Taxonomy and Phylogeny of Unicellular Eukaryotes

  • Charles-François Boudouresque


The notion of ‘microbes’ encompasses Bacteria (unicellular and multicellular) and Archaea, together with unicellular eukaryotes. In addition, microbiologists have traditionally included within their study field a number of eukaryotes named ‘fungi’ (customary meaning), e.g. Fungi (modern meaning), which are generally multicellular, and Oobionta, which are constituted by a giant multinucleate cell. Unicellular eukaryotes only represent ~10 % of all eukaryotic species; however, if only kingdoms, sub-kingdoms and phyla (‘phyletic diversity’) are taken into consideration, most eukaryotes are unicellular. Taking into consideration the huge phyletic diversity of unicellular eukaryotes and of affiliate taxa, which nearly fits the whole diversity of eukaryotes, it is impossible to present here a comprehensive description of the whole of these taxa. The choice was therefore to select a part of high-level taxa, likely to illustrate the amazing diversity of eukaryotes. For each selected taxon, some traits are recurrently tackled topics, e.g. the chloroplast structure and the photosynthetic pigments, the kinetic apparatus and the cell wall. Some derived characters, more or less specific to a taxon and prone to constitute a biomarker (genetic, biochemical, cytological and/or biological), are also emphasized. The biological life cycle of at least one species belonging to the taxon is illustrated in a standardized way. Finally, the role of the taxon in the functioning of the biosphere is described. Eukaryotes, one of the three domains of Life (together with Bacteria and Archaea), encompass a dozen or so high-level taxa (here kingdoms). Most of these kingdoms include taxa traditionally considered as belonging to the former polyphyletic plant kingdom together with taxa belonging to the former animal kingdom. Similarly, most of these kingdoms encompass ensembles formerly referred to as ‘algae’, ‘fungi’ (customary meaning) and protozoa, which modern phylogenies proved to be highly polyphyletic and therefore artificial. Here, eukaryotic taxa are placed within putatively monophyletic ensembles (kingdoms): Archaeplastida (=Plantae), Rhizaria, Alveolata, Stramenopiles (=Heterokonta), Haptobionta (=Haptophytes), Discicristates, Excavates, Opisthokonta (including Metazoa and Fungi, modern meaning), Amoebobionta (=Amoebozoa) and Cryptobionta.


Eukaryotes Unicellular Phylogeny Archaeplastida Rhizaria Alveolata Stramenopiles Haptobionta Discicristates Excavates Opisthokonta Metazoa Fungi Amoebobionta Cryptobionta 


  1. Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA et al (2004) Complete genome sequence of the Apicomplexan, Cryptosporidium parvum. Science 304:441–445PubMedGoogle Scholar
  2. Andersen RA (2004) Biology and systematics of heterokont and haptophyte algae. Am J Bot 91:1508–1522PubMedGoogle Scholar
  3. Andersen RA (2005) Algae and the vitamin mosaic. Nature 438:33–34PubMedGoogle Scholar
  4. Baker BJ, Tyson GW, Goosherst L, Banfield JF (2009) Insights into the diversity of eukaryotes in acid mine drainage biofilm communities. Appl Environ Microbiol 75(7):2192–2199PubMedCentralPubMedGoogle Scholar
  5. Baldan B, Andolfo P, Navazio L, Tolomio C, Mariani P (2001) Cellulose in algal cell wall: an ‘in situ’ localization. Eur J Histochem 45:51–56PubMedGoogle Scholar
  6. Baldauf SL (2003) The deep roots of eucaryotes. Science 300:1703–1706PubMedGoogle Scholar
  7. Baldauf SL (2008) An overview of the phylogeny and diversity of eukaryotes. J Syst Evol 46:263–273Google Scholar
  8. Baldauf SL, Doolittle WF (1997) Origin and evolution of the slime molds (Mycetozoa). Proc Natl Acad Sci U S A 94:12007–12012PubMedCentralPubMedGoogle Scholar
  9. Baldauf SL, Roger AJ, Wenk-Siefret I, Doolittle WF (2000) A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972–977PubMedGoogle Scholar
  10. Barr DJS, Désaulniers NL (1989) The flagellar apparatus of the oomycetes and hyphochytriomycetes. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 343–355Google Scholar
  11. Beakes GW (1989) Oomycete fungi: their phylogeny and relationship to chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 325–342Google Scholar
  12. Berge T, Hansen PJ, Moestrup Ø (2008) Feeding mechanism, prey specificity and growth in light and dark of the plastidic dinoflagellate Karlodinium armiger. Aquat Microb Ecol 50:279–288Google Scholar
  13. Berger L, Hyatt AD, Speare R, Longcore JE (2005) Life cycle stages of the amphibian chytrid Batrachochytrium dendrobatidis. Dis Aqua Org 68:51–63Google Scholar
  14. Bert JJ, Dauguet JC, Maume D, Bert M (1991) Recherche des acides gras et des stérols chez deux Rhodophycées: Calliblepharis jubata et Solieria chordalis (Gigartinales). Cryptogamie Algol 12:157–162Google Scholar
  15. Bhattacharya D, Yoon HS, Hackett JD (2003) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. Bioessays 25:50–60Google Scholar
  16. Bird DF, Kalff J (1986) Bacterial grazing by planktonic lake algae. Science 231:493–494PubMedGoogle Scholar
  17. Bittner L et al (2013) Diversity patterns of uncultured Haptophytes unravelled by pyrosequencing in Naples Bay. Mol Ecol 22:87–101PubMedGoogle Scholar
  18. Bjornland T, Liaaen-Jensen S (1989) Distribution patterns of carotenoids in relation to chromophyte phylogeny and systematics. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 37–61Google Scholar
  19. Bodyl A, Stiller JW, Mackiewicz P (2009) Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol 24:119–121PubMedGoogle Scholar
  20. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546PubMedGoogle Scholar
  21. Bornens M, Azimzadeh J (2007) Origin and evolution of the centrosome. In: Jékeli G (ed) Origins and evolution of eukaryotic endomembranes and cytoskeleton. Landes Bioscience, Austin, pp 119–129Google Scholar
  22. Bouchet P (2000) L’insaisissable inventaire des espèces. La Recherche 333:40–45Google Scholar
  23. Boudouresque CF (2011) Taxonomie et phylogénie des Eucaryotes unicellulaires. In: Bertrand JC, Caumette P, Lebaron P, Matheron R, Normand P (eds) Ecologie microbienne. Microbiologie des milieux naturels et anthropisés. Presses Universitaires de Pau et des Pays de l’Adour (PUPPA), Pau, pp 203–260Google Scholar
  24. Boudouresque CF, Ruitton S, Verlaque M (2006) Anthropogenic impacts on marine vegetation in the Mediterranean. In: Proceedings of the second Mediterranean symposium on marine vegetation, Athens, 12–13 Dec 2003. Regional Activity Centre for Specially Protected Areas Publ, Tunis, pp 34–54Google Scholar
