (Wiley, New York, 1992)Google Scholar
  5. 5.
    H. Schäfer, On the problem of polar intermetallic compounds: the stimulation of E. Zintl’s work for the modern chemistry of intermetallics. Ann. Rev. Mater. Sci. 15, 1 (1985)CrossRefGoogle Scholar
  6. 6.
    J.L. Cohn, G.S. Nolas, V. Fessatidis, T.H. Metcalf, G.A. Slack, Glasslike heat conduction in high-mobility crystalline semiconductors. Phys. Rev. Lett. 82, 779 (1999)CrossRefGoogle Scholar
  7. 7.
    G.S. Nolas, J.L. Cohn, G.A. Slack, S.B. Schujman, Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl. Phys. Lett. 73, 178 (1998)CrossRefGoogle Scholar
  8. 8.
    J.S. Tse, M.A. White, Of glassy crystalline behavior in the thermal properties of clathrate hydrates: a thermal conductivity study of tetrahydrofuran hydrate O. J. Phys. Chem. 92, 5006 (1988)Google Scholar
  9. 9.
    B. Eisenmann, H. Schäfer, R. Zahler, Die Verbindungen \( A_{8}^{\text{II}} B_{16}^{\text{III}} B_{30}^{\text{IV}} \) (\( A^{\text{II}} \equiv \) Sr, Ba; \( B^{\text{III}} \equiv \) Al, Ga; \( B^{\text{IV}} \equiv \) Si, Ge, Sn) und ihre Käfigstrukturen. J. Less-Common Met. 118, 43 (1986)Google Scholar
  10. 10.
    S. Paschen, W. Carrillo-Cabrera, A. Bentien, V.H. Tran, M. Baenitz, Yu. Grin, F. Steglich, Phys. Rev. B 64, 214404 (2001)Google Scholar
  11. 11.
    K. Momma, F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Leoni, W. Carrillo-Cabrera, Y. Grin, Modelling of the α (clathrate VIII) ⇌ β (clathrate I) phase transition in Eu8Ga16Ge30. J. Alloys Compd. 350, 113 (2003)CrossRefGoogle Scholar
  13. 13.
    G.S. Nolas, T.J.R. Weakley, J.L. Cohn, R. Sharma, Structural properties and thermal conductivity of crystalline Ge clathrates. Phys. Rev. B 61, 3845 (2000)CrossRefGoogle Scholar
  14. 14.
    B.C. Chakoumakos, B.C. Sales, D.G. Mandrus, Structural disorder and magnetism of the semiconducting clathrate Eu8Ga16Ge30. J. Alloys Compd. 322, 127 (2001)CrossRefGoogle Scholar
  15. 15.
    B.C. Sales, B.C. Chakoumakos, R. Jin, J.R. Thompson, D. Mandrus, Structural, magnetic, thermal, and transport properties of X8Ga16Ge30 (X = Eu, Sr, Ba) single crystals. Phys. Rev. B 63, 245113 (2001)CrossRefGoogle Scholar
  16. 16.
    G.K.H. Madsen, K. Schwarz, P. Blaha, D.J. Singh, Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium. Phys. Rev. B 68, 125212 (2003)CrossRefGoogle Scholar
  17. 17.
    V. Pacheco, A. Bentien, W. Carrillo-Cabrera, S. Paschen, F. Steglich, Yu. Grin, Phys. Rev. B 71, 165205 (2005)Google Scholar
  18. 18.
    A. Bentien, V. Pacheco, S. Paschen, Y. Grin, F. Steglich, Transport properties of composition tuned α- and β-Eu8Ga16-xGe30+x. Phys. Rev. B 71, 165206 (2005)CrossRefGoogle Scholar
  19. 19.
    A. Prokofiev, S. Paschen, H. Sassik, S. Laumann, P. Pongratz, Method for producing clathrate compounds, (2009). patents JP 5248916 (2013), US appl. 12/231,183; Gebrauchsmuster AT 10749 (2009), DE 20 2008 006 946.7Google Scholar
  20. 20.
    S. Laumann, M. Ikeda, H. Sassik, A. Prokofiev, S. Paschen, Melt-spun Eu8Ga16-xGe30+x clathrates. Z. Anorg. Allg. Chem. 638, 294 (2012)CrossRefGoogle Scholar
  21. 21.
    R.C. O’Handley, Hall Effect Formulae and Units (Plenum Press, New York, 1980), pp. 417–419Google Scholar
  22. 22.
    E.L. Nagaev, E.B. Sokolova, Anomalous Hall effect in ferromagnetic semiconductors. Sov. Phys. Solid State 19, 425 (1977)Google Scholar
  23. 23.
