Are Chlorophyll-Carotenoid Interactions Responsible for Rapidly Reversible Non-Photochemical Fluorescence Quenching?

  • Herbert van AmerongenEmail author
Part of the Advances in Photosynthesis and Respiration book series (AIPH, volume 40)


Photoprotective thermal energy dissipation (as assessed via non-photochemical quenching of singlet-excited chlorophyll a, NPQ) in plants is driven by various mechanisms occurring over different time scales. The rapid and reversible part of NPQ, also called qE (for energy-dependent quenching), was demonstrated to correlate with the twisting of a neoxanthin molecule in the light-harvesting antenna as observed by resonance Raman spectroscopy (Nature 450: 575–578, 2007). Interestingly, the extent of fluorescence quenching correlates with the change in Raman signal in different situations: during NPQ in vivo, during fluorescence quenching upon aggregation of LHCII (the major light-harvesting complex in plants), and in crystals of LHCII. In the same study, it was proposed that the quenching is caused by excitation energy transfer from chlorophyll a to lutein in LHCII after a structural change that correlates with the twisting of the neoxanthin. However, this view has been challenged by others for different reasons. Here we discuss the arguments in favor and against this mechanism. A short overview is given of the spectroscopic data on chlorophyll-carotenoid interactions in plant light-harvesting systems, the changes in interactions upon aggregation or crystallization, and the possible relationship to the mechanism of NPQ.


Exciton State Excitation Energy Transfer Detergent Concentration Thermal Energy Dissipation Trimeric LHCII 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Band 4 complex;


Dimeric core of PS II;


Supercomplex of PS II consisting of a dimeric core surrounded by the outer light-harvesting complexes (LHCs): 4 major (LHCII) and 6 minor ones (two each of CP24, CP26 and CP29);





Chl 610

Chl A1;

Chl 612

Chl A2;

CP24, CP26, CP29

Minor light-harvesting complexes of photosystem II;




De-epoxidation state;


Excitation energy transfer;


Light-harvesting complex;


Light-harvesting complex II;


Moderately coupled LHCII trimer;


Strongly coupled LHCII trimer;


Lutein 1;




Non-photochemical quenching of chlorophyll fluorescence;


Photosystem I;


Photosystem II;


Energy-dependent quenching;


Reaction center;


Reactive oxygen species;







I would like to thank Dr. Roberta Croce for helpful discussions and for providing the figures. I am also obliged to Drs. B. Demmig-Adams, G. Garab, A.R. Holzwarth, and T. Polivka for helpful comments and suggestions. I would like to acknowledge support from the research programme of BioSolar Cells, cofinanced by the Dutch Ministry of Economic Affairs.


