Solid State Chemistry of Clathrate Phases: Crystal Structure, Chemical Bonding and Preparation Routes

  • Michael Baitinger
  • Bodo Böhme
  • Alim Ormeci
  • Yuri GrinEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 199)


Clathrates represent a family of inorganic materials called cage compounds. The key feature of their crystal structures is a three-dimensional (host) framework bearing large cavities (cages) with 20–28 vertices. These polyhedral cages bear—as a rule—guest species. Depending on the formal charge of the framework, clathrates are grouped in anionic, cationic and neutral. While the bonding in the framework is of (polar) covalent nature, the guest-host interaction can be ionic, covalent or even van-der Waals, depending on the chemical composition of the clathrates. The chemical composition and structural features of the cationic clathrates can be described by the enhanced Zintl concept, whereas the composition of the anionic clathrates deviates often from the Zintl counts, indicating additional atomic interactions in comparison with the ionic-covalent Zintl model. These interactions can be visualized and studied by applying modern quantum chemical approaches such as electron localizability.


Spark Plasma Sinter Oxidation Number Germanium Atom Host Framework Framework Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S.M. Auerbach, K.A. Carrado, P.K. Dutta (eds.), Handbook of Zeolite Science and Technology (Marcel Dekker, New York, 2003)Google Scholar
  2. 2.
    L. Pauling, Z. Kristallogr. 74, 213–225 (1930)Google Scholar
  3. 3.
    R. Wartchow, Z. Kristallogr. NCS 212, 80 (1997)CrossRefGoogle Scholar
  4. 4.
    G.A. Jeffrey, in Inclusion Compounds, vol. 1, ed. by J.L. Atwood, J.E.D. Davies, D.D. MacNicol (Academic Press, London, 1984)Google Scholar
  5. 5.
    P. Rogl, in Thermoelectrics Handbook, ed. by D.M. Rowe (CRC Taylor & Francis, Boca Raton, 2006)Google Scholar
  6. 6.
    H. Davy, Philos. Trans. R. Soc. Lond. 101, 1–35 (1811)CrossRefGoogle Scholar
  7. 7.
    M. Faraday, Q. J. Sci. Lit. Arts 15, 71–74 (1823)Google Scholar
  8. 8.
    W.F. Claussen, J. Chem. Phys. 19, 259–260, 662 (1951)Google Scholar
  9. 9.
    W.F. Claussen, J. Chem. Phys. 19, 1425–1426 (1951)Google Scholar
  10. 10.
    M. von Stackelberg, H.R. Müller, J. Chem. Phys. 19, 1319–1320 (1951)Google Scholar
  11. 11.
    M. von Stackelberg, H.R. Müller, Naturwiss. 38, 456 (1951)CrossRefGoogle Scholar
  12. 12.
    H.R. Müller, M. von Stackelberg, Naturwiss. 39, 20–21 (1952)CrossRefGoogle Scholar
  13. 13.
    L. Pauling, R.E. Marsh, Proc. Natl. Acad. Sci. U. S. A. 38, 112–118 (1952)CrossRefGoogle Scholar
  14. 14.
    B. Kamb, Science 148, 232–234 (1965)CrossRefGoogle Scholar
  15. 15.
    H. Gies, F. Liebau, Acta Crystallogr. A37, C187–C188 (1981)Google Scholar
  16. 16.
    F. Liebau, H. Gies, R.P. Gunawardane, B. Marler, Zeolites 6, 373–377 (1986)CrossRefGoogle Scholar
  17. 17.
    J.S. Kasper, P. Hagenmuller, M. Pouchard, C. Cros, Science 150, 1713–1714 (1965)CrossRefGoogle Scholar
  18. 18.
    H. Menke, H.G. von Schnering, Z. Anorg. Allg. Chem. 395, 223–238 (1973)CrossRefGoogle Scholar
  19. 19.
    K.A. Kovnir, A.V. Shevelkov, Russ. Chem. Rev. 73, 923–938 (2004)CrossRefGoogle Scholar
  20. 20.
    A.V. Shevelkov, K.A. Kovnir, Struct. Bond. 139, 97–142 (2011)Google Scholar
  21. 21.
    M. Beekman, G.S. Nolas, J. Mater. Chem. 18, 842–851 (2008)Google Scholar
  22. 22.
    C. Cros, M. Pouchard, Comp. Rend. Chim. 12, 1014–1056 (2009)CrossRefGoogle Scholar
  23. 23.
