Advertisement

Chemical Ecology and Biochemistry of Dytiscidae

  • Konrad DettnerEmail author
Chapter

Abstract

The chapter deals with chemical mechanisms that help to control intra- and interspecific interactions with respect to predaceous diving beetles. Apart from chemical receptors and senses within Dytiscidae there are described intraspecific (pheromones) and especially interspecific interactions with respect to this water beetle family. The last group of behavioral modifying compounds includes kairomones and allomones. Allomone constituents from pygidial glands, prothoracic defensive glands, and pupal glands are completely compiled for a large group of predaceous diving beetles. With respect to the natural compounds, their chemistry, distribution within Hydradephaga, biological activities, and especially their significance for dytiscids are discussed. In addition, further secondary compounds from these beetles are presented, including epicuticular lipids or pigments that may be responsible for the coloration of the adult beetles and their larvae. Finally, the microorganisms and their secondary metabolites that are associated with predaceous diving beetles are presented. The described microorganisms range from culturable to non-culturable taxa.

Keywords

Dytiscidae Chemical ecology Allomones Glands Secondary compounds 

Notes

Acknowledgements

In order to prepare this manuscript the help of following collaborators and colleagues is highly acknowledged: Dipl.-Biol. J. Baumgarten (Bayreuth), Dr. W. Boidol (Schering AG, Berlin), Prof. Dr. W. Boland (Jena), I. Cichon (Bayreuth), B. Dettner (Bayreuth), A. Falk (Bayreuth), Prof. Dr. H. P. Fiedler (Tübingen), Prof. Dr. W. Francke (Hamburg), PD Dr. F. Hebauer (Deggendorf), E. Helldörfer (Bayreuth), B. Hopstätter (Aachen), Dr. H. Jungnickel (Bayreuth), Dr. S. Kehl (Bayreuth), A. Kirpal (Bayreuth), Dipl.-Chem. P. Krastel (Göttingen), Dr. S. Küchler (Bayreuth), Dr. U. Lacher (Bayreuth), Dipl.-Biol. M. Langer (Bayreuth), A. Liehr (Bayreuth), H. Müller B. Sc. (Bayreuth), Dr. J. G. Müller (Tübingen), Dr. J. Rheinheimer (BASF, Ludwigshafen), Dr. O. Schaaf (Bayreuth), Dr. A. Schierling (Bayreuth), Dr. R. M. Schmidt (BASF, Ludwigshafen), A. Schneider B. Sc. (Bayreuth), Prof. Dr. M. Scriba (Aachen), S. Wagner (Bayreuth), Dr. B. Weber (Heidelberg), Prof. Dr. A. Zeeck (Göttingen)

This paper is dedicated to the four honorable deceased water beetle specialists: Ecopioneer and Field Biologist Dr. Sepp Margraf (+26.01.2012, Xishuangbanna, China), Natural Product Chemist Prof. Dr. Hermann Schildknecht (+01.07.1996, Heidelberg, Germany), Taxonomist and Field Entomologist Dr. Michel Brancucci (+18.10.2012, Basel, Switzerland), and Field Entomologist Hans Schaeflein (+17.05.1994, Neutraubling, Germany).