  25. Braselton JP (1995) Current status of the plasmodiophorids. Crit Rev Microbiol 21:263–275PubMedGoogle Scholar
  26. Braselton JP (2009) Plasmodiophorid home page.
  27. Brodie J, Maggs CA, John DM (eds) (2007) Green seaweeds of Britain and Ireland. British Phycological Society, UKGoogle Scholar
  28. Brown MW, Kolisko M, Silberman M, Roger AJ (2012) Aggregative multicellularity evolved independently in the eukaryotic supergroup Rhizaria. Curr Biol 22(12):1123–1127PubMedGoogle Scholar
  29. Bruns T (2006) A kingdom revised. Nature 443:758–760PubMedGoogle Scholar
  30. Bulman SR, Kühn SF, Marshall JW, Schnepf E (2001) A phylogenetic analysis of the SSU rRNA from members of the Plasmodiophorida and Phagomyxida. Protist 152:43–51PubMedGoogle Scholar
  31. Burki F, Okamoto N, Pombert JF, Keeling PJ (2012) The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Roy Soc B 279:2246–2254Google Scholar
  32. Butterfield NJ (2000) Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386–404Google Scholar
  33. Calderon-Saenz E, Schnetter R (1989) Morphology, biology and systematics of Cryptochlora perforans (Chlorarachniophyta), a phagotrophic marine alga. Plant Syst Evol 163:165–176Google Scholar
  34. Cavalier-Smith T (1981) Eukaryote kingdoms: seven or nine? BioSystems 14:461–481PubMedGoogle Scholar
  35. Cavalier-Smith T (1987a) Eukaryote cell evolution. In: Greuter W, Zimmer B (eds) Proceedings of the XIV international botanical congress, Berlin, 24 Jul–1 Aug 1987. Koeltz, Koenigstein, pp 203–223Google Scholar
  36. Cavalier-Smith T (1987b) The origin of fungi and pseudofungi. In: Rayner ADM (ed) Evolutionary biology of fungi. Cambridge University Press, Cambridge, pp 339–353Google Scholar
  37. Cavalier-Smith T (2002) The phagotrophic origin of eukaryotes and phylogenetic classification of protozoa. Int J Syst Evol Microbiol 52:295–354Google Scholar
  38. Cavalier-Smith T, Chao EE (2002) Molecular phylogeny of centrohelid Heliozoa, a novel lineage of bikont eukaryotes that arose by ciliary loss. J Mol Evol 56:387–396Google Scholar
  39. Cavalier-Smith T, Chao EEY (2003) Phylogeny and classification of phylum Cercozoa (Protozoa). Protist 154:341–358PubMedGoogle Scholar
  40. Cavalier-Smith T, von der Heyden S (2007) Molecular phylogeny, scale evolution and taxonomy of centrohelid Heliozoa. Mol Phylogenet Evol 44:1186–1203PubMedGoogle Scholar
  41. Chadefaud M (1960) Les végétaux non vasculaires (cryptogamie). In: Chadefaud M, Emberger L (eds) Traité de botanique systématique, Tome 1. Masson & Cie, Paris, pp i–xv + 1–1018Google Scholar
  42. Chadefaud M (1978) Les champignons. In: Des Abbayes H, Chadefaud M, Feldmann J, De Ferré Y, Gaussen H, Grassé PP, Prévot AR (eds) Précis de botanique, Tome 1. Végétaux inférieurs. Deuxième édition. Masson & Cie, Paris, pp 321–518Google Scholar
  43. Chauzat MP, Higes M, Martin-Hernandez R, Meana A, Cougoule N, Faucon JP (2007) Presence of Nosema ceranae in French honey bee colonies. J Apicul Res 45:127–128Google Scholar
  44. Courties C, Perasso R, Chétiennot-Dinet MJ, Gouy M, Guillou L, Trousselier M (1998) Phylogenetic analysis and genome size of Ostreococcus tauri (Chlorophyta, Prasinophyceae). J Phycol 34:844–849Google Scholar
  45. Croft MT, Lawrence AD, Raux-Deery E, Warren MJ, Smith AG (2005) Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature 438:90–93PubMedGoogle Scholar
  46. Cuvelier ML et al (2008) Widespread distribution of a unique marine protistan lineage. Environ Microbiol 10:1621–1634PubMedCentralPubMedGoogle Scholar
  47. Dacks J, Roger AJ (1999) The first sexual lineage and the relevance of facultative sex. J Mol Evol 48:779–783PubMedGoogle Scholar
  48. de Reviers B (2003) Biologie et phylogénie des algues, Tome 2. Belin, ParisGoogle Scholar
  49. Drebes G (1981) Possible resting spores of Dissodinium pseudolunula (Dinophyta) and their relation to other taxa. Br Phycol Bull 16:207–215Google Scholar
  50. Dyall SD, Brown MT, Johnson PJ (2004) Ancient invasions: from endosymbionts to organelles. Science 304:253–257PubMedGoogle Scholar
  51. Dyer PS (2008) Evolutionary biology: microsporidia sex – a missing link to Fungi. Curr Biol 18:R1012–R1014PubMedGoogle Scholar
  52. Eichinger L et al (2005) The genome of the social amoeba Dictyostelium discoideum. Nature 435:43–57PubMedCentralPubMedGoogle Scholar
  53. Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440:623–630PubMedGoogle Scholar
  54. Erdos GW, Raper KB, Vogen LK (1975) Sexuality in the cellular slime mold Dictyostelium giganteum. Proc Natl Acad Sci U S A 72:970–973PubMedCentralPubMedGoogle Scholar
  55. Evert RF, Eichhorn SE (2013) Raven biology of plants, 8th edn. W.F. Freeman PublishersGoogle Scholar