    A.J. Karttunen, T.F. Fässler, M. Linnolahti, T.A. Pakkanen, Inorg. Chem. 50, 1733–1742 (2011)CrossRefGoogle Scholar
  24. 24.
    B. Eisenmann, H. Schäfer, R. Zagler, J. Less-Comm. Met. 118, 43–55 (1986)CrossRefGoogle Scholar
  25. 25.
    H.G. von Schnering, A. Zürn, J.-H. Chang, M. Baitinger, Yu. Grin, Z. Anorg. Allg. Chem. 633, 1147–1153 (2007)CrossRefGoogle Scholar
  26. 26.
    W. Carrillo-Cabrera, J. Curda, H.G. von Schnering, S. Paschen, Yu. Grin, Z. Kristallogr. NCS 215, 207–208 (2000)Google Scholar
  27. 27.
    H. Fukuoka, K. Iwai, S. Yamanaka, H. Abe, K. Yoza, L. Häming, J. Solid State Chem. 151, 117–121 (2000)CrossRefGoogle Scholar
  28. 28.
    S.-J. Kim, S. Hu, C. Uher, T. Hogan, B. Huang, J.D. Corbett, M.G. Kanatzidis, J. Solid State Chem. 153, 321–329 (2000)Google Scholar
  29. 29.
    J.-T. Zhao, J.D. Corbett, Inorg. Chem. 33, 5721–5726 (1994)CrossRefGoogle Scholar
  30. 30.
    U. Aydemir, L. Akselrud, W. Carrillo-Cabrera, C. Candolfi, N. Oeschler, M. Baitinger, F. Steglich, Yu. Grin, J. Am. Chem. Soc. 132, 10984–10985 (2010)CrossRefGoogle Scholar
  31. 31.
    E. Reny, P. Gravereau, C. Cros, M. Pouchard, J. Mater. Chem. 8, 2839–2844 (1998)Google Scholar
  32. 32.
    G.K. Ramachandran, J. Dong, J. Diefenbacher, J. Gryko, R.F. Marzke, O.F. Sankey, P.F. McMillan, J. Solid State Chem. 145, 716–730 (1999)CrossRefGoogle Scholar
  33. 33.
    H. Horie, T. Kikudome, K. Teramura, S. Yamanaka, J. Solid State Chem. 182, 129–135 (2009)CrossRefGoogle Scholar
  34. 34.
    M. Beekman, E.N. Nenghabi, K. Biswas, C.W. Myles, M. Baitinger, Yu. Grin, G.S. Nolas, Inorg. Chem. 49, 5338–5340 (2010)CrossRefGoogle Scholar
  35. 35.
    M. Beekman, M. Baitinger, H. Borrmann, W. Schnelle, K. Meier, G.S. Nolas, Yu. Grin, J. Am. Chem. Soc. 131, 9642–9643 (2009)CrossRefGoogle Scholar
  36. 36.
    S. Bobev, S.C. Sevov, J. Am. Chem. Soc. 123, 3389–3390 (2001)CrossRefGoogle Scholar
  37. 37.
    A. Wosylus, I. Veremchuk, W. Schnelle, M. Baitinger, U. Schwarz, Yu. Grin, Chem. Eur. J. 15, 5901–5903 (2009)CrossRefGoogle Scholar
  38. 38.
    M. Baitinger, Ph.D. Thesis. Technische Universität Darmstadt (2000)Google Scholar
  39. 39.
    H.G. von Schnering, R. Kröner, M. Baitinger, K. Peters, R. Nesper, Yu. Grin, Z. Kristallogr. NCS 215, 205–206 (2000)Google Scholar
  40. 40.
    W. Carrillo-Cabrera, S. Budnyk, Yu. Prots, Yu. Grin, Z. Anorg. Allg. Chem. 630, 2267–2276 (2004)CrossRefGoogle Scholar
  41. 41.
    U. Aydemir, C. Candolfi, H. Borrmann, M. Baitinger, A. Ormeci, W. Carrillo-Cabrera, C. Chubilleau, B. Lenoir, A. Dauscher, N. Oeschler, F. Steglich, Yu. Grin, Dalton Trans. 39, 1078–1088 (2010)CrossRefGoogle Scholar
  42. 42.
    F. Dubois, T.F. Fässler, J. Am. Chem. Soc. 127, 3264–3265 (2005)CrossRefGoogle Scholar
  43. 43.