References

  1. Åbjörnsson K, Wagner BMA, Axelsson A, Bjerselius R, Olsén KH (1997) Response of Acilius sulcatus (Coleoptera: Dytiscidae) to chemical cues from perch (Perca fluviatilis). Oecologia 111:166–171Google Scholar
  2. Adron JW, Mackie AM (1978) Studies on the chemical nature of feeding stimulants for rainbow trout, Salmo gairdneri Richardson. J Fish Biol 12:303–310Google Scholar
  3. Alarie Y, Joly H, Dennie D (1998) Cuticular hydrocarbon analysis of the aquatic beetle Agabus anthracinus Mannerheim (Coleoptera: Dytiscidae). Can Entomol 130:615–629Google Scholar
  4. Armold MT, Blomquist GJ, Jackson LL (1969) Cuticular lipids of Insetcs – III. The surface lipids of the aquatic and terrestrial life forms of the big stonefly, Pteronarcys californica Newport. Comp Biochem Physiol 31:685–692Google Scholar
  5. Arts MT, Maly EJ, Pasitschniak M (1981) The influence of Acilius (Dytiscidae) predation on Daphnia in a small pond. Limnol Oceanogr 26:1172–1175Google Scholar
  6. Attygalle AB, Jessen K, Bestmann HJ, Buschinger A, Maschwitz U (1996) Oily substances from gastral intersegmental glands of the ant Pachycondyla tridenta (Ponerinae): lack of pheromone function in tandem running and antibiotic effects but further evidence for lubricative function. Chemoecology 7:8–12Google Scholar
  7. Attygalle AB, Wu X, Rzicka J, Rao S, Garcia S, Herath K, Meinwald J, Maddisson D, Will KW (2004) Defensive chemicals of two species of Trachypachus MOTSCHULSKI. J Chem Ecol 30:577–588PubMedGoogle Scholar
  8. Bagnères AG, Wicker-Thomas C (2010) Chemical taxonomy with hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 121–162Google Scholar
  9. Balke M, Larson DJ, Hendrich L (1997) A review of the new Guinea species of Laccophilus Leach 1815 with notes on regional melanism (Coleoptera Dytiscidae). Trop Zool 10:295–320Google Scholar
  10. Barbier M (1987) Synthesis of Z-marginalin and identification of the natural product as the E isomer. Liebigs Ann Chem 1987:545–546Google Scholar
  11. Barbier M (1990) Marginalin, a substance from the pygidial glands of Dytiscus marginalis (Coleoptera): molecular associations with polyamines in vitro. Z Naturforsch 45b:1455–1456Google Scholar
  12. Bauer L (1938) Geschmacksphysiologische Untersuchungen an Wasserkäfern. Z Vgl Physiol 26:107–120Google Scholar
  13. Baumgarten J (1995) Vergleichende chemische Untersuchungen der Naturstoffe aus den Prothorakalwehrdrüsen der Laccophilinae und Hydroporinae (Dytiscidae, Coleoptera), Diploma thesis, University of BayreuthGoogle Scholar
  14. Baumgarten J, Schaaf O, Dettner K (1997) Morphologie und Wehrstoffchemie der Prothorakaldrüsen von Agabus affinis (Payk.), Hyphydrus ovatus (L.) und Laccophilus minutus (L.) (Coleoptera: Dytiscidae). Mitt DGAAE 11:541–544Google Scholar
  15. Beament JWL (1976) The ecology of cuticle. In: Hepburn HR (ed) The insect integument. Elsevier, Amsterdam, pp 359–374Google Scholar
  16. Behrend K (1971) Riechen in Wasser und in Luft bei Dytiscus marginalis L. Z Vgl Physiol 75:108–122Google Scholar
  17. Berthier S (2007) Iridescences – the physical colors of insects. Springer, New YorkGoogle Scholar
  18. Bertrand H (1928) Les larves et nymphes des Dytiscides, Hygrobiides et Haliplides. Encyclopédie Entomologique 10:1–366Google Scholar
  19. Beutel RG, Balke M, Steiner ES Jr (2006) The systematic position of Meruidae (Coleoptera, Adephaga) and the phylogeny of the smaller aquatic adephagan beetle families. Cladistics 22:102–131Google Scholar
  20. Blomquist GJ (2010) Structure and analysis of insect hydrocarbons. In: Blomquist GJ, Bagnères AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 19–34Google Scholar
  21. Blum MS (1981) Chemical defenses of arthropods. Academic, New YorkGoogle Scholar
  22. Blunck H (1909) Färbungsvariationen bei Dytiscus marginalis Linn. Zool Anz 34:337–345Google Scholar
  23. Blunck H (1911) Zur Kenntnis der Natur und Herkunft des “milchigen Secrets” am Prothorax des Dytiscus marginalis L. Zool Anz 37:112–113Google Scholar
  24. Blunck H (1912a) Die Schreckdrüsen des Dytiscus und ihr Secret. I. Teil. Z Wiss Zool Abt A C:493–508Google Scholar
  25. Blunck H (1912b) Das Geschlechtsleben des Dytiscus marginalis L. Die Begattung. Z Wiss Zool Abt A 102:169–248Google Scholar
  26. Blunck H (1917) Die Schreckdrüsen des Dytiscus und ihr Secret, Zweiter und letzter Teil. Z Wiss Zool Abt A 117:205–256Google Scholar
  27. Blunck H (1922a) Die Lebensgeschichte der im Gelbrand schmarotzenden Saitenwürmer. Zool Anz 54:111–149Google Scholar
  28. Blunck H (1922b) Zur Biologie des Tauchkäfers Cybister lateralimarginalis Deg. nebst Bemerkungen über C. japonicus Sharp, C. tripunctatus Oliv. und C. brevis Aubé. Zool Anz 55(45–66):93–124Google Scholar
  29. Blunck H (1923a) Die Entwicklung des Dytiscus marginalis L. vom Ei bis zur Imago. 2. Teil. Die Metamorphose (B. Das Larven- und das Puppenleben). Z Wiss Zool Abt A 121:172–392Google Scholar
  30. Blunck H (1923b) Krankheiten, Feinde und Schmarotzer des Gelbrands. Zool Anz 57:296–328Google Scholar
  31. Bobylev MM, Bobyleva LI, Strobel GA (1996) Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on Spotted Knapweed (Centaurea maculosa). J Agric Food Chem 44:3960–3964Google Scholar
  32. Bobylev MM, Bobyleva LI, Cutler HG, Cutler SJ, Strobel GA (2000) Effects of synthetic congeners of the natural product phytotoxins maculosin-1 and -2 on growth of wheat coleoptile (Triticum aestivum L. cv. Waeland) In: Spencer NR (ed) Proceedings of the X international symposium on biological control of weeds, July 1999. Montana State University, Bozeman, Montana, USA, pp 209–214Google Scholar