  56. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FJR (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360PubMedGoogle Scholar
  57. Feldmann J, Feldmann G (1945) Sur le metabolism du glycérol chez les Rhodophycées. C R Acad Sci 220:467–469Google Scholar
  58. Feldmann J, Feldmann G (1955) Observations sur quelques Phycomycètes marins nouveaux ou peu connus. Rev Mycol 20:231–251Google Scholar
  59. Fistarol GO, Legrand C, Granéli E (2003) Allelopathic effect of Prymnesium parvum on a natural plankton community. Mar Ecol Prog Ser 255:115–125Google Scholar
  60. Foster RA, Carpenter EJ, Gergman B (2006) Unicellular cyanobionts in open ocean dinoflagellates, radiolarians and tintinnids: ultrastructural characterization and immuno-localization of phycoerythrin and nitrogenase. J Phycol 42:458–463Google Scholar
  61. Fuller NJ, Campbell C, Allen DJ, Pitt FD, Zwirglmaier K, Le Gall F, Vaulot D, Scanlan DJ (2006) Analysis of photosynthetic picoeukaryote diversity at open ocean sites in the Arabian Sea using a PCR biased towards marine algal plastids. Aquat Microb Ecol 43:79–93Google Scholar
  62. Gaudet P, Williams JG, Fey P, Chisholm RL (2008) An anatomy ontology to represent biological knowledge in Dictyostelium discoideum. BMC Genom 9:1–12Google Scholar
  63. Gazzaniga M (2009) Aquariofilia e microscopia ottica.
  64. Genovesi-Giunti B (2006) Initiation, maintien et récurrence des efflorescences toxiques d’Alexandrium catenella (Dinophyceae) dans une lagune méditerranéenne (Thau, France): rôle du kyste dormant. Thèse Doct, Univ Montpellier IIGoogle Scholar
  65. Germot A, Philippe H, Le Guyader H (1997) Evidence for loss of mitochondria in microsporidia from a mitochondrial- type HSP70 in Nosema locustae. Mol Biochem Parasitol 87:159–168PubMedGoogle Scholar
  66. Gray P (1995) L’Irlande au temps de la grande famine. Gallimard, ParisGoogle Scholar
  67. Gray AP, Lucas IAN, Seed R, Richardson CA (1999) Mytilus edulis chilensis infested with Coccomyxa parasitica (Chlorococcales, Coccomyxaceae). J Mollus Stud 65:289–294Google Scholar
  68. Green JC, Course PA, Tarran GA (1996) The life cycle of Emiliana huxleyi: a brief review and a study of relative ploidy levels analysed by flow cytometry. J Mar Syst 9:33–44Google Scholar
  69. Gretz MR, Sommerfeld MR, Aronson JM (1982) Cell wall composition of the generic phase of Bangia atropurpurea (Rhodophyta). Bot Mar 25:529–535Google Scholar
  70. Gretz MR, Aronson JM, Sommerfeld MR (1984) Taxonomic significance of cellulosic cell walls in the Bangiales (Rhodophyta). Phytochemistry 23:2513–2514Google Scholar
  71. Groisillier A, Massana R, Valentin K, Vaulot D, Guillou L (2006) Genetic diversity and habitats of two enigmatic alveolate lineages. Aquat Microb Ecol 42:277–291Google Scholar
  72. Grzymski J, Schofield OM, Falkowski PG, Bernhard JM (2002) The function of plastids in the deep-sea benthic foraminifer, Nonionella stella. Limnol Oceanogr 47:1569–1580Google Scholar
  73. Gülkiz Şenler N, Yildiz I (2003) Infraciliature and other morphological characteristics of Enchelyodon longikineta n.sp. (Ciliophora, Haptoria). Eur J Protistol 39:267–274Google Scholar
  74. Hampl V, Hug L, Leigh JW, Dacks JB, Lang BF, Simpson AGB (2009) Phylogenetic analyses support the monophyly of Excavata and resolve relationships among eukaryotic “supergroups”. Proc Natl Acad Sci U S A 106:3859–3864PubMedCentralPubMedGoogle Scholar
  75. Hansen PJ, Fenchel T (2006) The bloom-forming ciliate Mesodinium rubrum harbours a single permanent endosymbiont. Mar Biol Res 2:169–177Google Scholar
  76. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105:1422–1432Google Scholar
  77. Herzog M, Von Boletzky S, Soyer MO (1984) Ultrastructural and biochemical nuclear aspects of Eukaryote classification: independent evolution of the dinoflagellates as a sister group of the actual Eukaryotes? Orig Life 13:205–215Google Scholar
  78. Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547PubMedGoogle Scholar
  79. Horn S, Ehlers K, Fritzsch G, Gil-Rodriguez MC, Wilhelm C, Schnetter R (2007) Synchroma grande sp. nov. (Synchromophyceae class. nov., Heterokontophyta): an amoeboid marine alga with unique plastid complexes. Protist 158:277–293PubMedGoogle Scholar
  80. Huang J, Xu Y, Gogarten JP (2005) The presence of a holaoarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic. Mol Biol Evol 22:2142–2146PubMedGoogle Scholar
  81. Inouye I (1993) Flagella and flagellar apparatuses of algae. In: Berner T (ed) Ultrastructure of microalgae. CRC Press, Boca Raton, pp 99–133Google Scholar
  82. James TY, Kauff F, Schoch CL, Matheny PB, Hoffstetter V, Cox CJ et al (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822PubMedGoogle Scholar