    A. Kaltzoglou, S.D. Hoffmann, T.F. Fässler, Eur. J. Inorg. Chem. 2007 4162–4167 (2007)Google Scholar
  44. 44.
    W. Carrillo-Cabrera, J. Curda, K. Peters, S. Paschen, M. Baenitz, Yu. Grin, H.G. von Schnering, Z. Kristallogr. NCS 215, 321–322 (2000)Google Scholar
  45. 45.
    U. Aydemir, M. Baitinger, Yu. Grin, Unpublished data (2013) Google Scholar
  46. 46.
    L.T.K. Nguyen, U. Aydemir, M. Baitinger, E. Bauer, H. Borrmann, U. Burkhardt, J. Custers, A. Haghighirad, R. Höfler, K.D. Luther, F. Ritter, W. Assmus, Yu. Grin, S. Paschen, Dalton Trans. 39, 1071–1077 (2010)Google Scholar
  47. 47.
    K.A. Kovnir, A.V. Sobolev, I.A. Presniakov, O.L. Lebedev, G. van Tendeloo, W. Schnelle, Yu. Grin, A.V. Shevelkov, Inorg. Chem. 44, 8786–8793 (2005)CrossRefGoogle Scholar
  48. 48.
    K.A. Kovnir, M.M. Shatruk, L.N. Reshetova, I.A. Presniakov, E.V. Dikarev, M. Baitinger, F. Haarmann, W. Schnelle, M. Baenitz, Yu. Grin, A.V. Shevelkov, Solid State Sci. 7, 957–968 (2005)CrossRefGoogle Scholar
  49. 49.
    A. Bentien, E. Nishibori, S. Paschen, B.B. Iversen, Phys. Rev. B 71, 144107 (2005)CrossRefGoogle Scholar
  50. 50.
    J.H. Roudebush, N. Tsujii, A. Hurtando, H. Hope, Yu. Grin, S.M. Kauzlarich, Inorg. Chem. 51, 4161–4169 (2012)CrossRefGoogle Scholar
  51. 51.
    G. Cordier, P. Woll, J. Less-Common Met. 169, 291–302 (1991)CrossRefGoogle Scholar
  52. 52.
    Y. Liang, B. Böhme, A. Ormeci, H. Borrmann, O. Pecher, F. Haarmann, W. Schnelle, M. Baitinger, Yu. Grin, Chem. Eur. J. 18, 9818–9822 (2012)CrossRefGoogle Scholar
  53. 53.
    H. Zhang, H. Borrmann, N. Oeschler, C. Candolfi, W. Schnelle, M. Schmidt, U. Burkhardt, M. Baitinger, J.-T. Zhao, Yu. Grin, Inorg. Chem. 50, 1250–1257 (2011)CrossRefGoogle Scholar
  54. 54.
    S.B. Roy, K.E. Sim, A.D. Chaplin, Phil. Mag. 65, 1445–1450 (1992)CrossRefGoogle Scholar
  55. 55.
    H. Yahiro, K. Yamaji, M. Shiotani, S. Yamanaka, M. Ishikawa, Chem. Phys. Lett. 246, 167–170 (1995)Google Scholar
  56. 56.
    J. Gryko, P.F. McMillan, O.F. Sankey, Phys. Rev. B 54, 3037–3039 (1996)CrossRefGoogle Scholar
  57. 57.
    E. Reny, M. Ménétier, C. Cros, M. Pouchard, J. Sénégas, Compt. Rend. Acad. Sci. Ser. II, 129–136 (1998)Google Scholar
  58. 58.
    V.I. Smelyansky, J. S. Tse, Chem. Phys. Lett. 264, 459-465 (1997)Google Scholar
  59. 59.
    J. Emsley, The Elements (Oxford University Press Ins, New York, 1991)Google Scholar
  60. 60.
    Yu. Grin, in Comprehensive Inorganic Chemistry II, vol. 2, ed. by J. Reedijk, K. Poeppelmeier (Elsevier, Oxford, 2013), pp. 359–373CrossRefGoogle Scholar
  61. 61.
    H.G. von Schnering, Nov. Acta Leopold. 264, 165–182 (1985)Google Scholar
  62. 62.
    H.G. von Schnering, Bol. Soc. Chil. Quim. 33, 41–57 (1988)Google Scholar
  63. 63.
    W. Jung, J. Lorincz, R. Ramlau, H. Borrmann, Yu. Prots, F. Haarmann, W. Schnelle, U. Burkhardt, M. Baitinger, Yu. Grin, Angew. Chem. Int. Ed. 46, 6725–6728 (2007)CrossRefGoogle Scholar
  64. 64.