  33. Borowsky B, Borowsky R (1987) The reproductive behaviors of the amphipod crustacean Gammarus palustris (Bousfield) and some insights into the nature of their stimuli. J Exp Mar Biol Ecol 107:131–144Google Scholar
  34. Brancucci M, Ruhnau S (1985) Studies on the genus Lancetes. 1. Additional notes on Lancetes angusticollis (Curtis) and description of the pupa (Coleoptera, Dytiscidae). Proc Acad Nat Sci Phila 137:46–52Google Scholar
  35. Breithaupt T, Thiel M (eds) (2011) Chemical communication in crustaceans. Springer, New YorkGoogle Scholar
  36. Brönmark C, Hansson LA (eds) (2012) Chemical ecology in aquatic systems. Oxford University Press, OxfordGoogle Scholar
  37. Budavari S, O’Neill MJ, Smith A, Heckelman PE (1989) The Merck index, 11th edn. Merck, RahwayGoogle Scholar
  38. Burks RL, Lodge DM (2002) Cued in: advances and opportunities in freshwater chemical ecology. J Chem Ecol 28:1901–1917PubMedGoogle Scholar
  39. Burmeister EG (1976) Der Ovipositor der Hydradephaga (Coleoptera) und seine phylogenetische Bedeutung unter besonderer Berücksichtigung der Dytiscidae. Zoomorphologie 85:165–257Google Scholar
  40. Casper A (1913) Die Körperdecke und die Drüsen von Dytiscus marginalis L. Z Wiss Zool Abt A:387–508Google Scholar
  41. Chadha MS, Joshi NK, Mamdapur VR, Sipahimalani AT (1970) C-21 Steroids in the defensive secretions of some Indian water beetles –II*. Tetrahedron 26:2061–2064Google Scholar
  42. Chapman JC, Lockley WJS, Rees HH, Goodwin TW (1977) Stereochemistry of olefinic bond formation in defensive steroids of Acilius sulcatus (Dytiscidae). Eur J Biochem 81:293–298PubMedGoogle Scholar
  43. Chivers DP, Smith RJF (1998) Chemical alarm signalling in aquatic predator–prey systems: a review and prospectus. Ecoscience 5:338–352Google Scholar
  44. Chivers DP, Brown GE, Smith RJF (1996) The evolution of chemical alarm signals: attracting predators benefits alarm signal senders. Am Nat 148:649Google Scholar
  45. Classen R, Dettner K (1983) Pygidial defensive titer and population structure of Agabus bipustulatus L and Agabus paludosus F. (Coloeptera, Dytiscidae). J Chem Ecol 9:201–209PubMedGoogle Scholar
  46. Cochran DG (1975) Excretion in insects. In: Candy DJ, Kilby BA (eds) Insect biochemistry and function. Chapman & Hall, London, pp 179–281Google Scholar
  47. Crespo JG (2011) A review of chemosensation and related behavior in aquatic insects. J Insect Sci 11:1–39Google Scholar
  48. Davids C, Di Sabatino A, Gerecke R, Gledhill T, Smit H, van der Hammen H (2007) 7. Acari: Hydrachnidia, Süßwasserfauna von Mitteleuropa 7/2-1, Elsevier, Spektrum, Heidelberg, pp 421–284Google Scholar
  49. de Brabander HF, Poelmans S, Schilt R, Stephany RW, Bizec BL, Draisci R, Sterk SS, van Ginkel LA, Courtheyn D, van Hoof N, Macri A, de Wasch K (2004) Presence and metabolism of the anabolic steroid boldenone in various animals species: a review. Food Addit Contam 2004:1–11Google Scholar
  50. Dettner K (1979) Chemotaxonomy of water beetles based on their pygidial gland constituents. Biochem Syst Ecol 7:129–140Google Scholar
  51. Dettner K (1985) Ecological and phylogenetic significance of defensive compounds from pygidial glands of hydradephaga (Coleoptera). Proc Acad Nat Sci Phila 137:156–171Google Scholar
  52. Dettner K (1987) Chemosystematics and evolution of beetle chemical defenses. Annu Rev Entomol 32:17–48Google Scholar
  53. Dettner K (1997a) Insecta: Coleoptera: Noteridae. In: Schwoerbel E, Zwick P (eds) Brauer – Süßwasserfauna Europas. Fischer, Stuttgart, pp 99–126Google Scholar
  54. Dettner K (1997b) Insecta: Coleoptera: Hygrobiidae. In: Schwoerbel E, Zwick P (eds) Brauer – Süßwasserfauna Europas. Fischer, Stuttgart, pp 129–144Google Scholar
  55. Dettner K (2010) Chemical defense and toxins of lower terrestrial and freshwater animals. In: Mander L, Lui HW (eds) Comprehensive natural products II: chemistry and biology, vol 4. Elsevier, Oxford, pp 387–410Google Scholar
  56. Dettner K (2011) Potential pharmaceuticals from insects and their co-occurring microorganisms. In: Vilcinskas A (ed) Insect biotechnology, series: biologically-inspired systems, vol 2. Springer, DordrechtGoogle Scholar
  57. Dettner K, Böhner M (2009) Die Pygidialdrüse der Wassertreter (Coleoptera: Haliplidae): Morphologie, Chemie, Funktion und phylogenetische Bedeutung. Contr Nat Hist 12:437–460Google Scholar
  58. Dettner K, Hopstätter B (1980) Das Zustandekommen der Grünfärbung bei der Schwimmkäferunterfamilie der Laccophilinae (Coleoptera: Dytiscidae). Entomologische Zeitschrift 90:225–232Google Scholar
  59. Dettner K, Liepert C (1994) Chemical Mimicry and camouflage. Annu Rev Entomol 39:129–154Google Scholar
  60. Dettner K, Peters W (2010) Lehrbuch der Entomologie, 2nd edn. Spektrum Verlag/Elsevier, HeidelbergGoogle Scholar
  61. Dettner K, Schwinger G (1977) Hohe 3-Indolylessigsäure- und Phenylessigsäure-Konzentrationen in den Pygidialdrüsen von Wasserkäfern (Dytiscidae). Z Naturforsch 32c:453–455Google Scholar
  62. Duron O, Bouchon D, Boutin S, Bellamy L, Zhou L, Engelstädter J, Hurst G (2008) The diversity of reproductive parasites among arthropodes: Wolbachia do not walk alone. BMC Biol 6:27PubMedCentralPubMedGoogle Scholar
  63. Eisner T (1970) Chemical defense against predation in arthropods. In: Sondheimer E, Simeone JB (eds) Chemical ecology. Academic, New York, pp 157–217Google Scholar
  64. Eisner T, Eisner M, Siegler M (2005) Secret weapons. Belknap Press of Harvard University Press, CambridgeGoogle Scholar