  83. Jeffrey SW (1989) Chlorophyll c pigments and their distribution in the chromophyte algae. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 13–36Google Scholar
  84. Jousson O, Di Bello D, Donadio E, Felicioli A, Pretti C (2007) Differential expression of cysteine proteases in developmental stages of the parasitic ciliate Ichthyophthirius multifilis. FEMS Microbiol Lett 269:77–84PubMedGoogle Scholar
  85. Kawai H, Maeba S, Sasaki H, Okuda K, Henry EC (2003) Schizocladia ischiensis: a new filamentous marine chromophyte belonging to a new class, Schizocladiophyceae. Protist 154:211–228PubMedGoogle Scholar
  86. Keeling PJ (2008) Bridge over troublesome plastids. Nature 451:896–897PubMedGoogle Scholar
  87. Kim OTP, Yura K, Go N, Harumoto T (2005) Newly sequenced eRF1s from ciliates: the diversity of stop codon usage and the molecular surfaces that are important for stop codon interactions. Gene 346:277–286PubMedGoogle Scholar
  88. Kim E, Harrison JW, Sudek S, Jones MDM, Wilcox HM, Richards TA, Worden AZ, Archibald JM (2011a) Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci 108(4):1496–1500PubMedCentralPubMedGoogle Scholar
  89. Kim E, Harrison JW, Sudek S, Jones MD, Wilcox HM, Richards TA, Worden AZ, Archibald JM (2011b) Newly identified and diverse plastid-bearing branch on the eukaryotic tree of life. Proc Natl Acad Sci USA 108:1496–1500PubMedCentralPubMedGoogle Scholar
  90. Kling SA, Boltovskoy D (2002) What are radiolarians?
  91. Kokinos JP, Eglinton TI, Goni MA, Boon JA, Martoglio PA, Anderson DM (1998) Characterization of a highly resistant biomacromolecular material in the cell wall of a marine dinoflagellate cyst. Org Geochem 28:265–288Google Scholar
  92. Kramarsky-Winter E, Harel M, Siboni N, Ben Dov E, Brickner I, Loya Y, Kushmaro A (2006) Identification of a protist-coral association and its possible ecological role. Mar Ecol Prog Ser 317:67–73Google Scholar
  93. Kroken S, Taylor JW (2000) Phylogenetic species, reproductive mode, and specificity of the green alga Trebouxia forming lichens with the fungal genus Lethraria. Bryologist 103:645–660Google Scholar
  94. Lafferty KD (2006) Can the common brain parasite, Toxoplasma gondii, influence human culture? Proc Roy Soc Lond B 273:2749–2755Google Scholar
  95. Lara E, Moreira D, Vereshchaka A, López-García P (2009) Pan-oceanic distribution of new highly diverse clades of deep-se diplonemids. Environ Microbiol 11(1):47–65PubMedGoogle Scholar
  96. Larsson R (2009) Cytology and taxonomy of the microsporidia.
  97. Lass-Flörl C, Mayr A (2007) Human protothecosis. Clin Microbiol Rev 20(230):242Google Scholar
  98. Leadbeater BSC (1989) The phylogenetic significance of flagellar hairs in the Chromophyta. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, London, pp 145–165Google Scholar
  99. Leander BS, Saldarriaga JF, Keeling PJ (2002) Surface morphology of the marine parasite Haplozoon axiothellae Siebert (Dinoflagellata). Eur J Protistol 38:287–297Google Scholar
  100. Le Calvez J (1953) Ordre des Foraminifères. In: Grassé PP (ed) Traité de zoologie. Anatomie, systématique, biologie, Tome I. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Fascicule II. Masson & Cie, Paris, pp 149–265Google Scholar
  101. Lecointre G, Le Guyader H (2006) Classification phylogénétique du vivant, 3rd edn. Belin, ParisGoogle Scholar
  102. Lecroq B, Lejzerowicz F, Bachar D, Christen R, Esling P, Baerlocher L, Østeras M, Farinelli L, Pawlowski J (2011) Ultra-deep sequencing of foraminiferal microbarcodes unveils hidden richness of early monothalamous lineages in deep-sea sediments. Proc Natl Acad Sci USA 108:13 177–13 182Google Scholar
  103. Lee SC, Corradi N, Byrnes EJ III, Torres-Martinez S, Dietrich FS, Keeling PJ, Heitman J (2008) Microsporidia evolved from ancestral sexual Fungi. Curr Biol 18:1675–1679PubMedCentralPubMedGoogle Scholar
  104. Lefèvre E, Bardot C, Noël C, Carrias JF, Viscogliosi E, Amblard C, Sime-Ngando T (2007) Unveiling fungal zooflagellates as members of freshwater pico-eucaryotes: evidence from a molecular diversity study in a deep meromictic lake. Environ Microbiol 9:61–71PubMedGoogle Scholar
  105. Lejzerowicz F, Pawlowski J, Fraissinet-Tachet L, Marmeisse R (2010) Molecular evidence for widespread occurrence of Foraminifera in soils. Environ Microbiol 12(9):2518–2526PubMedGoogle Scholar
  106. Lejzerowicz F, Esling P, Majewski W, Szczucinski W, Decelle J, Obadia C, Martinez Arbizu P, Pawlowski J (2013) Ancient DNA complements microfossil record in deep-sea subsurface sediments. Biol Lett (in press)Google Scholar
  107. Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O (2012) Phylogeny and molecular evolution of the green algae. Crit Rev Plant Sci 31:1–46Google Scholar