    A. Bentien, M. Christensen, J.D. Bryan, A. Sanchez, S. Paschen, F. Steglich, G.D. Stucky, B.B. Iversen, Phys. Rev. B 69, 045107 (2004)CrossRefGoogle Scholar
  65. 65.
    N. Jaussaud, P. Gravereau, S. Pechev, B. Chevalier, M. Ménétier, P. Dordor, R. Decourt, G. Goglio, C. Cros, M. Pouchard, Compt. Rend. Chim. 8, 39–46 (2005)Google Scholar
  66. 66.
    U. Aydemir, C. Candolfi, A. Ormeci, Y. Oztan, M. Baitinger, N. Oeschler, F. Steglich, Yu. Grin, Phys. Rev. B. 84, 195137 (2011)CrossRefGoogle Scholar
  67. 67.
    W. Carrillo-Cabrera, H. Borrmann, S. Paschen, M. Baenitz, F. Steglich, Yu. Grin, J. Solid State Chem. 178, 715–728 (2005)CrossRefGoogle Scholar
  68. 68.
    S. Paschen, V.H. Tran, M. Baenitz, W. Carillo-Cabrera, Yu. Grin, F. Steglich, Phys. Rev. B 65, 134435 (2002)CrossRefGoogle Scholar
  69. 69.
    F.R. Wagner, V. Bezugly, M. Kohout, Yu. Grin, Chem. Eur. J. 13, 5724–5741 (2007)CrossRefGoogle Scholar
  70. 70.
    R.F.W. Bader, Atoms in Molecules (Oxford University Press, Oxford, 1990)Google Scholar
  71. 71.
    A. Ormeci, Yu. Grin, Unpublished data (2013)Google Scholar
  72. 72.
    M. Kohout, Int. J. Quantum Chem. 97, 651–658 (2004)Google Scholar
  73. 73.
    M. Kohout, Faraday Discuss. 135, 43–54 (2007)Google Scholar
  74. 74.
    M. Kohout, F.R. Wagner, Yu. Grin, Int. J. Quantum Chem. 106, 1499–1507 (2006)Google Scholar
  75. 75.
    M. Kohout, F.R. Wagner, Yu. Grin, Theor. Chem. Acc. 108, 150–156 (2002)CrossRefGoogle Scholar
  76. 76.
    S. Raub, G. Jansen, Theor. Chem. Acc. 106, 223–232 (2001)CrossRefGoogle Scholar
  77. 77.
    I. Veremchuk, T. Mori, Yu. Prots, W. Schnelle, A. Leithe-Jasper, M. Kohout, Yu. Grin, J. Solid State Chem. 181, 1983–1991 (2008)Google Scholar
  78. 78.
    S. Bobev, S.C. Sevov, J. Solid State Chem. 153, 92–105 (2000)CrossRefGoogle Scholar
  79. 79.
    A. Saramat, G. Svensson, A.E.C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S.G.K. Williams, D.M. Rowe, J.D. Bryan, G.D. Stucky, J. Appl. Phys. 99, 023708 (2006)CrossRefGoogle Scholar
  80. 80.
    Y. Nagatomo, N. Mugita, Y. Nakakohara, M. Saisho, M. Tajiri, R. Teranishi, S. Munetoh, J. Phys: Conf. Ser. 379, 012008 (2012)CrossRefGoogle Scholar
  81. 81.
    A. Prokofiev, M. Ikeda, E. Makalkina, R. Svagera, M. Waas, S. Paschen, J. Electron. Mater. 42, 1628–1633 (2013)CrossRefGoogle Scholar
  82. 82.
    L.T.K. Nguyen, Ph.D. Thesis, TU Wien (2010)Google Scholar
  83. 83.
    U. Aydemir, C. Candolfi, A. Ormeci, H. Borrmann, U. Burkhardt, Y. Oztan, N. Oeschler, M. Baitinger, F. Steglich, Yu. Grin, Inorg. Chem. 51, 4730–4741 (2012)CrossRefGoogle Scholar
  84. 84.
    W. Jung, H. Kessens, A. Ormeci, W. Schnelle, U. Burkhardt, H. Borrmann, H.D. Nguyen, M. Baitinger, Yu. Grin, Dalton Trans. 41, 13960–13968 (2012)CrossRefGoogle Scholar
  85. 85.