  65. Elert EV (2012) Information conveyed by chemical cues. In: Hansson LA, Brönmark C (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, pp 19–38Google Scholar
  66. Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator–prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724Google Scholar
  67. Fescemyer H, Mumma RO (1983) Regeneration and biosynthesis of dytiscid defensive agents (Coleoptera: Dytiscidae). J Chem Ecol 9:1449–1464PubMedGoogle Scholar
  68. Forsyth DJ (1968) The structure of the defence glands in the Dytiscidae, Noteridae, Haliplidae and Gyrinidae (Coleoptera). Trans Roy Entomol Soc Lond 120:159–181Google Scholar
  69. Forsyth DJ (1970) The structure of the defence glands of the Cicindelidae, Amphizoidae and Hygrobiidae (Insecta: Coloeptera). J Zool (Lond) 160:51–69Google Scholar
  70. Franciscolo ME (1979) Coleoptera Haliplidae, Hygrobiidae, Gyrinidae, Dytiscidae, Fauna D’Italia, vol XIV. Calderini, BolognaGoogle Scholar
  71. Francke W, Dettner K (2005) Chemical Signalling in Beetles. In: Topics in current chemistry. Band 240, Springer, Berlin, pp 85–166Google Scholar
  72. Fukatsu T, Nikoh N, Kawai R, Koga R (2000) The secondary endosymbiotic bacterium of the pea aphid Acyrthosiphon pisum (Insecta: Homoptera). Appl Environ Microbiol 66:2748–2758PubMedCentralPubMedGoogle Scholar
  73. Galewski K (1971) A study on morphobiotic adaptations of European species of the Dytiscidae (Coleoptera). Polskie Pismo Entomologiczne XLI/3:487–667Google Scholar
  74. Gebhardt K, Schimana J, Müller J, Fiedler HP, Kallenborn HG, Holzenkämpfer M, Krastel P, Zeeck A, Vater J, Höltzel A, Schmid DG, Rheinheimer J, Dettner K (2002) Screening for biologically active metabolites with endosymbiotic bacilli isolated from arthropods. FEMS Microbiol Lett 217:199–205PubMedGoogle Scholar
  75. Gerhart DJ, Bondura ME, Commito JA (1991) Inhibition of sunfish feeding by defensive steroids from aquatic beetles: structure-activity relationships. J Chem Ecol 17:1363–1370PubMedGoogle Scholar
  76. Geus A (1969) 57. Teil Sporentierchen, Sporozoa. Die Gregarinida der land- und süßwasserbewohnenden Arthoüoden Mitteleuropas. Die Tierwelt Deutschlands, VEB Fischer, JenaGoogle Scholar
  77. Ghidini G (1957) Ghiandole pigidiali aromatiche in Coleotteri Dytiscidae Bolletino della Societa. Entomol Ital 87:67–69Google Scholar
  78. Giglio A, Brandmayr P, Dalpozzo R, Sindona G, Tagarelli A, Talarico F, Brandmayr TZ, Ferrero EA (2009) The defensive secretion of Carabus lefebvrei Dejean 1826 pupa (Coleoptera, Carabidae): gland ultrastructure and chemical identification. Microsc Res Tech 72:351–361PubMedGoogle Scholar
  79. Giglio A, Brandmayr P, Talarico F, Brandmayr TZ (2011) Current knowledge on exocrine glands in carabid beetles: structure, function and chemical compounds. ZooKeys 100:193–201PubMedGoogle Scholar
  80. Gronquist M, Meinwald J, Eisner T, Schroeder FC (2005) Exploring uncharted terrain in nature’s structure space using capillary NMR spectroscopy; 13 steroids from 50 fireflies. J Am Chem Soc 127:10810–10811PubMedGoogle Scholar
  81. Gross EM (2011) Alles anders unter Wasser? Chemische Ökologie im Vergleich. Zusammenfassungen der Jahrestagung 2010 der Deutschen Gesellschaft für Limnologie, pp 200–207Google Scholar
  82. Guse GW, Honomichl K (1980) Die digitiformen Sensillen auf dem Maxillarpalpus von Coleoptera II. Feinstruktur bei Agabus bipustulatus (L.) und Hydrobius fuscipes (L.). Protoplasma 103:55–68Google Scholar
  83. Gyermek L, Soyka LF (1975) Steroid anaesthetics. Anaesthesiology 42:331–344Google Scholar
  84. Harrison JG (2012) Cleaning and preparing adult beetles (Coleoptera) for light and scanning electron microscopy. Afr Entomol 20:395–401Google Scholar
  85. Harrison NL, Majewska MD, Harrington JW, Barker JL (1987) Structure-activity relationships for steroid interaction with the γ-aminobutyric acidA receptor complex. J Pharmacol Exp Ther 241:346–353PubMedGoogle Scholar
  86. Healey M (1984) Fish predation on aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger Press, New York, pp 255–288Google Scholar
  87. Herbst C, Baier B, Tolasch T, Steidle JLM (2011) Demonstration of sex pheromones in the predaceous diving beetle Rhantus suturalis (MacLeay 1825) (Dytiscidae). Chemoecology 21:19–23Google Scholar
  88. Herwig BR, Schindler DE (1996) Effects of aquatic insect predators on zooplankton in fishless ponds. Hydrobiologia 324:141–147Google Scholar
  89. Hicks B, Larson DJ (1991) The rectum as a hydrostatic organ in the predaceous diving beetle Ilybius Erichson (Coleoptera: Dytiscidae). Coleopts Bull 45:274–278Google Scholar
  90. Hinton HE, Gibbs DF (1971) Diffraction gratings in gyrinid beetles. J Insect Physiol 17:1023–1035Google Scholar
  91. Hodgson ES (1951) Reaction thresholds of an aquatic beetle, Laccophilus maculosus Germ. to salts and alcohols. Physiol Zool 24:131–140PubMedGoogle Scholar
  92. Hodgson ES (1953) A study of chemoreception in aqueous and gas phases. Biol Bull 105:115–127Google Scholar
  93. Inoda T (2012) Predaceous diving beetle, Dytiscus sharpi sharpi (Coleoptera: Dytiscidae) larvae avoid cannibalism by recognizing prey. Zool Sci 29:547–552PubMedGoogle Scholar
  94. Ivanov VP (1966) Ultrastructural organization of chemo-receptive antennal sensille of the beetle Acilius sulcatus. J Evol Biochem Phys+ St Petersburg 2:462–472Google Scholar
  95. Ivarsson P, Henrikson BI, Stenson JAE (1996) Volatile substances in the pygidial secretion of gyrinid beetles (Coleoptera: Gyrinidae). Chemoecology 7:191–193Google Scholar
