Advertisement

Diagnostic Challenges for the Detection of Emerging Pathogens: A Case Study Involving the Incursion of Pseudomonas syringae pv. actinidiae in New Zealand

  • Robert K. Taylor
  • Joanne R. Chapman
  • Megan K. Romberg
  • Bevan S. Weir
  • Joel L. Vanneste
  • Kerry R. Everett
  • Lisa I. Ward
  • Lia W. Liefting
  • Benedicte S. M. Lebas
  • Brett J. R. Alexander
Chapter
Part of the Plant Pathology in the 21st Century book series (ICPP, volume 5)

Abstract

In November 2010, Pseudomonas syringae pv. actinidiae (Psa) was detected for the first time in New Zealand. This finding triggered one of the largest surveillance and diagnostic programmes seen in New Zealand’s horticultural industry. During this response, over 912 kiwifruit orchards and 14,500 samples were screened and tested for the presence of Psa. The initial objectives of the response were to confirm the causal agent, determine disease prevalence and identify possible mechanisms of spread with the aim of identifying management options to contain the outbreak. Molecular diagnoses and characterisation of the Psa strains isolated during the response was conducted using a range of techniques that included qPCR, rep-PCR fingerprinting, multilocus sequence analysis, and next generation sequencing. The usefulness and challenges of using the molecular techniques available at the time for Psa detection and characterisation during the response are discussed.

Keywords

Pseudomonas syringae pv. actinidiae Actinidia spp. Diagnostics Emerging pathogens Response Surveillance New Zealand 

Notes

Acknowledgement

The diagnostic development and activities undertaken during this response involved a large number of people. The authors would like to recognise the efforts of all the scientists and technical staff at PHEL, Plant and Food Research, Landcare, colleagues in MPI, Zespri, KVH, AsureQuality and kiwifruit industry staff who were involved in the initial response.

