Plant Disease Diagnostics for Forensic Applications

  • Jacqueline FletcherEmail author
  • Francisco M. Ochoa Corona
  • Mark Payton
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 5)


Although most plant diseases are the result of natural or unintentional causes, cropping systems and essential natural plant resources such as forests and grasslands also are considered vulnerable to actions of nefarious intent. Microbial forensics is defined as the application of scientific approaches to solving a crime that involves a microorganism; its goal is to investigate and present unbiased scientific evidence useful for attributing the crime to a perpetrator. Recent programs intended to enhance general capabilities in microbial forensics have included specific attention to plant pathogens. Compared to the strategies employed by traditional plant disease diagnosticians, forensic applications of plant pathogen diagnostics require unusually high levels of stringency, reliability, and prior validation. These assays must be paired with court-defensible sampling methods, chain of custody, and other traditional and non-traditional methods of forensic investigation.


Forensic science Microbial forensics Plant pathogen forensics Biosecurity Disease diagnosis Sampling Chain of custody Pathogen detection Pathogen discrimination Validation Sensitivity Specificity Reproducibility Exclusivity Inclusivity 


  1. Arif M, Ochoa-Corona FM, Opit GP, Li Z-H, Kucerová Z, Stejskal V, Yang Q-Q (2012) PCR and isothermal-based molecular identification of the stored-product psocid pest Lepinotus reticulatus (Psocoptera: Trogiidae). J Stored Prod Res 49:184–188CrossRefGoogle Scholar
  2. Arif M, Fletcher J, Marek SM, Melcher U, Ochoa-Corona FM (2013) Development of a rapid, sensitive and field deployable Razor Ex BioDetection system and qPCR assay for detection of Phymatotrichopsis omnivora using multiple gene targets. Appl Environ Microbiol 79:2312–20. doi: 10.1128/AEM.03239-12 PubMedCrossRefPubMedCentralGoogle Scholar
  3. Boureau T, Kerkoud M, Chhel F, Hunault G, Darrasse A, Brin C, Durand K, Hajri A, Poussier S, Manceau C, Lardeux F, Saubion F, Jacques M-A (2013) A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli. J Microbiol Meth 92:42–50CrossRefGoogle Scholar
  4. Budowle B (2003) Defining a new forensic discipline: microbial forensics. Profiles in DNA 6:7–10. [Online].
  5. Budowle B, Schutzer SE, Einseln A, Kelley LC, Walsh AC, Smith JA, Marrone BL, Robertson J, Campos J (2003) Public health. Building microbial forensics as a response to bioterrorism. Science 301:1852–1853PubMedCrossRefGoogle Scholar
  6. Budowle B, Burans J, Breeze RG, Wilson MR, Chakraborty R (2005a) Microbial forensics. In: Breeze RG, Budowle B, Schutzer SE (eds) Microbial forensics. Elsevier Academic Press, San Diego, pp 1–26CrossRefGoogle Scholar
  7. Budowle B, Johnson MD, Fraser CM, Leighton TJ, Murch RS, Chakraborty R (2005b) Genetic analysis and attribution of microbial forensics evidence. Crit Rev Microbiol 31:233–254PubMedCrossRefGoogle Scholar
  8. Budowle B, Murch RS, Chakraborty R (2005c) Microbial forensics: the next forensic challenge. Int J Leg Med 119:317–330CrossRefGoogle Scholar
  9. Budowle B, Schutzer SE, Ascher MS, Atlas RM, Burans JP, Chakraborty R, Dunn JJ, Fraser CM, Franz DR, Leighton TJ, Morse SA, Murch RS, Ravel J, Rock DL, Slezak TR, Velsko SP, Walsh AC, Walters RA (2005d) Toward a system of microbial forensics: from sample collection to interpretation of evidence. Appl Env Microbiol 71:2209–2213CrossRefGoogle Scholar
  10. Caasi DRJ, Arif M, Payton M, Melcher U, Winder L, Ochoa-Corona FM (2013) A multi-target, non-infectious and clonable artificial positive control for routine PCR-based assays. J Microb Meth 95:229–234CrossRefGoogle Scholar
  11. Casagrande R (2000) Biological terrorism targeted at agriculture: the threat to U.S. national security. Nonprolif Rev./Fall-Winter: p 92–105. [Online].
  12. Center for Infectious Disease Research and Policy (2003) Overview of agricultural biosecurity. University of Minnesota. [Online]. Accessed 30 May 2003
  13. Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Oplatowska M, Gajanandana O, Grant IR, Karoonuthaisiri N, Elliott CT (2013) Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS ONE 8(4):e62344. doi: 10.1371/journal.pone.0062344 PubMedCrossRefPubMedCentralGoogle Scholar
  14. Fletcher J, Bender CL, Budowle B, Cobb WT, Gold SE, Ishimaru CA, Luster DG, Melcher UK, Murch RL, Scherm H, Seem RC, Sherwood JL, Sobral B, Tolin SA (2006) Plant pathogen forensics: capabilities, needs and recommendations. Microbiol Mol Biol Rev 70:450–471. doi: 10.1128/MMBR.00022-05 PubMedCrossRefPubMedCentralGoogle Scholar
  15. Fletcher J, Barnaby NG, Burans JP, Melcher U, Nutter FW Jr, Thomas C, Ochoa Corona FM (2010) Forensic plant pathology. In: Budowle B, Schutzer SE, Breeze RG, Keim PS, Morse SA (eds) Microbial forensics, 2nd edn. Academic Press-Elsevier, Burlington, VT, pp 89–105Google Scholar