  96. Jacob J, Hanssen HP (1986) Distribution and variability of cuticular hydrocarbons within the Coleoptera. Biochem Syst Ecol 14:207–210Google Scholar
  97. Jakob F (2008) Isolierung und Charakterisierung von potentiellen Endosymbionten aus Entwicklungsstadien der Wasserkäfer Acilius sulcatus und Dytiscus marginalis. Diploma thesis, University of Bayreuth, p 92Google Scholar
  98. Jensen JC, Zacharuk RY (1991) The fine structure of uniporous and nonporous pegs on the distal antennal segment of the diving beetle Graphoderus occidentalis Horn (Coleoptera: Dytiscidae). Can J Zool 69:334–352Google Scholar
  99. Jungnickel H (1992) Exokrine Systeme hydradephager Wasserkäfer. Diploma thesis, University of Bayreuth, p 104Google Scholar
  100. Jungnickel H (1998) Die Prothorakalwehrdrüsen hydradephager Dytisciden. Ph.D. thesis, University of Bayreuth, p 178Google Scholar
  101. Jungnickel H, Dettner K (1997) Identifizierung von Steroidverbindungen aus dem Wehrsekret der Wasserkäferart Agabus guttatus (PAYK.) (Coleoptera: Dytiscidae) unter Berücksichtigung einer möglichen Beteiligung von Mikroorganismen an der Steroidbiosynthese. Mitt DGAAE 11:895–898Google Scholar
  102. Kadavy DR, Hornby JM, Haverkost T, Nickerson KW (2000) Natural antibiotic resistance of bacteria isolated from larvae of the oil fly, Helaeomyia petrolei. Appl Environ Microbiol 2000:4615–4619Google Scholar
  103. Kasumyan AO, Døving KB (2003) Taste preferences in fishes. Fish and Fisheries 4:289–347Google Scholar
  104. Kayser H (1985) Pigments. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 10, Biochemistry. Pergamon, Oxford, pp 367–415Google Scholar
  105. Kayser H, Dettner K (1984) Biliverdin IXγ in beetles (Dytiscidae: Laccophilinae). Comp Biochem Physiol 77:639–643Google Scholar
  106. Kehl S, Dettner K (2003) Predation by pioneer water beetles (Coleoptera, Dytiscidae) from sandpit ponds, based on crop-content analysis and laboratory experiments. Arch Hydrobiol 158:109–126Google Scholar
  107. Kicklighter C (2012) Chemical defensives against predators. In: Brönmark C, Hansson LA (eds) Chemical ecology in aquatic systems. Oxford University Press, Oxford, pp 236–249Google Scholar
  108. Kieslich K (1976) Microbial transformations of non-steroid cyclic compounds. Thieme, StuttgartGoogle Scholar
  109. Kikuchi Y, Fukatsu T (2005) Rickettsia infection in natural leech populations. Microb Ecol 49:265–271PubMedGoogle Scholar
  110. König H, Varma A (2006) Intestinal microorganisms of termites and other invertebrates. Springer, BerlinGoogle Scholar
  111. Korschelt E (1923) Bearbeitung einheimischer Tiere. 1. Monographie: Der Gelbrand Dytiscus marginalis L., 1. Band. W. Engelmann, Leipzig, p 863Google Scholar
  112. Korschelt E (1924) Bearbeitung einheimischer Tiere. 1. Monographie: Der Gelbrand Dytiscus marginalis L. 2. Band. W. Engelmann, Leipzig, p 964Google Scholar
  113. Kovac D, Maschwitz U (1990) Secretion-grooming in aquatic beetles (Hydradephaga): a chemical protection against contamination of the hydrofuge respiratory region. Chemoecology 1:131–138Google Scholar
  114. Küchler SM, Kehl S, Dettner K (2009) Characterization and localization of Rickettsia sp. n water beetles of genus Deronectes (Coleoptera: Dytiscidae). FEMS Microbiol Ecol 68:201–211PubMedGoogle Scholar
  115. Kuhn C, Schnepf E, Schildknecht H (1972) Über Arthropoden-Abwehrstoffe. LVIII Zur Feinstruktur der Pygidialdrüsen des Gelbrandkäfers (Dytiscus marginalis L., Dytiscidae, Coleoptera). Z Zellforsch 132:563–576PubMedGoogle Scholar
  116. Kutalek R, Kassa A (2005) The use of Gyrinids and Dytiscids for stimulating breast growth in East Africa. J Ethnobiol 25:115–128Google Scholar
  117. Lan NC, Gee KW (1994) Neuroactive Steroid Actions at the GABAA Receptor. Horm Behav 28:537–544PubMedGoogle Scholar
  118. Larson DJ (1996) Color patterns of dytiscine water beetles (Coleoptera: Dytiscidae, Dytiscinae) of arroyos, billabongs and wadis. Coleopts Bull 50:231–235Google Scholar
  119. Laskin AI, Lechevalier HA (1973) Handbook of microbiology, vol III, Microbial products. CRC Press, ClevelandGoogle Scholar
  120. Laurent P, Braekman JC, Daloze D (2005) Insect chemical defense. In: Topics in current chemistry. Band 240, Springer, Berlin, pp 167–229Google Scholar
  121. Lawson ET, Mousseau TA, Klaper R, Hunter MD, Werren JH (2001) Rickettsia associated with male-killing in a buprestid beetle. Heredity 86:497–505PubMedGoogle Scholar
  122. Linzen B (1974) The tryptophan-ommochrome pathway in insects. Adv Insect Physiol 10:117–246Google Scholar
  123. Lokensgard J, Smith RL, Eisner T, Meinwald J (1993) Pregnanes from defensive glands of a belostomatid bug. Experientia 49:175–176PubMedGoogle Scholar
  124. Lopes SCDN, Federov A, Castanho MARB (2004) Cholesterol modulates maculosin’s orientation in model systems of biological membranes Relevance towards putative molecular recognition. Steroids 69:825–830PubMedGoogle Scholar
  125. Lousia M, Selvisabhanayakam, Mathivanan V (2010) Effects of pygidial secretion (zoopesticide) on histopathological changes in the male accessory reproductive glands of adult male insect Odontopus varicornis in relation to reproduction. Toxicol Int 17:22–26PubMedCentralPubMedGoogle Scholar
  126. Lust S (1950) Symphorionte Peritrichen auf Käfern und Wanzen. Zool Jahrb 79:353–436Google Scholar
  127. Manteifel YB, Reshetnikov AN (2002) Avoidance of noxious tadpole prey by fish and invertebrate predators: adaptivity of a chemical defence may depend on predator feeding habits. Arch Hydrobiol 153:657–668Google Scholar