References

  1. Balestra GM, Varvaro L (1997) Pseudomonas syringae pv. syringae causal agent of disease on floral buds of Actinidia deliciosa (A. Chev) Liang et Ferguson in Italy. J Phytopathol 145:375–378CrossRefGoogle Scholar
  2. Balestra GM, Mazzaglia A, Quattrucci A, Renzi M, Rossetti A (2009) Current status of bacterial canker spread on kiwifruit in Italy. Australas Plant Dis Notes 4:34–36Google Scholar
  3. Balestra GM, Taratufolo MC, Vinatzer BA, Mazzaglia A (2013) A multiplex PCR assay for detection of Pseudomonas syringae pv. actinidiae and differentiation of populations with different geographic origin. Plant Dis 97(4):472–478CrossRefGoogle Scholar
  4. Butler MI, Stockwell PA, Black MA, Day RC, Lamont IL, Poulter RT (2013) Pseudomonas syringae pv. actinidiae from recent outbreaks of kiwifruit bacterial canker belong to different clones that originated in China. PLoS One 8(2):e57464PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chapman J, Taylor RK, Weir BS, Romberg MK, Vanneste JL, Alexander BJR (2012) Phylogenetic relationships of global Pseudomonas syringae pv. actinidiae populations isolated from green (Actinidia deliciosa) and gold (A. chinensis) kiwifruit vines. Phytopathology 102:1034–1044PubMedCrossRefGoogle Scholar
  6. Everett KR, Henshall WR (1994) Epidemiology and population ecology of kiwifruit blossom blight. Plant Pathol 43:824–830CrossRefGoogle Scholar
  7. Everett KR, Rees-George JRG, Taylor RK, Romberg MR, Vanneste JL, Manning MA, Fullerton R (2011) First report of Pseudomonas syringae pv. actinidiae causing kiwifruit bacterial canker in New Zealand. Australas Plant Dis Notes 6: 67–71Google Scholar
  8. Ferrante P, Scortichini M (2009) Identification of Pseudomonas syringae pv. actinidiae as causal agent of bacterial canker of yellow kiwifruit (Actinidia chinensis Planchon) in central Italy. J Phytopathol 157:768–770CrossRefGoogle Scholar
  9. Ferrante P, Scortichini M (2010) Molecular and phenotypic features of Pseudomonas syringae pv. actinidiae isolated during recent epidemics of bacterial canker on yellow kiwifruit (Actinidia chinensis) in central Italy. Plant Pathol 59:954–962CrossRefGoogle Scholar
  10. Gallelli A, Talocci S, Pilotti M, Loreti S (2014) Real‐time and qualitative PCR for detecting Pseudomonas syringae pv. actinidiae isolates causing recent outbreaks of kiwifruit bacterial canker. Plant Pathol 63(2):264–276CrossRefGoogle Scholar
  11. Gardan L, Shafik H, Belouin S, Broch R, Grimont F, Grimont PAD (1999) DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudomonas cannabina sp. nov.(ex Sutic and Dowson 1959). Int J Syst Bacteriol 49:469–478PubMedCrossRefGoogle Scholar
  12. Greer G, Saunders C (2012) The costs of Psa-V to the New Zealand kiwifruit industry and the wider community. Agribusiness and Economics Research Unit Report, Lincoln University, p 62Google Scholar
  13. Koh Y, Lee D (1992) Canker of kiwifruit by Pseudomonas syringae pv. morsprunorum. Korean J Plant Pathol 8:119–122Google Scholar
  14. Koh YJ, Nou IS (2002) DNA markers for identification of Pseudomonas syringae pv. actinidiae. Mol Cells 13:309–314PubMedGoogle Scholar
  15. Lelliott RA, Billing E, Hayward AC (1966) A determinative scheme for the fluorescent plant pathogenic pseudomonads. J Appl Bacteriol 29(3):470–489PubMedCrossRefGoogle Scholar
  16. Liang Y, Zhang X, Tian C, Gao A, Wang P (2000) Pathogenic identification of kiwifruit bacterial canker in Shaanxi. J Northwest For Coll 15(1):37–39Google Scholar
  17. Mazzaglia A, Studholme DJ, Taratufolo MC, Cai R, Almeida NF, Goodman T, Balestra GM (2012) Pseudomonas syringae pv. actinidiae isolates from recent bacterial canker of kiwifruit outbreaks belong to the same genetic lineage. PLoS One 7(5):e36518PubMedCrossRefPubMedCentralGoogle Scholar
  18. McCann HC, Rikkerink EH, Bertels F, Fiers M, Lu A, Rees-George J, Andersen MT, Gleave AP, Haubold B, Wohlers MW, Guttman DS, Wang PW, Straub C, Vanneste J, Rainey PB, Templeton MD (2013) Genomic analysis of the kiwifruit pathogen Pseudomonas syringae pv. actinidiae provides insight into the origins of an emergent plant disease. PLoS Pathog 9(7):e1003503PubMedCrossRefPubMedCentralGoogle Scholar
  19. Ministry for Primary Industries Report (2011) Detection of Pseudomonas syringae pv. actinidiae from leaves and pollen collected from symptomatic and asymptomatic Actinidia chinensis in Te Puke, Bay of Plenty. http://www.kvh.org.nz/vdb/document/91512