  108. Lemieux C, Otis C, Turmel M (2000) Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature 403:649–652PubMedGoogle Scholar
  109. Liao QY, Li J, Zhang JH, Li M, Lu Y, Xu RL (2009) An ecological analysis of soil sarcodina at Dongzhaigang mangrove in Hainan Island, China. Eur J Soil Biol 45:214–219Google Scholar
  110. Lindberg K, Moestrup O, Daugbjerg N (2005) Studies on wolozynskioid dinoflagellates I:Wolozynskia coronate re-examined using light and electron microscopy and partial LSU rDNA sequences, with description of Tovellia gen. nov. and Jadwigia gen. nov. (Tovelliaceae fam. nov.). Phycologia 44:416–440Google Scholar
  111. Litaker RW, Vandersea RW, Faust MA, Kibler SR, Chinain M, Holmes MJ, Holland WC, Tester PA (2009) Taxonomy of Gambierdiscus including four new species, Gambierdiscus caribaeus, Gambierdiscus carolinianus, Gambierdiscus carpenteri and Gambierdiscus ruetzleri (Gonyaulacales, Dinophyceae). Phycologia 48(5):344–390Google Scholar
  112. Littler MM, Littler DS, Blair SM, Norris JN (1985) Deepest known plant life discovered on an uncharted seamount. Science 227:57–59PubMedGoogle Scholar
  113. Liu YJ, Hodson MC, Hall BD (2006) Loss of the flagellum happened only once in the fungal lineage: phylogenetic structure of kingdom Fungi inferred from RNA polymerase II subunit genes. BMC Evol Biol 6:1–13Google Scholar
  114. Loftus B, Anderson I, Davies RU, Alsmark CM, Samuelson J, Amedeo P et al (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433:865–868PubMedGoogle Scholar
  115. Logares R, Audic S, Santini S, Pernice MC, de Vargas C, Massana R (2012) Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing. ISME J 6:1823–1833PubMedCentralPubMedGoogle Scholar
  116. Logsdon JM Jr (2007) Evolutionary genetics: sex happens in Giardia. Curr Biol 18:R66–R68Google Scholar
  117. López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702PubMedCentralPubMedGoogle Scholar
  118. Macinnes MA, Francis D (1974) Meiosis in Dictyostelium mucoroides. Nature 251:321–324PubMedGoogle Scholar
  119. Maldonado M, López-Acosta M, Sitjà C, Aguilar R, García S, Vacelet J (2013) A giant foraminifer that converges to the feeding strategy of carnivorous sponges: Spiculosiphon oceana sp. nov. (Foraminifera, Astrorhizida). Zootaxa 3669(4):571–584Google Scholar
  120. Malik SB, Pightling AW, Stefaniak LM, Schurko AM, Logsdon JM Jr (2008) An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis. PLoS One 3:1–13Google Scholar
  121. Margulis L, Dolan MF (1997) Swimming against the current. In: Margulis L, Sagan D (eds) Slanted truths. Copernicus Publ, New York, pp 47–58Google Scholar
  122. Martone PT, Estevez JM, Lu F, Ruel K, Denny MW, Somerville C, Ralph J (2009) Discovery of lignin in seaweed reveals convergent evolution of cell-wall architecture. Curr Biol 19:169–175PubMedGoogle Scholar
  123. Massana R, Terrado R, Forn I, Lovejoy C, Pedrós-Alió C (2006) Distribution and abundance of uncultured heterotrophic flagellates in the world oceans. Environ Microbiol 8:1515–1522PubMedGoogle Scholar
  124. May R (1997) L’inventaire des espèces vivantes. In: L’évolution. Dossier Hors-série Pour la Science, pp 40–47Google Scholar
  125. McDonald SM, Sarno D, Scanlan DJ, Zingone A (2007) Genetic diversity of eukaryotic ultraphytoplankton in the Gulf of Naples during an annual cycle. Aquat Microb Ecol 50:75–89Google Scholar
  126. McFadden GI, Waller RF (1997) Plastids in parasites of humans. Bioessays 19:1033–1040PubMedGoogle Scholar
  127. McFadden GI, Waller RF, Ralph SA, Foth B, Tonkin C, Su V et al (2001) The relict plastid of malaria parasites. Phycologia 40(4 suppl):16–17Google Scholar
  128. McInnes AG, Ragan MA, Smith DG, Walter JA (1984) High-molecular-weight phloroglucinol based tannins from brown algae: structural variants. Hydrobiologia 116–117:597–602Google Scholar
  129. McLean RO, Corrigan J, Webster J (1981) Heterotrophic nutrition in Melosira nummuloides, a possible role in affecting distribution in the Clyde Estuary. Br Phycol J 16:95–106Google Scholar
  130. Medlin LK, Kaczmarska I (2004) Evolution of the diatoms: V. Morphological and cytological support for the major clades and a taxonomic revision. Phycologia 43:245–270Google Scholar
  131. Mereschkowsky C (1910) Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. Biol Zentralbl 30:278–367Google Scholar
  132. Meyer-Harms B, Pollehne F (1998) Alloxanthin in Dinophysis norvegica (Dinophysiales, Dinophyceae) from the Baltic Sea. J Phycol 34:280–285Google Scholar
  133. Miller JJ, Delwiche CF, Coats DW (2012) Ultrastructure of Amoebophrya sp. and its change during the course of infection. Protist 163:720–745PubMedGoogle Scholar