  128. Maschwitz U (1967) Eine neuartige Form der Abwehr von Mikroorganismen bei Insekten. Naturwissenschaften 54:649PubMedGoogle Scholar
  129. Mathis A, Chivers DP, Smith RJF (1995) Chemical alarm signals: Predator Deterrents or predator attractants? Am Nat 145:994–1005Google Scholar
  130. Matthes D (1982) Seßhafte Wimpertiere. Neue Brehm-Bücherei, Ziemsen, WittenbergGoogle Scholar
  131. Meinwald J, Opheim K, Eisner T (1972) Gyrinidal: A sesquiterpenoid aldehyde from the defensive glands of gyrinid beetles. Proc Natl Acad Sci U S A 69:1208–1210PubMedCentralPubMedGoogle Scholar
  132. Meinwald J, Huang Q, Vrkoč J, Herath KB, Yang ZC, Schröder F, Attygalle AB, Iyengar VK, Morgan RC, Eisner T (1998) Mirasorvone: a masked 20-ketopregnane from the defensive secretion of a diving beetle (Thermonectus marmoratus). Proc Natl Acad Sci U S A 95:2733–2737PubMedCentralPubMedGoogle Scholar
  133. Miller JR, Mumma RO (1973) Defensive agents of the American water beetles Agabus seriatus and Graphoderus liberus. J Insect Physiol 19:917–925Google Scholar
  134. Miller JR, Mumma RO (1974) Seasonal quantification of the defensive steroid titer of Agabus seriatus (Coleoptera: Dytiscidae). Ann Entomol Soc Am 67:850–852Google Scholar
  135. Miller JR, Mumma RO (1976a) Physiological activity of water beetle defensive agents. I. Toxicity and anesthetic activity of steroids and norsesquiterpenes administered in solution to the minnow Pimephales promelas Raf. J Chem Ecol 2:115–130Google Scholar
  136. Miller JR, Mumma RO (1976b) Physiological activity of water beetle defensive agents. II. Absorption of selected anesthetic steroids and norsesquiterpenes across gill membranes of the minnow Pimephales promelas Raf. J Chem Ecol 2:131–146Google Scholar
  137. Morgan ED (ed) (2004) Biosynthesis in insects. The Royal Society of Chemistry, CambridgeGoogle Scholar
  138. Müller-Schwarze D (2006) Chemical ecology of vertebrates. Cambridge University Press, CambridgeGoogle Scholar
  139. Naumann H (1955) Der Gelbrandkäfer. Neue Brehm Bücherei, Ziemsen, WittenbergGoogle Scholar
  140. Needham AE (1978) Insect biochromes: their chemistry and role. In: Rockstein M (ed) Biochemistry of insects. Academic, New York, pp 233–305Google Scholar
  141. Newhart AT, Mumma RO (1979) Defensive secretions of three species of Acilius (Coleoptera, Dytiscidae) and their seasonal variations as determined by high-pressure liquid chromatography. J Chem Ecol 5:643–652Google Scholar
  142. Norberg L, Wahlström G, Bäckström T (1987) The anaesthetic potency of 3α-hydroxy-5α-pregnan-20-one and 3α-hydroxy-5β-pregnan-20-one determined with an intravenous EEG-threshold method in male rats. Pharmacol Toxicol 61:42–47PubMedGoogle Scholar
  143. O’Neill SL, Hoffmann AA, Werren JH (1997) Influential passengers: inherited microorganisms and arthropod reproduction. Oxford University Press, OxfordGoogle Scholar
  144. Ochs G (1966) Vom Geruch der Taumelkäfer. Entomologische Blätter 62:14–16Google Scholar
  145. Ohba SY, Ohtsuka M, Sunahara T, Sonoda Y, Kawashima E, Takagi M (2012) Differential responses to predator cues between two mosquito species breeding in different habitats. Ecol Entomol 37:410–418Google Scholar
  146. Park SH, Strobel GA (1994) Cellular protein receptors of maculosin, a host specific phytotoxin of spotted knapweed (Centaurea maculosa L.). Biochim Biophys Acta 1199:13–19PubMedGoogle Scholar
  147. Peckarsky BL (1984) Predator–prey interactions among aquatic insects. In: Resh VH, Rosenberg DM (eds) The ecology of aquatic insects. Praeger Press, New York, pp 196–254Google Scholar
  148. Pesek J, Funke M, Boland W (2009) 8-hydroxyquinoline-2-carboxylic acid (HQA) from the insect gut impacts bacterial growth via iron chelation. In: 25th Annual Meeting of the International Society of Chemical Ecology, Neuchâtel, AbstractGoogle Scholar
  149. Peters LE (1957) An analysis of the trematode genus Allocreadium Looss with the description of Allocreadium neotenicum nov. from water beetles. J Parasitol 43:136–142PubMedGoogle Scholar
  150. Phillips GH (1975) Structure-activity relationships in steroidal anesthetics. J Steroid Biochem 6:607–613Google Scholar
  151. Purdy RH, Moorow AL, Blum JR, Paul SM (1990) Synthesis, metabolism, and pharmacological activity of 3α-hydroxy steroids which potentiate GABA-receptor-mediated chloride ion uptake in rat cerebral cortical synaptoneurosomes. J Med Chem 33:1572–1581PubMedGoogle Scholar
  152. Quennedey A (1998) Insect epidermal gland cells: ultrastructure and morphogenesis. In: Harrison FW, Locke M (eds) Anatomy of invertebrates, vol 11A, Insecta. Wiley-Liss, New York, pp 177–207Google Scholar
  153. Ribera I, Beutel RG, Balke M, Vogler AP (2002) Discovery of Aspidytidae, a new family of aquatic Coloeptera. Proc Roy Soc Lond B Biol 269:2351–2356Google Scholar
  154. Ribera I, Nilsson AN, Vogler AP (2004) Phylogeny and historical biogeography of Agabinae diving beetles (Coleoptera) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol 30:545–562PubMedGoogle Scholar
  155. Rosen PP (2008) Rosen’s breast pathology, 3rd edn. Wolters Kluwer Health/Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  156. Roughley RE (1990) A systematic revision of species of Dytiscus Linnaeus (Coleoptera: Dytiscidae). Part 1. Classification based on adult stage. Quaest Entomol 26:383–557Google Scholar
  157. Schaaf O (1998) Steroidchemie der Schwimmkäfer (Coleoptera: Dytiscidae). Ph.D. thesis, University of Bayreuth, p 181Google Scholar