  20. Park D, Than D, Everett KR, Rees-George J, Romberg MK, Alexander BJR (2011) Screening of historical isolates stored in New Zealand culture collections for Pseudomonas syringae pv. actinidiae. New Zeal Plant Prot 64:292Google Scholar
  21. Rees-George J, Vanneste JL, Cornish DA, Pushparajah IPS, Yu J, Templeton MD, Everett KR (2010) Detection of Pseudomonas syringae pv. actinidiae using polymerase chain reaction (PCR) primers based on the 16S–23S rDNA intertranscribed spacer region and comparison with PCR primers based on other gene regions. Plant Pathol 59:453–464CrossRefGoogle Scholar
  22. Richardson E, McFadden A, Rawdon T (2012) Initial outbreak investigations of Pseudomonas syringae pv. actinidiae in kiwifruit in New Zealand. Surveillance 39:36–42Google Scholar
  23. Rikkerink E, Andersen MT, Rees-George J, Cui W, Vanneste J, Templeton MD (2011) Development of a rapid tool for the molecular characterisation of Psa haplotypes. Plant and food research report to Zespri Group Limited Ref. VI1256. SPTS no. 6361Google Scholar
  24. Sarkar SF, Guttman DS (2004) Evolution of the core genome of Pseudomonas syringae, a highly clonal, endemic plant pathogen. Appl Environ Microbiol 70:1999–2012PubMedCrossRefPubMedCentralGoogle Scholar
  25. Sawada H, Takeuchi T, Matsuda I (1997) Comparative analysis of Pseudomonas syringae pv. actinidiae and pv. phaseolicola based on phaseolotoxin-resistant ornithine carbamoyltransferase gene (argK) and 16S-23S rRNA intergenic spacer sequences. Appl Environ Microbiol 63:282–288PubMedPubMedCentralGoogle Scholar
  26. Scortichini M (1994) Occurrence of Pseudomonas syringae pv. actinidiae on kiwifruit in Italy. Plant Pathol 43:1035–1038CrossRefGoogle Scholar
  27. Scortichini M, Marchesi U, Di Prospero P (2002) Genetic relatedness among Pseudomonas avellanae, P. syringae pv. theae and Ps pv. actinidiae, and their identification. Eur J Plant Pathol 108:269–278CrossRefGoogle Scholar
  28. Takikawa Y, Serizawa S, Ichikawa T, Tsuyumu S, Goto M (1989) Pseudomonas syringae pv. actinidiae pv. nov.: the causal bacterium of canker of kiwifruit in Japan. Ann Phytopathol Soc Jpn 55:437–444CrossRefGoogle Scholar
  29. Vanneste JL (2013) Recent progress on detecting, understanding and controlling Pseudomonas syringae pv. actinidiae: a short review. New Zeal Plant Prot 66:170–177Google Scholar
  30. Vanneste JL, Yu J, Cornish DA (2010) Molecular characterisations of Pseudomonas syringae pv. actinidiae strains isolated from the recent outbreak of bacterial canker on kiwifruit in Italy. New Zeal Plant Prot 63:7–14Google Scholar
  31. Vanneste JL, Giovanardi D, Yu J, Cornish DA, Kay C, Spinelli F, Stefani E (2011a) Detection of Pseudomonas syringae pv. actinidiae in kiwifruit pollen samples. New Zeal Plant Prot 64:241–245Google Scholar
  32. Vanneste JL, Kay C, Onorato R, Yu J, Cornish DA, Spinelli F, Max S (2011b) Recent advances in the characterisation and control of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker on kiwifruit. Acta Hortic 913:443–455Google Scholar
  33. Vanneste JL, Yu J, Cornish DA, Max S, Clark G (2011c) Presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker of kiwifruit, on symptomatic and asymptomatic tissues of kiwifruit. New Zeal Plant Prot 64:241–245Google Scholar
  34. Vanneste JL, Yu J, Cornish DA, Tanner DJ, Windner R, Chapman JR, Taylor RK, Mackay JF, Dowlut S (2013) Identification, virulence, and distribution of two biovars of Pseudomonas syringae pv. actinidiae in New Zealand. Plant Dis 97:708–719CrossRefGoogle Scholar
  35. Young JM, Gardan L, Ren XZ, Hu FP (1997) Genomic and phenotypic characterization of the bacterium causing blight of kiwifruit in New Zealand. Plant Pathol 46:857–864CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Robert K. Taylor
    • 1
  • Joanne R. Chapman
    • 2
    • 3
  • Megan K. Romberg
    • 2
    • 4
  • Bevan S. Weir
    • 5
  • Joel L. Vanneste
    • 6
  • Kerry R. Everett
    • 7
  • Lisa I. Ward
    • 1
  • Lia W. Liefting
    • 1
  • Benedicte S. M. Lebas
    • 1
  • Brett J. R. Alexander
    • 1
  1. 1.Plant Health and Environment LaboratoryMinistry for Primary IndustriesAucklandNew Zealand
  2. 2.Previously Plant Health and Environment LaboratoryMinistry for Primary IndustriesAucklandNew Zealand
  3. 3.Section for Zoonotic Ecology and EpidemiologyLinnaeus UniversityKalmarSweden
  4. 4.USDA-APHISBeltsvilleUSA
  5. 5.Landcare ResearchAucklandNew Zealand
  6. 6.The New Zealand Institute for Plant and Food Research Ltd.HamiltonNew Zealand
  7. 7.The New Zealand Institute for Plant and Food Research Ltd.AucklandNew Zealand

Personalised recommendations