  134. Molds W (2009) Introduction to Oomycota.
  135. Monier A, Pagarete A, De Vargas C, Allen MJ, Read B, Claverie JM, Ogata H (2009) Horizontal gene transfer of an entire metabolic pathway between a eukaryotic alga and its DNA virus. Genome Res 19:1441–1449PubMedCentralPubMedGoogle Scholar
  136. Moore RB, Obornik M, Janouškovec J, Chrudimsky T, Vancová M, Green DH et al (2008) A photosynthetic alveolate closely related to Apicomplexan parasites. Nature 451:959–963PubMedGoogle Scholar
  137. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on earth and in the ocean? PLoS Biol 9(8):1–8Google Scholar
  138. Moreira D, Von Der Heyden S, Bass D, López-García P, Chao E, Cavalier-Smith T (2007) Global eukaryote phylogeny: combined small- and large subunit ribosomal DNA trees support monophyly of Rhizaria, Retaria and Excavata. Mol Phylogen Evol 55:255–266Google Scholar
  139. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ et al (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317:1921–1926PubMedGoogle Scholar
  140. Motte J (1971) Le biocycle. Introduction à l’étude des grands groupes végétaux. Opuscula Botanica, Montpellier, 10:1–253 + 23 platesGoogle Scholar
  141. Mueller GM, Schmit JP (2007) Fungal biodiversity: what do we know? What can we predict? Biodivers Conserv 16:1–5Google Scholar
  142. Müller DG, Maier I, Gassman G (1985) Survey on sexual pheromone specificity in Laminariales (Phaeophyceae). Phycologia 24:475–477Google Scholar
  143. Nakayama T, Yoshida M, Noel MH, Kawashi M, Inouye I (2005) Ultrastructure and phylogenetic position of Chrysoculter rhomboideus gen. et sp. nov. (Prymnesiophyceae), a new flagellate haptophyte from Japanese coastal waters. Phycologia 44:369–383Google Scholar
  144. Neustupa J, Nĕmková Y, Veselá J, Steinová J, Škaloud P (2013) Parachloroidium gen. nov. (Trebouxiophyceae, Chlorophyta), a novel genus of coccoid green algae from subaerial corticolous biofilms. Phycologia 52(5):411–421Google Scholar
  145. Nicolaev SI, Berney C, Fahrni JF, Bolivar I, Polet S, Mylnikov AP, Aleshin VV, Petrov NB, Pawlowski J (2004) The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes. Proc Natl Acad Sci U S A 101(21):8066–8071Google Scholar
  146. Noda S et al (2006) Identification and characterization of ectosymbionts of distinct lineages in Bacteroidales attached to flagellated protists in the gut of termites and a wood-feeding cockroach. Environ Microbiol 8:11–20PubMedGoogle Scholar
  147. Not F et al (2007) Picobiliphytes: a marine picoplanctonic algal group with unknown affinities to other Eukaryotes. Science 315:253–255PubMedGoogle Scholar
  148. Nozaki H, Maruyama S, Matsuzaki M, Nakada T, Kato S, Misawa K (2009) Phylogenetic position of Glaucophyta, green plants (Archaeplastida) and Haptophyta (Chromalveolata) as deduced from slowly evolving nuclear genes. Mol Phylogenet Evol 55:872–880Google Scholar
  149. Oborník M, Modrý D, Lukeš M, Cernotíková-Stříbrná E, Cihlář J, Tesařová M, Kotabová E, Vancová M, Prášil O, Lukeš J (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163(2):306–323PubMedGoogle Scholar
  150. Okamoto N, Inouye I (2005) The Katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Katablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156:163–179PubMedGoogle Scholar
  151. Ota S, Ueda K, Ishida KI (2007) Norrisiella sphaerica gen. et sp. nov., a new coccoid Chlorarachniophyte from Baja California, Mexico. J Plant Res 120:661–670PubMedGoogle Scholar
  152. Ota S, Kudo A, Ishida KI (2011) Gymnochlora dimorpha sp. nov., a new chlorarachnophyte with unique daughter cell behaviour. Phycologia 50(3):317–326Google Scholar
  153. Palmer JD, Soltis DE, Chase MW (2004) The plant tree of life: an overview and some points of view. Am J Bot 91:1437–1445PubMedGoogle Scholar
  154. Pasanen AL, Yli-Pietila K, Pasanen P, Kalliokoski P, Tarhanen J (1999) Ergosterol content in various fungal species and biocontaminated building materials. Appl Environ Microbiol 65:138–142PubMedCentralPubMedGoogle Scholar
  155. Paterson HL, Pesant S, Clode P, Knott B, Waite AM (2007) Systematics of a rare radiolarian – Coelodiceras spinosum Haecker (Sarcodina: Actinopoda: Phaeodaria: Coelodendridae). Deep Sea Res II 54:1094–1102Google Scholar
  156. Patterson DJ (1989) Stramenopiles: chromophytes from a protistean perspective. In: Green JC, Leadbeater BSC, Diver WL (eds) The chromophyte algae. Problems and perspectives. Clarendon, Lonon, pp 357–379Google Scholar
  157. Pawlowski J et al (2012) CBOL Protist Working Group: barcoding eukaryotic richness beyond the animal, plant, and fungal kingdoms. PLoS Biol 10:e1001419PubMedCentralPubMedGoogle Scholar