  1. Ahn TK, Avenson TJ, Ballottari M, Cheng YC, Niyogi KK, Bassi R, Fleming GR (2008) Architecture of a charge-transfer state regulating light harvesting in a plant antenna protein. Science 320:794–797PubMedCrossRefGoogle Scholar
  2. Avenson TJ, Ahn TK, Zigmantas D, Niyogi KK, Li Z, Ballottari M, Bassi R, Fleming GR (2008) Zeaxanthin radical cation formation in minor light-harvesting complexes of higher plant antenna. J Biol Chem 283:3550–3558PubMedCrossRefGoogle Scholar
  3. Avenson TJ, Ahn TK, Niyogi KK, Ballottari M, Bassi R, Fleming GR (2009) Lutein can act as a switchable charge transfer quencher in the CP26 light-harvesting complex. J Biol Chem 284:2830–2835PubMedCrossRefGoogle Scholar
  4. Barros T, Royant A, Standfuss J, Dreuw A, Kuhlbrandt W (2009) Crystal structure of plant light-harvesting complex shows the active, energy-transmitting state. EMBO J 28:298–306PubMedCentralPubMedCrossRefGoogle Scholar
  5. Barzda V, Peterman EJG, van Grondelle R, van Amerongen H (1998) The influence of aggregation on triplet formation in light-harvesting chlorophyll a/b pigment-protein complex II of green plants. Biochemistry 37:546–551PubMedCrossRefGoogle Scholar
  6. Betterle N, Ballottari M, Zorzan S, de Bianchi S, Cazzaniga S, Dall’Osto L, Morosinotto T, Bassi R (2009) Light-induced dissociation of an antenna hetero-oligomer is needed for non-photochemical quenching induction. J Biol Chem 284:15255–15266PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bode S, Quentmeier CC, Liao PN, Haf N, Barros T, Wilk L, Bittner F, Walla PJ (2009) On the regulation of photosynthesis by excitonic interactions between carotenoids and chlorophylls. Proc Natl Acad Sci USA 106:12311–12316PubMedCentralPubMedCrossRefGoogle Scholar
  8. Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063PubMedCentralPubMedCrossRefGoogle Scholar
  9. Caffarri S, Broess K, Croce R, van Amerongen H (2011) Excitation energy transfer and trapping in higher plant photosystem II complexes with different antenna sizes. Biophys J 100:2094–2103PubMedCentralPubMedCrossRefGoogle Scholar
  10. Croce R, Muller MG, Bassi R, Holzwarth AR (2001) Carotenoid-to-chlorophyll energy transfer in recombinant major light-harvesting complex (LHCII) of higher plants. I. Femtosecond transient absorption measurements. Biophys J 80:901–915PubMedCentralPubMedCrossRefGoogle Scholar
  11. Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39PubMedCrossRefGoogle Scholar
  12. Demmig B, Winter K, Kruger A, Czygan FC (1987) Photoinhibition and zeaxanthin formation in intact leaves – a possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84:218–224PubMedCentralPubMedCrossRefGoogle Scholar
  13. Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24CrossRefGoogle Scholar
  14. Duffy CDP, Chmeliov J, Macernis M, Sulskus J, Valkunas L, Ruban AV (2013) Modeling of fluorescence quenching by lutein in the plant light-harvesting complex LHCII. J Phys Chem B. doi: 10.1021/jp3110997I Google Scholar
  15. Frank HA, Bautista JA, Josue JS, Young AJ (2000) Mechanism of nonphotochemical quenching in green plants: energies of the lowest excited singlet states of violaxanthin and zeaxanthin. Biochemistry 39:2831–2837PubMedCrossRefGoogle Scholar
  16. Gradinaru CC, van Stokkum IHM, Pascal AA, van Grondelle R, van Amerongen H (2000) Identifying the pathways of energy transfer between carotenoids and chlorophylls in LHCII and CP29. A multicolor, femtosecond pump-probe study. J Phys Chem B 104:9330–9342CrossRefGoogle Scholar
  17. Gradinaru CC, van Grondelle R, van Amerongen H (2003) Selective interaction between xanthophylls and chlorophylls in LHCII probed by femtosecond transient absorption spectroscopy. J Phys Chem B 107:3938–3943CrossRefGoogle Scholar
  18. Gruszecki WI, Zubik M, Luchowski R, Janik E, Grudzinksi W, Gospodarek M, Goc J, Fiedor L, Gryczynski Z, Gryczynski I (2010) Photoprotective role of the xanthophyll cycle studied by means of modeling of xanthophyll-LHCII interactions. Chem Phys 373:122–128CrossRefGoogle Scholar
  19. Haferkamp S, Haase W, Pascal AA, van Amerongen H, Kirchhoff H (2010) Efficient light harvesting by photosystem II requires an optimized protein packing density in grana thylakoids. J Biol Chem 285:17020–17028PubMedCentralPubMedCrossRefGoogle Scholar