  158. Schaaf O, Dettner K (1997) Microbial diversity of aerobic heterotrophic bacteria inside the foregut of two tyrphophilous water beetle species (Coleoptera: Dytiscidae). Microbiol Res 152:57–64Google Scholar
  159. Schaaf O, Dettner K (1998) Transformation of steroids by Bacillus strains isolated from the foregut of water beetles (Coleoptera: Dytiscidae): I. Metabolism of Androst-4-en-3,17-dione (AD). J Steroid Biochem 67:451–465Google Scholar
  160. Schaaf O, Dettner K (2000a) Transformation of steroids by Bacillus strains isolated from the foregut of water beetles (Coleoptera: Dytiscidae): II. Metabolism of 3β-hydroxypregn-5-en-20-one (pregnenolone). J Steroid Biochem 75:187–199Google Scholar
  161. Schaaf O, Dettner K (2000b) Polyunsaturated monoglycerides and a pregnadiene in defensive glands of the water beetles Agabus affinis. Lipids 35:543–550PubMedGoogle Scholar
  162. Schaaf O, Baumgarten J, Dettner K (2000) Identification and function of prothoracic exocrine gland steroids of the dytiscid beetles Graphoderus cinereus and Laccophilus minutes. J Chem Ecol 26:2291–2305Google Scholar
  163. Schaller A (1926) Sinnesphysiologische und psychologische Untersuchungen an Wasserkäfern und Fischen. Z Vgl Physiol 4:370–464Google Scholar
  164. Scheloske HW (1969) Beiträge zur Biologie, Ökologie und Systematik der Latoulbeniales (Ascomycetes). Parasitologische Schriftenreihe 19:1–176Google Scholar
  165. Schildknecht H (1966) 16. Vertebrate hormones as defence substances in Dytiscids. Memoriasdo Instituto Butantan Simposio Internacional 33:121–133Google Scholar
  166. Schildknecht H (1970) Die Wehrchemie von Land- und Wasserkäfern. Angew Chem-Ger Edit 82:17–25Google Scholar
  167. Schildknecht H (1976) Chemische Ökologie – Ein Kapitel moderner Naturstoffchemie. Angew Chem-Ger Edit 8:235–272Google Scholar
  168. Schildknecht H (1977) Protective substances of arthropods and plants. Pontificiae Academiae Scientiarum Scripta Varia 41:1–49Google Scholar
  169. Schildknecht H, Birringer H (1969) Über die Steroide des Schlammschwimmers Ilybius fenestratus. Chem Ber 102:1859–1864Google Scholar
  170. Schildknecht H, Bühner R (1968) Über ein Glykoproteid in den Pygidialwehrblasen des Gelbrandkäfers. Z Naturforsch 23b:1209–1213Google Scholar
  171. Schildknecht H, Hotz D (1967) Identifizierung der Nebensteroide des Protho-rakalwehrdrüsensystems des Gelbrandkäfers Dytiscus marginalis. Angew Chem-Ger Edit 79:902–903Google Scholar
  172. Schildknecht H, Hotz D (1970a) Das Prothorakalwehrsekret des Schwimmkäfers Agabus bipustulatus. Chem Ztg 94:130Google Scholar
  173. Schildknecht H, Hotz D (1970b) Naturally occurring steroid-isobutyrates. Excerpta Media Int Congs Ser 219:158–166Google Scholar
  174. Schildknecht H, Körnig W (1968) Wehrstoffe des Prothorakalwehrdrüsensekretes einer mexikanischen Cybister-Art. Angew Chem-Ger Edit 80:45–46Google Scholar
  175. Schildknecht H, Tacheci H (1970) Stark blutdrucksenkende Wirkstoffe aus den Prothorakalwehrdrüsen des Schwimmkäfers Colymbetes fuscus. Chem Ztg 94:101–102Google Scholar
  176. Schildknecht H, Tacheci H (1971) Colymbetin, a new defensive substance of the water beetle, Colymbetes fuscus, that lowers blood pressure – LII. J Insect Physiol 17:1889–1896PubMedGoogle Scholar
  177. Schildknecht H, Weis KH (1962) Zur Kenntnis der Pygidialblasensubstanzen vom Gelbrandkäfer (Dytiscus marginalis L). Z Naturforsch 17b:448–452Google Scholar
  178. Schildknecht H, Holoubek K, Wolkenstörfer M (1962) Über einen Inhaltsstoff der Pygidialblasen vom Gelbrandkäfer. Z Naturforsch 17b:81–83Google Scholar
  179. Schildknecht H, Siewerdt R, Maschwitz U (1966) Ein Wirbeltierhormon als Wehrstoff des Gelbrandkäfers (Dytiscus marginalis). Angew Chem-Ger Edit 78:392Google Scholar
  180. Schildknecht H, Birringer H, Maschwitz U (1967a) Testosteron als Abwehrstoff des Schlammschwimmers Ilybius. Angew Chem-Ger Edit 79:579–580Google Scholar
  181. Schildknecht H, Hotz D, Maschwitz U (1967b) Die C21-Steroide der Prothorakalwehrdrüsen von Acilius sulcatus. Z Naturforsch 22b:938–944Google Scholar
  182. Schildknecht H, Siewerdt R, Maschwitz U (1967c) Cybisteron, ein neues Arthropoden-Steroid. Liebigs Ann Chem 703:182–189Google Scholar
  183. Schildknecht H, Tacheci H, Maschwitz U (1969) 4-Pregnen-15α,20ß-diol-3on im Wehrsekret eines Schwimmkäfers. Naturwissenschaften 56:37PubMedGoogle Scholar
  184. Schildknecht H, Körnig W, Siewerdt R, Krauss D (1970) Aufklärung des gelben Pygidialwehrdrüsen-Farbstoffes des Gelbrandkäfers (Dytiscus marginalis). Liebigs Ann Chem 734:116–125Google Scholar
  185. Schildknecht H, Krebs G, Birringer H (1971) Tryptophan als Precursor des Insekten-Alkaloids 8-Hydroxychinolin-carbonsäure-2-methylester aus Ilybius fenestratus. Chem Ztg 95:332–333Google Scholar
  186. Schildknecht H, Neumaier H, Tauscher B (1972a) Gyrinal, die Pygidialdrüsensubstanz der Taumelkäfer (Coleoptera, Gyrinidae). Liebigs Ann Chem 756:155–161Google Scholar
  187. Schildknecht H, Tauscher B, Krauss D (1972b) Der Duftstoff des Taumelkäfers Gyrinus natator L. Chemikerzeitung 96:33–35Google Scholar
  188. Schildknecht H, Holtkotte H, Krauß D, Tacheci H (1975) Platambin, ein Wehrstoff des Schwimmkäfers Platambus maculatus (Coleoptera: Dytiscidae). Liebigs Ann Chem 1975:1850–1862Google Scholar
  189. Schildknecht H, Weber B, Dettner K (1983) Über Arthropoden-Abwehrstoffe, LXV. Die Chemische Ökologie des Grundschwimmers Laccophilus minutus. Z Naturforsch 38b:1678–1685Google Scholar
  190. Schneider A (2008) Kontaktwinkelmessungen an Dytisciden (Coleoptera) unter besonderer Berücksichtigung exokriner Drüsen. Bachelor thesis, University of Bayreuth, p 53Google Scholar