    J.M. Ziman, Electrons and Phonons (Clarendon press, Oxford, 1960)Google Scholar
  24. 24.
    S. Paschen, B. Wand, G. Sparn, F. Steglich, Y. Echizen, T. Takabatake, J. Magn. Magn. Mater. 226–230, 57 (2001)Google Scholar
  25. 25.
    A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G.D. Stucky, B.B. Iversen, Phys. Rev. B 69, 045107 (2004)Google Scholar
  26. 26.
    J.S. Tse, V.P. Shpakov, V.V. Murashov, V.R. Belosludov, Low frequency vibrations in clathrate hydrates. T. J. Chem. Phys. 107, 9271 (1997)Google Scholar
  27. 27.
    M. Christensen, A.B. Abrahamsen, N.B. Christensen, F. Juranyi, N.H. Andersen, K. Lefmann, J. Andreasson, C.R.H. Bahl, B.B. Iversen, Nature Mater. 7, 811–815 (2008)Google Scholar
  28. 28.
    H. Euchner, S. Pailhès, L.T.K. Nguyen, W. Assmus, F. Ritter, A. Haghighirad, Y. Grin, S. Paschen, M. de Boissieu, Phys. Rev. B 86, 224303 (2012)Google Scholar
  29. 29.
    K. Suekuni, M.A. Avila, K. Umeo, T. Takabatake, Cage-size control of guest vibrations and thermal conductivity in Sr8Ga16Si30-xGex. Phys. Rev. B 75, 195210 (2007)CrossRefGoogle Scholar
  30. 30.
    K. Suekuni, S. Yamamoto, M.A. Avila, T. Takabatake, Relation between guest free space, U. & lattice thermal conductivity reduction by anharmonic rattling in type I clathrates. J. Phys. Soc. Jpn. 77SA, 61 (2008)Google Scholar
  31. 31.
    G.S. Nolas, T.J.R. Weakley, J.L. Cohn, Structural, chemical, and transport properties of a new clathrate compound: Cs8Zn4Sn42. Chem. Mater. 11, 2470 (1999)CrossRefGoogle Scholar
  32. 32.
    Y. Saiga, K. Suekuni, B. Du, T. Takabatake, Thermoelectric properties and structural instability of type-I clathrate Ba8Ga16Sn30 at high temperatures. Solid State Commun. 152, 1902 (2012)CrossRefGoogle Scholar
  33. 33.
    L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, S. Paschen, Dalton Trans. 39, 1071 (2010)Google Scholar
  34. 34.
    H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-Tai Zhao, Yu. Grin, Inorg. Chem. 50, 1250 (2011)Google Scholar
  35. 35.
    R.P. Hermann, W. Schweika, O. Leupold, R. Rüffer, G.S. Nolas, F. Grandjean, G.J. Long, Phys. Rev. B 72, 174301 (2005)Google Scholar
  36. 36.
    R.P. Hermann, V. Keppens, P. Bonville, G.S. Nolas, F. Grandjean, G.J. Long, H.M. Christen, B.C. Chakoumakos, B.C. Sales, D. Mandrus, Phys. Rev. Lett. 97, 017401 (2006)Google Scholar
  37. 37.
    G.S. Nolas, C.A. Kendziora, Raman scattering study of Ge and Sn compounds with type-I clathrate hydrate crystal structure. Phys. Rev. B 62, 7157 (2000)CrossRefGoogle Scholar
  38. 38.
    Y. Takasu, T. Hasegawa, N. Ogita, M. Udagawa, M.A. Avila, K. Suekuni, I. Ishii, T. Suzuki, T. Takabatake, Phys. Rev. B 74, 174303 (2003)Google Scholar
  39. 39.
    R. Baumbach, F. Bridges, L. Downward, D. Cao, P. Chesler, B. Sales, Phys. Rev. B 71, 024202 (2005)Google Scholar
  40. 40.
    M.H. Phan, G.T. Woods, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Appl. Phys. Lett. 93, 252505 (2008)Google Scholar
  41. 41.
    G.T. Woods, J. Martin, M. Beekman, R.P. Hermann, F. Grandjean, V. Keppens, O. Leupold, G.J. Long, G.S. Nolas, Phys. Rev. B 73, 174403 (2006)Google Scholar
  42. 42.
    S. Paschen, S. Budnyk, U. Köhler, Yu. Prots, K. Hiebl, F. Steglich, Yu. Grin, Phys. B 383, 89 (2006)Google Scholar
  43. 43.
    Ya. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, H. Noël, J. Phys. Condens. Matter 14, 7991 (2002)Google Scholar
  44. 44.