  20. Holt NE, Zigmantas D, Valkunas L, Li XP, Niyogi KK, Fleming GR (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307:433–436PubMedCrossRefGoogle Scholar
  21. Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267CrossRefGoogle Scholar
  22. Horton P, Wentworth M, Ruban A (2005) Control of the light harvesting function of chloroplast membranes: the LHCII-aggregation model for non-photochemical quenching. FEBS Lett 579:4201–4206PubMedCrossRefGoogle Scholar
  23. Ilioaia C, Johnson MP, Horton P, Ruban AV (2008) Induction of efficient energy dissipation in the isolated light-harvesting complex of photosystem II in the absence of protein aggregation. J Biol Chem 283:29505–29512PubMedCentralPubMedCrossRefGoogle Scholar
  24. Ilioaia C, Johnson MP, Liao PN, Pascal AA, van Grondelle R, Walla PJ, Ruban AV, Robert B (2011) Photoprotection in plants involves a change in lutein 1 binding domain in the major light-harvesting complex of photosystem II. J Biol Chem 286:27247–27254PubMedCentralPubMedCrossRefGoogle Scholar
  25. Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193PubMedCrossRefGoogle Scholar
  26. Kruger TPJ, Wientjes E, Croce R, van Grondelle R (2011) Conformational switching explains the intrinsic multifunctionality of plant light-harvesting complexes. Proc Natl Acad Sci USA 108:13516–13521PubMedCentralPubMedCrossRefGoogle Scholar
  27. Lambrev PH, Nilkens M, Miloslavina Y, Jahns P, Holzwarth AR (2010) Kinetic and spectral resolution of multiple nonphotochemical quenching components in Arabidopsis leaves. Plant Physiol 152:1611–1624PubMedCentralPubMedCrossRefGoogle Scholar
  28. Lampoura SS, Barzda V, Owen GM, Hoff AJ, van Amerongen H (2002) Aggregation of LHCII leads to a redistribution of the triplets over the central xanthophylls in LHCII. Biochemistry 41:9139–9144PubMedCrossRefGoogle Scholar
  29. Liao PN, Bode S, Wilk L, Hafi N, Walla PJ (2010a) Correlation of electronic carotenoid-chlorophyll interactions and fluorescence quenching with the aggregation of native LHC II and chlorophyll deficient mutants. Chem Phys 373:50–55CrossRefGoogle Scholar
  30. Liao PN, Holleboom CP, Wilk L, Kuhlbrandt W, Walla PJ (2010b) Correlation of car S-1 - > Chl with Chl - > Car S-1 energy transfer supports the excitonic model in quenched light harvesting complex II. J Phys Chem B 114:15650–15655PubMedCrossRefGoogle Scholar
  31. Liu ZF, Yan HC, Wang KB, Kuang TY, Zhang JP, Gui LL, An XM, Chang WR (2004) Crystal structure of spinach major light-harvesting complex at 2.72 angstrom resolution. Nature 428:287–292PubMedCrossRefGoogle Scholar
  32. Macernis M, Sulskus J, Duffy CDP, Ruban AV, Valkunas L (2012) Electronic spectra of structurally deformed lutein. J Phys Chem A 116:9843–9853PubMedCrossRefGoogle Scholar
  33. Miloslavina Y, Wehner A, Lambrev PH, Wientjes E, Reus M, Garab G, Croce R, Holzwarth AR (2008) Far-red fluorescence: a direct spectroscopic marker for LHCII oligomer formation in non-photochemical quenching. FEBS Lett 582:3625–3631PubMedCrossRefGoogle Scholar
  34. Mozzo M, Passarini F, Bassi R, van Amerongen H, Croce R (2008) Photoprotection in higher plants: the putative quenching site is conserved in all outer light-harvesting complexes of photosystem II. Biochim Biophys Acta 1777:1263–1267PubMedCrossRefGoogle Scholar
  35. Muller MG, Lambrev P, Reus M, Wientjes E, Croce R, Holzwarth AR (2010) Singlet energy dissipation in the photosystem II light-harvesting complex does not involve energy transfer to carotenoids. Chem Phys Chem 11:1289–1296PubMedGoogle Scholar
  36. Naqvi KR, Melo TB, Raju BB, Javorfi T, Simidjiev I, Garab G (1997) Quenching of chlorophyll a singlets and triplets by carotenoids in light-harvesting complex of photosystem II: comparison of aggregates with trimers. Spectrochim Acta Part A 53:2659–2667CrossRefGoogle Scholar
  37. Naqvi KR, Javorfi T, Melo TB, Garab G (1999) More on the catalysis of internal conversion in chlorophyll a by an adjacent carotenoid in light-harvesting complex (Ch1a/b LHCII) of higher plants: time-resolved triplet-minus-singlet spectra of detergent-perturbed complexes. Spectrochim Acta Part A 55:193–204CrossRefGoogle Scholar
