Towards Modeling Automation for Synthetic Biology

  • Chen Liao
  • Yizhi CaiEmail author


Rule-based modeling was first introduced to address the ‘combinatorial complexity’ problem in cellular signaling. A number of software tools and methods have been developed in recent years to make accurate predictions about the functional role of proteins in signaling transduction systems. Many of these approaches are based on formal languages, such as Kappa and BioNetGen (BNGL). Modeling also plays an integrant role in synthetic biology, a new interdisciplinary subject aiming to design novel biological systems. The specification of synthetic biology systems using high level languages is still a challenge. In this article, we proposed to extend the Rule-based modeling rule-based modeling from systems biology to synthetic biology and introduced a new model-specification language, which allows quickly generating mathematical models encoding the phenotypical behaviors of biological systems. Our approach (termed AutoModel) also takes into account the context dependencies of biological interactions, which makes it a desirable method for synthetic biology research. A software implementation of our approach is available at .


Automatic modeling Designer sequences Rule-based modeling DNA RNA Species Pattern Wildcard Qualifier Reaction rule Kinetic law Mass action Hill kinetics 


  1. 1.
    Cai Y, Hartnett B, Gustafsson C et al (2007) A syntactic model to design and verify synthetic genetic constructs derived from standard biological parts. Bioinformatics 23:2760–2767PubMedCrossRefGoogle Scholar
  2. 2.
    Cai Y, Lux MW, Adam L et al (2009) Modeling Structure-Function Relationships in Synthetic DNA Sequences using Attribute Grammars. PLoS Comput Biol. doi:  10.1371/journal.pcbi.1000529
  3. 3.
    Chandran D, Bergmann FT, Sauro HM (2009) TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3:19PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Danos V, Laneve C (2004) Formal molecular biology. Theor Comput Sci 325:69–110CrossRefGoogle Scholar
  5. 5.
    Desmit MH, Vanduin J (1990) Secondary structure of the ribosome binding-site determines translational efficiency—a quantitative-analysis. Proc Natl Acad Sci USA 87:7668–7672CrossRefGoogle Scholar
  6. 6.
    Desmit MH, Vanduin J (1994) Control of translation of messenger-RNA secondary structure in Escherichia coli —a quantitative analysis of literature data. J Mol Biol 244:144–150 CrossRefGoogle Scholar
  7. 7.
    Faeder JR, Blinov ML, Hlavacek WS (2009) Rule-based modeling of biochemical systems with BioNetGen. Methods Mol Biol 500:113–167PubMedCrossRefGoogle Scholar
  8. 8.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli . Nature 403:339–342 PubMedCrossRefGoogle Scholar
  9. 9.
    Gebauer F, Hentze MW (2004) Molecular mechanisms of translational control. Nat Rev Mol Cell Biol 5:827–835PubMedCrossRefGoogle Scholar
  10. 10.
    Haynes KA, Broderick ML, Brown AD et al (2008) Engineering bacteria to solve the burnt pancake problem. J Biol Eng 2:8PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Hoops S, Sahle S, Gauges R et al (2006) COPASI—a COmplex PAthway SImulator. Bioinformatics 22:3067–3074PubMedCrossRefGoogle Scholar
  12. 12.
    Hucka M, Finney A, Sauro HM et al (2003) The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19:524–531PubMedCrossRefGoogle Scholar
  13. 13.
    Isaacs FJ, Dwyer DJ, Ding C et al (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22:841–847PubMedCrossRefGoogle Scholar
  14. 14.
    Klippel A, Mertens G, Patschinsky T et al (1988) The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J 7:1229–1237PubMedCentralPubMedGoogle Scholar
  15. 15.
    Kudla G, Murray AW, Tollervey D, Plotkin JB (2009) Coding-sequence determinants of gene expression in Escherichia coli . Science 324:255–258 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kutsukake K, Nakao T, Iino T et al (1985) A gene for DNA invertase and an invertible DNA in Escherichia coli K-12. Gene 34:343–350 PubMedCrossRefGoogle Scholar
  17. 17.
    Kutsukake K, Nakashima H, Tominaga A et al (2006) Two DNA invertases contribute to flagellar phase variation in Salmonella enterica serovar Typhimurium strain LT2. J Bacteriol 188:950–957 PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Lewis M (2005) The lac repressor. C R Biol 328:521–548PubMedCrossRefGoogle Scholar
  19. 19.
    Melke P, Sahlin P, Levchenko A et al (2010) A cell-based model for quorum sensing in heterogeneous bacterial colonies. PLoS Comput Biol. doi:  10.1371/journal.pcbi.1000819 PubMedCentralPubMedGoogle Scholar
  20. 20.
    Nojima T, Lin AC, Fujii T et al (2005) Determination of the termination efficiency of the transcription terminator using different fluorescent profiles in green fluorescent protein mutants. Anal Sci 21:1479–1481PubMedCrossRefGoogle Scholar
  21. 21.
    Oehler S, Eismann ER, Krämer H et al (1990) The three operators of the lac operon cooperate in repression. EMBO J 9:973–979PubMedCentralPubMedGoogle Scholar
  22. 22.
    Pedersen M, Phillips A (2009) Towards programming languages for genetic engineering of living cells. J R Soc Interface 6:S437–S450PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sauer B, Henderson N (1988) Site-specific DNA recombination in mammalian cells by the Cre recombinase of bacteriophage P1. Proc Natl Acad Sci USA 85:5166–5170PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of BioengineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.School of Biological SciencesUniversity of EdinburghEdinburghUK
  3. 3.Institute for Systems Biology and Synthetic BiologyUniversity of EdinburghEdinburghUK

Personalised recommendations