    M.H. Phan, V. Franco, A. Chaturvedi, S. Stefanoski, H. Kirby, G.S. Nolas, H. Srikanth, J. Appl. Phys. 107, 09A910 (2010)Google Scholar
  45. 45.
    B.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16 (1964)CrossRefGoogle Scholar
  46. 46.
    J. Mira, J. Rivas, F. Rivadulla, C. Vazquez, M.A. Lopez-Quintela, Change from first- to second-order magnetic phase transition in La2/3Ca, Sr1/3MnO3 perovskites. Phys. Rev. B 60, 2998 (1999)CrossRefGoogle Scholar
  47. 47.
    M.H. Phan, V. Franco, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Phys. Rev. B 84, 054436 (2011)Google Scholar
  48. 48.
    K. Umeo, H. Yamane, M.A. Avila, T. Onimaru, T. Takabatake, Pressure effect on the ferromagnetism of an off-center rattling system Eu8Ga16Ge30. J. Phys. Conf. Ser. 391, 012075 (2012)CrossRefGoogle Scholar
  49. 49.
    E. Bruck, Developments in magnetocaloric refrigeration. J. Phys. D. Appl. Phys. 38, R381 (2005)CrossRefGoogle Scholar
  50. 50.
    O. Tegus, E. Brück, L. Zhang, Dagula, K.H. J Buschow, F.R. de Boer, Phys. B 319, 174 (2002)Google Scholar
  51. 51.
    K.A. Gschneidner, J.V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Prog. Phys. 68, 1479 (2005)CrossRefGoogle Scholar
  52. 52.
    A.H. Morrish, The physical principles of magnetism (Wiley, New York, 1964)Google Scholar
  53. 53.
    K. Ahn, A.O. Pecharsky, K.A. Gschneidner, V.K. Pecharsky, Preparation, heat capacity, magnetic properties, and the magnetocaloric effect of EuO. J. Appl. Phys. 97, 063901 (2004)CrossRefGoogle Scholar
  54. 54.
    C.E. Reid, J.A. Barclay, J.L. Hall, S. Sarangi, Selection of magnetic materials for an active magnetic regenerative refrigerator. J. Alloys Compd. 366, 207 (1994)Google Scholar
  55. 55.
    A. Chaturvedi, S. Stefanoski, M.H. Phan, G.S. Nolas, H. Srikanth, Table-like magnetocaloric effect and enhanced refrigerant capacity in Eu8Ga16Ge30-EuO composite materials. Appl. Phys. Lett. 99, 162513 (2011)CrossRefGoogle Scholar
  56. 56.
    S. Gorsse, B. Chevalier, G. Orveillon, Magnetocaloric effect and refrigeration capacity in Gd60Al10Mn30 nanocomposite. Appl. Phys. Lett. 92, 122501 (2008)CrossRefGoogle Scholar
  57. 57.
    S. Paschen, V.H. Tran, M. Baenitz, W. Carrillo-Cabrera, Yu. Grin, F. Steglich, The clathrate Ba6Ge25: thermodynamic, magnetic, and transport properties. Phys. Rev. B 65, 134 (2002)CrossRefGoogle Scholar
  58. 58.
    W. Carrillo-Cabrera, R. Cardoso Gil, S. Paschen, Y. Grin, Crystal structure of barium europium germanide, Ba6-xEuxGe25 (x = 0.6), a chiral clathrate. Z. Kristallogr. NCS 218, 397 (2003)Google Scholar
  59. 59.
    J. Sichelschmidt, W. Carrillo-Cabrera, V.A. Ivanshin, Y. Grin, F. Steglich, spin resonance of Eu2+ in the Eu doped clathrate Ba6Ge25. Eur. Phys. J. B 46, 201 (2005)CrossRefGoogle Scholar
  60. 60.
    J.D. Bryan, G.D. Stucky, Eu4Ga8Ge16: a new four-coordinate clathrate network. Chem. Mater. 13, 253 (2001)CrossRefGoogle Scholar
  61. 61.
    W. Carrillo-Cabrera, S. Paschen, Yu. Grin, EuGaxGe4∓x: preparation, crystal chemistry and properties. J. Alloys Compd. 333, 4 (2002)CrossRefGoogle Scholar
  62. 62.
    H. Birkedal, J.D. Bryan, G.D. Stucky, M. Christensen, B.B. Iversen, Magnetic structure and thermal expansion of Eu4Ga8Ge16, in Solid-State Chemistry of Inorganic Materials IV, vol. 755, ed. by M.A. Alario-Franco, M. Greenblatt, G. Rohrer, M.S. Whittingham. Materials Research Society Symposium Proceedings, 363 (2003)Google Scholar
  63. 63.