  158. Pedrós-Alió C (2003) Diversity of microorganisms. In: Vilà M, Rodà F, Ros J (eds) Seminar on biodiversity and biological conservation. Institut d’Estudis Catalans Publ, Barcelona, pp 339–353Google Scholar
  159. Pellegrini L (1974) Origine et modifications ultrastructurales du matériel osmiophile contenu dans les physodes et dans certains corps iridescents des cellules végétatives apicales chez Cystoseira stricta Sauvageau (Phéophycée, Fucale). C R Acad Sci 279:903–906Google Scholar
  160. Peters AF, Müller DG (1985) On the sexual reproduction of Dictyosiphon foeniculaceus (Phaeophyceae, Dictyosiphonales). Helgol Meeresunters 39:441–447Google Scholar
  161. Pitombo LF, Teixeira VL, Kelecom A (1989) Feromônios sexuais de algas pardas. Uma visão quimiosistemática. Insula, Brazil 19(suppl):229–248Google Scholar
  162. Prasad AHSK, Nienow JA, Livingstone RJ (1990) The genus Cyclotella (Bacillariophyta) in Choctawhatchee Bay, Florida, with special reference to C. striata and C. choctawhatcheeana sp. nov. Phycologia 29:418–436Google Scholar
  163. Puglisi E, Nicelli M, Capri E, Trevisan M, Del Re AAM (2003) Cholesterol, b-sitosterol, ergosterol, and coprostanol in agricultural soils. J Environ Qual 32:466–471PubMedGoogle Scholar
  164. Raven PH, Evert RF, Eichhorn SE, Bouharmont J (2000) Biologie végétale. De Boeck publication, p 968Google Scholar
  165. Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape? New Phytol 162:45–61Google Scholar
  166. Robert D, Catesson AM (1990) Biologie végétale, tome 2. Caractéristiques et stratégie évolutive des plantes. Organisation végétative. Doin publication, Paris, pp viii + 256Google Scholar
  167. Rodriguez F, Derelle E, Guillou L, Le Gall F, Vaulot D, Moreau H (2005) Ecotype diversity in the marine picoeukaryote Ostreococcus (Chlorophyta, Prasinophyceae). Environ Microbiol 7:853–859PubMedGoogle Scholar
  168. Rokas A (2006) Genomics and the tree of life. Science 313:1897–1898PubMedGoogle Scholar
  169. Sakaguchi M, Inagaki Y, Hashimoto T (2007) Centrohelida is still searching for a phylogenetic home: analyses of seven Raphidiophrys contractilis genes. Gene 405(1–2):47–54PubMedGoogle Scholar
  170. Schaap P et al (2006) Molecular phylogeny and evolution of morphology in the social amoebas. Science 314:661–663PubMedCentralPubMedGoogle Scholar
  171. Schmidt AR, Dörfelt H, Perrichot V (2007) Carnivorous Fungi from Cretaceous amber. Science 318:1743PubMedGoogle Scholar
  172. Schnepf E, Kühn SF, Bulman S (2000) Phagomyxa bellerocheae sp. nov. and Phagomyxa odontellae sp. nov., Plasmodiophoromycetes feeding on marine diatoms. Helgol Mar Res 54:237–241Google Scholar
  173. Schoenwaelder MEA (2002) The occurrence and cellular significance of physodes in brown algae. Phycologia 41:125–139Google Scholar
  174. Scott JL, Baca B, Ott FD, West JA (2006) Light and electron microscopic observations on Erythrolobus coxiae gen. et sp. nov. (Porphyridiophyceae, Rhodophyta) from Texas U.S.A. Algae 21:407–416Google Scholar
  175. Selosse MA, Le Tacon F (1998) The land flora: a phototroph- fungus partnership? Trends Ecol Evol 13:15–20PubMedGoogle Scholar
  176. Seo KS, Fritz L (2002) Diel changes in pyrenoid and starch reserves in dinoflagellates. Phycologia 41:22–28Google Scholar
  177. Shalchian-Tabrizi K et al (2006) Telonemia, a new protest phylum with affinity to chromist lineages. Proc Roy Soc B 273:1833–1842Google Scholar
  178. Silberman JD, Collins AG, Gershwin LA, Johnson PJ, Roger AJ (2004) Ellobiopsids of the genus Thalassomyces are Alveolates. J Eukaryot Microbiol 51:246–252PubMedGoogle Scholar
  179. Simpson AGB (2003) Cytoskeletal organization, phylogenetic affinities and systematic in the contentious taxon Excavata (Eukaryota). Int J Syst Evol Microbiol 53:1759–1777PubMedGoogle Scholar
  180. Sims PA, Mann DG, Medlin LK (2006) Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia 45:361–402Google Scholar
  181. Sinninghe-Damsté JS et al (2004) The rise of rhizosolenid diatoms. Science 304:584–587Google Scholar
  182. Six C, Worden AZ, Rodríguez F, Moreau H, Partensky F (2005) New insights into the nature and phylogeny of Prasinophyte antenna proteins: Ostreococcus tauri, a case study. Mol Biol Evol 22:2217–2230PubMedGoogle Scholar
  183. Šlapeta J, López-García P, Moreira D (2005a) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29PubMedGoogle Scholar
  184. Šlapeta J, Moreira D, López-García P (2005b) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc Roy Soc B 272:2073–2081Google Scholar