  191. Seago AE, Brady P, Vigneron JP, Schultz TD (2009) Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 6, Suppl. 2, S165–S184Google Scholar
  192. Selye H (1941a) Anesthetic effect of steroid hormones. Proc Soc Exp Biol Med 46:116–121Google Scholar
  193. Selye H (1941b) Studies concerning the anesthetic action of steroids hormones. J Pharmacol Exp Ther 73:127–141Google Scholar
  194. Selye H (1942) Correlations between the chemical structure and the pharmacological actions of the steroids. Endocrinology 30:437–453Google Scholar
  195. Selye H, Heard RDH (1943) The fish assay for the anesthetic effect of the steroids. Anesthesiology 4:36–47Google Scholar
  196. Shackleton CH, Homoki J, Taylor NF (1987) A paradox: elevated 21-hydroxypregnenolone production in newborns with 21-hydroxylase deficiency. Steroids 49:295–311PubMedGoogle Scholar
  197. Sih A (1987) Nutritional ecology of aquatic insect predators. In: Slansky F, Rodriguez JG (eds) Nutritional ecology of aquatic insects, mites, spiders and related invertebrates. Wiley Interscience, New York, pp 579–607Google Scholar
  198. Silberbush A, Markman S, Lewinsohn E, Bar E, Cohen JE, Blaustein L (2010) Predator-released hydrocarbons repel oviposition by a mosquito. Ecol Lett 13:1129–1138PubMedGoogle Scholar
  199. Sipahimalani AT, Mamdapur VR, Joshi NK, Chadha MS (1970) Steroids in the defensive secretion of the water beetle Cybister limbatus-I. Naturwissenschaften 57:40PubMedGoogle Scholar
  200. Smith RL (1973) Aspects of the biology of three species of the genus Rhantus (Coleoptera: Dytiscidae) with special reference to the acoustical behavior of two. Can Entomol 105:909–919Google Scholar
  201. Sondheimer E, Simeone JB (1970) Chemical ecology. Academic, New YorkGoogle Scholar
  202. Sorensen PW, Hoye TH (2010) Phermones in vertebrates. In: Mori K, Mander LN, Liu H (eds) Chemical ecology, comprehensive natural products chemistry II: chemistry and biology. Elsevier Press, Oxford, pp 225–262Google Scholar
  203. Spangler PJ (1985) Five new species of the predacious water beetle genus Hydrodessus from Guyana and a key to the species (Coleoptera: Dytiscidae). Proc Acad Nat Sci Phila 137:80–89Google Scholar
  204. Staddon BW, Thorne MJ (1979) The metathoracic scent gland system in Hydrocorisae (Heteroptera: Nepomorpha). Syst Entomol 4:239–250Google Scholar
  205. Strobel G, Stierle A, Park SH, Cardellina J (1990) Maculosin -a host specific phytotoxin from Alternaria alternata on spotted knapweed. In: Microbes and microbial products as herbicides, vol 439, ACS symposium series. American Chemical Society, Washington, DC, pp 53–62Google Scholar
  206. Sun J, Bhushan B (2012) Structure and mechanical properties of beetle wings: a review. RSC Adv 2:12606–12623Google Scholar
  207. Swevers L, Lambert JGD, de Loof A (1991) Synthesis and metabolism of vertebrate-type steroids by tissue of insects: a critical evaluation. Experientia 47:687–698PubMedGoogle Scholar
  208. Tassani P, Jänicke U, Ott E, Conzen P (1996) Hämodynamische Wirkungen von 3 unterschiedlichen Dosierungen des Induktionshypnotikums Eltanolon bei koronarchirurgischen Patienten. Anaesthesist 45:249–254PubMedGoogle Scholar
  209. Tinbergen N (1936) Eenvoudige Proeven Over De Zintuigfuncties Van Larvae En Imago Van De Geelgerande Watertor. De levende Naturr 41:225–236Google Scholar
  210. Tinbergen N (1951) The study of instinct. Oxford University Press, LondonGoogle Scholar
  211. Urban MC (2008) Salamander evolution across a latitudinal cline in gape-limited predation risk. Oikos 117:1037–1049Google Scholar
  212. von der Schulenburg JH, Habig M, Sloggett JJ, Webberley KM, Bertrand D, Hurst GD, Majerus ME (2001) Incidence of male-killing Rickettsia spp. (α-proteobacteria) in the tenspot ladybird beetle Adalia decempunctata L. (Coleoptera: Coccinellidae). Appl Environ Microbiol 67:270–277PubMedCentralPubMedGoogle Scholar
  213. Warner WB (2010) Degreasing pinned specimens. SCARABS 50:1Google Scholar
  214. Weber B (1979) Über Inhaltsstoffe in den Wehrdrüsen von Ilybius fenestratus, Dytiscus marginalis und Laccophilus minutus. Ph.D. thesis, University of Heidelberg, p 164Google Scholar
  215. Wesenberg-Lund C (1943) Biologie der Süsswasserinsekten. Nordisk Forlag, Kopenhagen & Springer, BerlinGoogle Scholar
  216. Will KW, Attygalle AB, Herath K (2000) New defensive chemical data for ground beetles (Coleoptera: Carabidae): interpretations in a phylogenetic framework. Biol J Linn Soc 71:459–481Google Scholar
  217. Williams DD, Feltmate BW (1992) Aquatic insects. CAB International, WallingfordGoogle Scholar
  218. Wyatt TD (2003) Pheromones and animal behaviour. Cambridge University Press, CambridgeGoogle Scholar
  219. Young FN (1960a) The colors of desert water beetles – environmental effect or protective coloration? Ann Entomol Soc Am 53:422–425Google Scholar
  220. Young FN (1960b) Regional melanism in aquatic beetles. Evolution XIV:277–283Google Scholar
  221. Young J, Corpéchot C, Perché F, Eychenne B, Haug M, Baulieu EE, Robel P (1996) Neurosteroids in the mouse brain: behavioral and pharmacological effects of a 3β-hydroxysteroid dehydrogenase inhibitor. Steroids 61:144–149PubMedGoogle Scholar
  222. Zchori-Fein E, Borad C, Harari A (2006) Oogenesis in the date stone beetle, Coccotrypes dactyliperda, depends on symbiotic bacteria. Physiol Entomol 31:164–169Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2014

Authors and Affiliations

  1. 1.Department of Animal Ecology IIUniversity of BayreuthBayreuthGermany

Personalised recommendations