    J.D. Bryan, H. Trill, H. Birkedal, M. Christensen, V.I. Srdanov, H. Eckert, B.B. Iversen, G.D. Stucky, Phys. Rev. B 68, 174429 (2003)Google Scholar
  64. 64.
    J. Romhányi, K. Penc, Phys. Rev. B 68, 174428 (2003)Google Scholar
  65. 65.
    A.V. Gribanov, Y.D. Seropegin, O.I. Bodak, Crystal structure of the compounds Ce3Pd20Ge6 and Ce3Pd20Si6. J. Alloys Compd. 204, L9 (1994)CrossRefGoogle Scholar
  66. 66.
    J. Kitagawa, T. Takabatake, E. Matsuoka, F. Takahashi, K. Abe, M. Ishikawa, J. Phys. Soc. Jpn. 71, 1630 (2002)Google Scholar
  67. 67.
    T. Yanagisawa, N. Tateiwa, T. Mayama, H. Saito, H. Hidaka, H. Amitsuka, Y. Haga, Y. Nemoto, T. Goto, J. Phys. Soc. Jpn. 80, SA105 (2011)Google Scholar
  68. 68.
    J. Custers, K.-A. Lorenzer, M. Müller, A. Prokofiev, A. Sidorenko, H. Winkler, A.M. Strydom, Y. Shimura, T. Sakakibara, R. Yu, Q. Si, S. Paschen, Nature Mater. 11, 189 (2012)Google Scholar
  69. 69.
    Y. Zhang, P.L. Lee, G.S. Nolas, A.P. Wilkinson, Gallium distribution in the clathrates Sr8Ga16Ge30 and Sr4Eu4Ga16Ge30 by resonant diffraction. Appl. Phys. Lett. 80(16), 2931 (2006)CrossRefGoogle Scholar
  70. 70.
    H. Anno, H. Fukushima, K. Koga, K. Okita, K. Matsubara, Effect of guest substitution on thermoelectric properties of clathrate compounds, in Proceedings of ICT’06: XXV International Conference on Thermoelectrics, pp. 36–39. IEEE, 25th International Conference on Thermoelectrics (ICT’06), Vienna, 6–10 Aug 2006Google Scholar
  71. 71.
    R. Demchyna, U. Köhler, Yu. Prots, W. Schnelle, M. Baenitz, U. Burkhardt, S. Paschen, U. Schwarz, Z. Anorg. Allg. Chem. 632, 73 (2006)Google Scholar
  72. 72.
    W. Carrillo-Cabrera, S. Budnyk, Y. Prots, Y. Grin, Ba8Ge43 revisited: a 2a′ × 2a′ × 2a′ superstructure of the clathrate-I type with full vacancy ordering. Z. Anorg. Allg. Chem. 630, 2267 (2004)CrossRefGoogle Scholar
  73. 73.
    U. Köhler, R. Demchyna, S. Paschen, U. Schwarz, F. Steglich, Schottky anomaly in the low-temperature specific heat of Ba8-xEuxGe\( _{43} {\square }_{3} \). Physica B 378–380, 263 (2006)Google Scholar
  74. 74.
    H. Kawaji, H. Horie, S. Yamanaka, M. Ishikawa, Superconductivity in the silicon clathrate compound (Na,Ba)xSi46. Phys. Rev. Lett. 74, 1427–1429 (1995)Google Scholar
  75. 75.
    Ya. Mudryk, P. Rogl, C. Paul, S. Berger, E. Bauer, G. Hilscher, C. Godart, H. Noël, A. Saccone, R. Ferro, Physica B 328, 44 (2003)Google Scholar
  76. 76.
    K. Koga, K. Suzuki, M. Fukamoto, H. Anno, T. Tanaka, S. Yamamoto, J. Electron. Mater. 38(7), 1427 (2009)Google Scholar
  77. 77.
    C.L. Condron, S.M. Kauzlarich, G.S. Nolas, Structure and thermoelectric characterization of AxBa8-xAl14Si31 (A = Sr, Eu) single crystals. Inorg. Chem. 46, 2556 (2007)CrossRefGoogle Scholar
  78. 78.
    H. Anno, K. Okita, K. Koga, S. Harima, T. Nakabayashi, M. Hokazono, K. Akai, Mater. Trans. 53, 1220 (2012)Google Scholar
  79. 79.
    K. Kovnir, U. Stockert, S. Budnyk, Yu. Prots, M. Baitinger, S. Paschen, A.V. Shevelkov, Yu. Grin, Inorg. Chem. 50, 10387 (2011)Google Scholar
  80. 80.