  185. Smirnov A, Berney C, Nikolaev S, Pochon X, Pawlowski J (2009) Molecular phylogeny of amoeboid protists.
  186. Smith M, Hansen J (2007) Interaction between Mesodinium rubrum and its prey: importance of prey concentration, irradiance and pH. Mar Ecol Prog Ser 338:61–70Google Scholar
  187. Steenkamp ET, Wright J, Baldauf SL (2006) The protistan origin of animal and fungi. Mol Biol Evol 23:93–106PubMedGoogle Scholar
  188. Stevenson RN, South GR (1974) Coccomyxa parasitica sp. nov. (Coccomyxaceae, Chlorococcales), a parasite of giant scallops in Newfounland. Br Phycol Bull 9:319–329Google Scholar
  189. Stevenson RN, South GR (1976) Observations on phagocytosis of Coccomyxa parasitica (Coccomyxaceae: Chlorococcales) in Placopecten magellanicus. J Invertebr Pathol 25:307–311Google Scholar
  190. Swanberg NR, Anderson OR (1981) Collozoum caudatum sp. nov.: a giant colonial radiolarian from equatorial and Gulf Stream waters. Deep Sea Res 28A(9):1033–1047Google Scholar
  191. Takahashi F, Okabe Y, Nakada T, Sekimoto H, Ito M, Kataoka H, Nozaki H (2007) Origins of the secondary plastids of Euglenophyta and Chlorarachniophyta as revealed by an analysis of the plastid-targeting, nuclear-encoded gene psbO. J Phycol 43:1302–1309Google Scholar
  192. Tanifuji G, Onodera NT, Wheeler TJ, Dlutek M, Donaher N, Archibald JM (2011) Complete nucleomorph genome sequence of the nonphotosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biol Evol 3:44–54PubMedCentralPubMedGoogle Scholar
  193. Thüs H, Muggia L, Pérez-Ortega S, Favero-Longo SE, Joneson S, O’Brien H, Nelsen MP, Duque-Thüs R, Grube M, Friedl T, Brodie J, Andrew CJ, Lücking R, Lutzoni F, Gueidan C (2011) Revisiting photobiont diversity inthe lichen family Verrucariaceae (Ascomycota). Eur J Phycol 46(4):399–415Google Scholar
  194. Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G, Steinke M, Johnston AWB (2007) Structural and regulatory genes required to make the gas dimethyl sulfide in bacteria. Science 315:666–669PubMedGoogle Scholar
  195. Todo Y, Kitazato H, Hashimoto J, Gooday AJ (2005) Simple foraminifera flourish at the ocean deepest point. Science 307:689PubMedGoogle Scholar
  196. Tregouboff G (1953a) Classe des Radiolaires. In: Grassé PP (ed) Traité de zoologie. Anatomie, systématique, biologie, Tome I. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Fasicule II. Masson & Cie, Paris, pp 321–436Google Scholar
  197. Tregouboff G (1953b) Classe des Héliozoaires. In: Grassé PP (ed) Traité de zoologie. Anatomie, systématique, biologie. Tome I. Protozoaires: Rhizopodes, Actinopodes, Sporozoaires, Cnidosporidies. Fasicule II. Masson & Cie, Paris, pp 437–489Google Scholar
  198. Tréguer P (2002) Les algues et le souffle d’Eole. La Recherche 355:52–53Google Scholar
  199. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RHY, Aerts A et al (2006) Phytophtora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313:1261–1266PubMedGoogle Scholar
  200. Valiela I (1991) Ecology of coastal ecosystems. In: Barnes RSK, Mann KH (eds) Fundamentals of aquatic ecology. Blackwell Scientific Publications, Oxford, pp 57–76Google Scholar
  201. van den Hoek C, Mann DG, Jahns HM (1998) Algae. An introduction to phycology. Cambridge University Press, CambridgeGoogle Scholar
  202. Van De Vijver B, Kopalova K (2008) Orthoseira gremmenii sp. nov., a new aerophylic diatom from Gouth Island (southern Atlantic Ocean). Cryptogamie Algol 29(2):105–118Google Scholar
  203. Verbruggen H, Maggs CA, Saunders GW, Le Gall L, Yoon HS, De Clerck O (2010) Data mining approach identifies research priorities and data requirements for resolving the red algal tree of life. BMC Evol Biol 10(16):1–15Google Scholar
  204. Versteegh GJM, Blokker P, Wood GD, Collinson ME, Damsté JSS, de Leeuw JW (2004) An example of oxidative polymerization of unsaturated fatty acids as a preservation pathway for dinoflagellate organic matter. Org Geochem 35:1129–1139Google Scholar
  205. Viprey M, Guillou L, Ferréol M, Vaulot D (2008) Wide genetic diversity of picoplanktonic green algae (Chloroplastida) in the Mediterranean Sea uncovered by a phylumbiased PCR approach. Environ Microbiol 10:1804–1822PubMedGoogle Scholar
  206. Vogelbein WK, Lovko VJ, Shields JD, Reece KS, Mason PL, Haas LW, Walker CC (2002) Pfiesteria shumwayae kills fish by micropredation not by exotoxin secretion. Nature 418:967–970PubMedGoogle Scholar
  207. Webster JP (2001) Rats, cats, people and parasites: the impact of latent toxoplasmosis on behaviour. Microbes Infect 3:1037–1045PubMedGoogle Scholar
  208. Wellman CH, Osterloff PL, Mohiuddin U (2003) Fragments of the earliest land plants. Nature 425:282–285PubMedGoogle Scholar
  209. Williams BAP, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418:865–869PubMedGoogle Scholar
  210. Yabuki A, Inagaki Y, Ishida KI (2010) Palpitomonas bilix gen. et sp. nov.: a novel deep-branching heterotroph possibly related to Archaeplastida or Hacrobia. Protist 161:523–538PubMedGoogle Scholar
  211. Yoon HS, Ciniglia C, Wu M, Comeron JM, Pinto G, Pollio A, Bhattacharya D (2006a) Establishment of endolithic populations of extremophilic Cyanidiales (Rhodophyta). BMC Evol Biol 6:78PubMedCentralPubMedGoogle Scholar
  212. Yoon HS, Müller KM, Sheath RG, Ott FD, Bhattacharya D (2006b) Defining the major lineages of red algae (Rhodophyta). J Phycol 42:482–492Google Scholar
  213. Yuan X, Xiao S, Taylor TN (2005) Lichen-like symbiosis 600 million years ago. Science 308:1017–1020PubMedGoogle Scholar
  214. Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Salchian-Tabrizi K (2012) Collodictyon – an ancient lineage in the tree of Eukaryotes. Mol Biol Evol 29(6):1557–1568PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institut Méditerranéen d’Océanologie (MIO)UM 110, CNRS 7294 IRD 235, Université de Toulon, Aix-Marseille UniversitéMarseille Cedex 9France

Personalised recommendations