    U. Aydemir, Ph.D. Thesis, TU Dresden (2012)Google Scholar
  86. 86.
    K. Kovnir, U. Stockert, S. Budnyk, Yu. Prots, M. Baitinger, S. Paschen, A.V. Shevelkov, Yu. Grin, Inorg. Chem. 50, 10387–10396 (2011)CrossRefGoogle Scholar
  87. 87.
    E. Hohmann, Z. Anorg. Allg. Chem. 257, 113–126 (1948)CrossRefGoogle Scholar
  88. 88.
    C. Cros, M. Pouchard, P. Hagenmuller, C.R. Hebd. Seances Acad. Sci. 260, 4764–4767 (1965)Google Scholar
  89. 89.
    S. Yamanaka, H.-O. Horie, H. Nakano, M. Ishikawa, Fullerene Sci. Technol. 3, 21–28 (1995)CrossRefGoogle Scholar
  90. 90.
    M. Baitinger, H.G. von Schnering, J.-H. Chang, K. Peters, Yu. Grin, Z. Kristallogr. NCS 222, 87–88 (2007)Google Scholar
  91. 91.
    S. Stefanoski, M. Beekman, W. Wong-Ng, P. Zavalij, G.S. Nolas, Chem. Mater. 23, 1491–1495 (2011)Google Scholar
  92. 92.
    S. Stefanoski, J. Martin, G.S. Nolas, J. Phys. Cond. Mat. 22, 485404 (2010)CrossRefGoogle Scholar
  93. 93.
    S. Stefanoski, G.S. Nolas, Cryst. Growth Des. 11, 4533–4537 (2011)Google Scholar
  94. 94.
    S. Stefanoski, C.D. Malliakas, M.G. Kanatzidis, G.S. Nolas, Inorg. Chem. 51, 8686–8689 (2012)Google Scholar
  95. 95.
    R. Nesper, J. Curda, H.G. von Schnering, Angew. Chem. Int. Ed. 25, 350–352 (1986)CrossRefGoogle Scholar
  96. 96.
    S. Yamanaka, E. Enishi, H. Fukuoka, M. Yasukawa, Inorg. Chem. 39, 56–58 (2000)CrossRefGoogle Scholar
  97. 97.
    H. Fukuoka, K. Ueno, S. Yamanaka, J. Organomet. Chem. 611, 543-546 (2000)Google Scholar
  98. 98.
    I. Veremchuk, A. Wosylus, B. Böhme, M. Baitinger, H. Borrmann, Y. Prots, U. Burkhardt, U. Schwarz, Yu. Grin, Z. Anorg. Allg. Chem. 637, 1281–1286 (2011)CrossRefGoogle Scholar
  99. 99.
    M. Beekman, W. Schnelle, H. Borrmann, M. Baitinger, Yu. Grin, G.S. Nolas, Phys. Rev. Lett. 104, 018301 (2010)CrossRefGoogle Scholar
  100. 100.
    S. Stefanoski, M.C. Blosser, G.S. Nolas, Cryst. Growth Des. 13, 195–197 (2013)CrossRefGoogle Scholar
  101. 101.
    A.M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, Yu. Grin, Nature 443, 320–323 (2006)CrossRefGoogle Scholar
  102. 102.
    B. Böhme, A. Guloy, Z. Tang, W. Schnelle, U. Burkhardt, M. Baitinger, Yu. Grin, J. Am. Chem. Soc. 129, 5348–5349 (2007)Google Scholar
  103. 103.
    B. Böhme, S. Hoffmann, M. Baitinger, Yu. Grin. Z, Naturforsch. 66b, 230–238 (2011)Google Scholar
  104. 104.
    Y. Liang, B. Böhme, M. Reibold, W. Schnelle, U. Schwarz, M. Baitinger, H. Lichte, Yu. Grin, Inorg. Chem. 50, 4523–4528 (2011)Google Scholar
  105. 105.
    M.C. Blosser, G.S. Nolas, Mater. Lett. 99, 161–163 (2013)Google Scholar
  106. 106.
    H. Fukuoka, J. Kiyoto, S.Yamanaka, Inorg. Chem. 42, 2933–2937 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael Baitinger
    • 1
  • Bodo Böhme
    • 1
  • Alim Ormeci
    • 1
  • Yuri Grin
    • 1
    Email author
  1. 1.Max-Planck-Institut für Chemische Physik fester StoffeDresdenGermany

Personalised recommendations