    T. Onimaru, S. Yamamoto, M.A. Avila, K. Suekuni, T. Takabatake, Multiple ferromagnetic structures in an off-center rattling system Eu8Ga16Ge30. J. Phys. Conf. Ser. 200, 022044 (2010)CrossRefGoogle Scholar
  81. 81.
    H. van Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Fermi-liquid instabilities at magnetic quantum critical points. Rev. Mod. Phys. 79, 1015 (2007)Google Scholar
  82. 82.
    Q. Si, S. Paschen, Quantum phase transitions in heavy fermion metals and Kondo insulators. Phys. Status Solidi B 250, 425 (2013)CrossRefGoogle Scholar
  83. 83.
    S. Paschen, M. Baenitz, V.H Tran, A. Rabis, F. Steglich, W. Carrillo-Cabrera, Yu. Grin, A.M. Strydom, P. de V du Plessis, J. Phys. Chem. Solids 63, 1183 (2002)Google Scholar
  84. 84.
    S. Paschen, Thermoelectrics Handbook, chap. 15 Thermoelectric aspects of strongly correlated electron systems ed. by D.M. Rowe (CRC Press, Boca Raton, 2006)Google Scholar
  85. 85.
    S. Paschen, C. Gspan, W. Grogger, M. Dienstleder, S. Laumann, P. Pongratz, H. Sassik, J. Wernisch, A. Prokofiev, J. Cryst. Growth 310, 1853 (2008)Google Scholar
  86. 86.
    T. Kawaguchi, K. Tanigaki, M. Yasukawa, Silicon clathrate with an f-electron system. Phys. Rev. Lett. 85, 3189 (2000)CrossRefGoogle Scholar
  87. 87.
    V. Pacheco, W. Carrillo-Cabrera, V.H. Tran, S. Paschen, Y. Grin, Comment. Phys. Rev. Lett. 87, 099601 (2001)CrossRefGoogle Scholar
  88. 88.
    T. Kawaguchi, K. Tanigaki, M. Yasukawa, Reply. Phys. Rev. Lett. 87, 099602 (2001)CrossRefGoogle Scholar
  89. 89.
    X. Tang, P. Li, S. Deng, Q. Zhang, High temperature thermoelectric transport properties of double-atom-filled clathrate compound YbxBa8-xGa16Ge30. J. Appl. Phys. 104, 013706 (2008)CrossRefGoogle Scholar
  90. 90.
    X. Zhu, N. Chen, L. Liu, Y. Li, Study on rare-earth-doped type-I germanium clathrates. J. Appl. Phys. 111, 07E305 (2012)Google Scholar
  91. 91.
    K. Akai, G. Zhao, K. Koga, K. Oshiro, M. Matsuura, Electronic structure and thermoelectric properties on transition-element-doped clathrates, in 24th International Conference on Thermoelectrics, ICT 2005, vol. 230 (2005)Google Scholar
  92. 92.
    D.C. Li, L. Fang, S.K. Deng, H.B. Ruan, M. Saleem, W.H. Wei, C.Y. Kong , J. Electron. Mater. 40, 1298–1303 (2011)Google Scholar
  93. 93.
    K. Koga, H. Anno, K. Akai, M. Matsuura, K. Matsubara, First-principles study of electronic structure and thermoelectric properties for guest substituted clathrate compounds Ba6R2Au6Ge40 (R = Eu or Yb). Mater. Trans. 48, 2108 (2007)CrossRefGoogle Scholar
  94. 94.
    A. Prokofiev, A. Sidorenko, K. Hradil, M. Ikeda, R. Svagera, M. Waas, H. Winkler, K. Neumaier, S. Paschen, Nature Mater. 12, 1096 (2013)Google Scholar
  95. 95.
    C. Candolfi, U. Aydemir, M. Baitinger, N. Oeschler, F. Steglich, Yu. Grin, J. Appl. Phys. 111, 043706 (2012)Google Scholar
  96. 96.
    I. Zeiringer, M. Chen, A. Grytsiv, E. Bauer, R. Podloucky, H. Effenberger, P. Rogl, Acta Mater. 60, 2324 (2012)Google Scholar
  97. 97.
    T. Hotta, Enhanced Kondo effect in an electron system dynamically coupled with local optical phonons. J. Phys. Soc. Jpn. 76, 084702 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Institute of Solid State PhysicsVienna University of TechnologyViennaAustria
  2. 2.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA
  3. 3.Department of PhysicsUniversity of South FloridaTampaUSA

Personalised recommendations