  16. Hopkins KL, Maguire C, Best E, Liebana E, Threlfall EJ (2007) Stability of multiple-locus variable number tandem repeats in Salmonella enterica serovar Typhimurium. J Clin Microbiol 45:3058–3061PubMedCrossRefPubMedCentralGoogle Scholar
  17. James M, Blagden T, Moncrief I, Burans J, Schneider K, Fletcher J (2013) Validation of real-time PCR assays for bioforensic detection of model plant pathogens. Biosecur Bioterr (Accepted; in press)Google Scholar
  18. Lebas BSM, Ochoa-Corona FM, Elliott DR, Double B, Smales T, Wilson JA (2006) Control and monitoring: quarantine situation of Plum pox virus in New Zealand. OEPP/EPPO Bull 36:296–301CrossRefGoogle Scholar
  19. Lebas BSM, Ochoa-Corona FM (2007) Impatiens necrotic spot virus. In: Rao GP, Bragard C, Lebas BSM (eds) Characterization, diagnosis & management of plant viruses, vol 4, Grain crops & ornamentals. Studium Press LLC, Houston, pp 221–243Google Scholar
  20. Lebas BSM, Ochoa-Corona FM, Elliott DR, Tang J, Blouin AG, Timudo OE, Ganev S, Alexander BJR (2009) Investigation of an outbreak of Soil-borne wheat mosaic virus in New Zealand. Austral Plant Pathol 38:85–89CrossRefGoogle Scholar
  21. Lindstedt B (2005) Multiple-locus variable number tandem repeats analysis for genetic fingerprinting of pathogenic bacteria. Electrophoresis 26:2567–2582PubMedCrossRefGoogle Scholar
  22. Madden L, Wheelis M (2003) The threat of plant pathogens as weapons against U.S. crops. Annu Rev Phytopathol 41:155–176PubMedCrossRefGoogle Scholar
  23. Manly BFJ (2007) Randomization, bootstrap and Monte Carlo methods in biology. Chapman & Hall, Boca RatonGoogle Scholar
  24. Ochoa-Corona FM (2011) Biosecurity, microbial forensics and plant pathology: education challenges, overlapping disciplines and research needs. Austral Plant Pathol 40:335–338CrossRefGoogle Scholar
  25. Ochoa-Corona FM, Tang JZ, Lebas BSM, Rubio L, Gera A, Alexander BJR (2010) Diagnosis of Broad bean wilt virus 1 and Verbena latent virus in Tropaeolum majus in New Zealand. 2010. Austral Plant Pathol 39:120–124CrossRefGoogle Scholar
  26. Ouyang P, Arif M, Fletcher J, Melcher U, Ochoa-Corona FM (2013) Enhanced reliability and accuracy for field deployable bioforensic detection and discrimination of Xylella fastidiosa subsp. pauca, causal agent of citrus variegated chlorosis using Razor Ex technology and TaqMan quantitative PCR. PLoS One (Accepted; in press)Google Scholar
  27. Rogers SM (2011) A decision tool and molecular typing technique for plant pathogen forensic application, using Wheat streak mosaic virus as a model pathogen. PhD thesis, Oklahoma State UniversityGoogle Scholar
  28. Stobbe T, Daniels J, Espindola A, Melcher U, Ochoa Corona F, Garzon C, Verma R, Fletcher J, Schneider W (2013) Electronic diagnostic nucleic acid analysis (EDNA): a theoretical approach for improved handling of massively parallel sequencing data for diagnostics. J Microbiol Methods
  29. United Nations’ Food and Agriculture Organization (2002) Biosecurity in food and agriculture: scope and relevance. Report of the Expert Consultation on biosecurity in food and agriculture (TC/BRM 03/2), Rome, ItalyGoogle Scholar
  30. United States Department of Justice (2010) Amerithrax investigative summary. Department of Justice Website, 96 ppGoogle Scholar
  31. van Belkum A, Tassios PT, Dijkshoorn L, Haeggman S, Cookson B, Fry NK, Fussing V, Green J, Feil E, Gerner-Smidt P (2007) Guidelines for the validation and application of typing methods for use in bacterial epidemiology. Clin Microbiol Infec 13:1–46CrossRefGoogle Scholar
  32. Wheelis M, Casagrande R, Madden LV (2002) Biological attack on agriculture: low-tech, high impact bioterrorism. Bioscience 52:569–576CrossRefGoogle Scholar
  33. Whitby SM (2001) The potential use of plant pathogens against crops. Microbes Infect 3:73–80PubMedCrossRefGoogle Scholar
  34. Whitby SM (2002) Biological warfare against crops. Palgrave, BasingstokeGoogle Scholar
  35. Winder L, Phillips C, Richards N, Ochoa-Corona FM, Hardwick S, Vink C, Goldson S (2011) Evaluation of DNA melting analysis as a tool for species identification. Meth Ecol Evol 2:229–332CrossRefGoogle Scholar
  36. Wong R, Tse H (2009) Lateral flow immunoassays. Humana Press/Springer, New York, 223 ppCrossRefGoogle Scholar
  37. Zhao A, Poulin L, Rodriguez-R LM, Serna NF, Liu S, Wonni I, Szurek B, Verdier V, Leach JE, He Y, Feng J, Koebnik R (2012) Development of variable number of tandem repeats typing scheme for the bacterial rice pathogen Xanthomonas oryzae pv. oryzicola. Phytopathology 102:948–956PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jacqueline Fletcher
    • 1
    Email author
  • Francisco M. Ochoa Corona
    • 1
  • Mark Payton
    • 2
  1. 1.Department of Entomology & Plant Pathology and National Institute for Microbial Forensics & Food and Agricultural BiosecurityStillwaterUSA
  2. 2.Department of StatisticsOklahoma State UniversityStillwaterUSA

Personalised recommendations