  38. Owens T (1994) Excitation energy transfer between chlorophylls and carotenoids. A proposed molecular mechanism for non-photochemical quenching. In: Baker RRB, Bowyer JR (eds) Photoinhibition in Photosynthesis: From Molecular Mehanisms to the Field. Bios Scientific Publishers, London, pp 95–107Google Scholar
  39. Palacios MA, Frese RN, Gradinaru CC, van Stokkum IHM, Premvardhan LL, Horton P (2003) Stark spectroscopy of the light-harvesting complex II in different oligomerisation states. Biochim Biophys Acta 1605:83–95PubMedCrossRefGoogle Scholar
  40. Pascal AA, Liu Z, Broess K, Van Oort B, van Amerongen H, Wang C, Horton P, Robert B, Chang W, Ruban A (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137PubMedCrossRefGoogle Scholar
  41. Peterman EJG, Dukker FM, van Grondelle R, van Amerongen H (1995) Chlorophyll a and carotenoid triplet states in light-harvesting complex II of higher plants. Biophys J 69:2670–2678PubMedCentralPubMedCrossRefGoogle Scholar
  42. Peterman EJG, Monshouwer R, van Stokkum IHM, van Grondelle R, van Amerongen H (1997) Ultrafast singlet excitation transfer from carotenoids to chlorophylls via different pathways in light-harvesting complex II of higher plants. Chem Phys Lett 264:279–284CrossRefGoogle Scholar
  43. Pieper J, Irrgang KD, Ratsep M, Schrotter T, Voigt J, Small GJ, Renger G (1999) Effects of aggregation on trimeric light-harvesting complex II of green plants: a hole-burning study. J Phys Chem A 103:2422–2428CrossRefGoogle Scholar
  44. Ruban AV, Berera R, Ilioaia C, van Stokkum IHM, Kennis JTM, Pascal AA, van Amerongen H, Robert B, Horton P, van Grondelle R (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–578PubMedCrossRefGoogle Scholar
  45. Standfuss J, Terwisscha van Scheltinga AC, Lamborghini M, Kuhlbrandt W (2005) Mechanisms of photoprotection and nonphotochemical quenching in pea light-harvesting complex at 2.5 A resolution. EMBO J 24:919–928PubMedCentralPubMedCrossRefGoogle Scholar
  46. Tikkanen M, Grieco M, Aro E-M (2011) Novel insights into plant light-harvesting complex II phosphorylation and ‘state transitions’. Trends Plant Sci 16:126–131PubMedCrossRefGoogle Scholar
  47. van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105:604–617CrossRefGoogle Scholar
  48. Van der Vos R, Carbonera D, Hoff AJ (1991) Microwave and optical spectroscopy of carotenoid triplets in light-harvesting complex LHC II of spinach by absorbance-detected magnetic resonance. Appl Magn Res 2:179–202CrossRefGoogle Scholar
  49. Van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007a) Aggregation of light-harvesting complex II leads to formation of efficient excitation energy traps in monomeric and trimeric complexes. FEBS Lett 581:3528–3532PubMedCrossRefGoogle Scholar
  50. Van Oort B, van Hoek A, Ruban AV, van Amerongen H (2007b) Equilibrium between quenched and nonquenched conformations of the major plant light-harvesting complex studied with high-pressure time-resolved fluorescence. J Phys Chem B 111:7631–7637PubMedCrossRefGoogle Scholar
  51. Van Oort B, Marechal A, Ruban AV, Robert B, Pascal AA, de Ruijter NCA, van Grondelle R, van Amerongen H (2011) Different crystal morphologies lead to slightly different conformations of light-harvesting complex II as monitored by variations of the intrinsic fluorescence lifetime. Phys Chem Chem Phys 13:12614–12622PubMedCrossRefGoogle Scholar
  52. Wahadoszamen M, Berera R, Ara AM, Romero E, van Grondelle R (2012) Identification of two emitting sites in the dissipative state of the major light harvesting antenna. Phys Chem Chem Phys 14:759–766PubMedCrossRefGoogle Scholar
  53. Wientjes E, Roest G, Croce R (2012) From red to blue to far-red in Lhca4: how does the protein modulate the spectral properties of the pigments? Biochim Biophys Acta 1817:711–717PubMedCrossRefGoogle Scholar
  54. Wientjes E, Van Amerongen H, Croce R (2013) LHCII is an antenna of both photosystems after long-term acclimation. Biochim Biophys Acta 1827:420–426PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Laboratory of BiophysicsWageningen UniversityWageningenThe Netherlands

Personalised recommendations