Advertisement

Introduction

  • Peter KnippertzEmail author
  • Jan-Berend W. Stuut
Chapter

Abstract

Mineral dust is a key player in the Earth system with important impacts on the global energy and carbon cycles, acting on timescales of minutes to millennia. Megatons of dust are lifted each year into the atmosphere by strong near-surface winds over the world’s arid regions. Such winds can be generated by short-lived small-scale dust devils, cold outflow from thunderstorms up to continental-scale dust storms. The tiny dust particles can be lifted to great heights and transported thousands of kilometres across the globe. Once airborne, dust affects radiation and clouds and thereby also precipitation. Dust also alters chemical processes in the atmosphere and deteriorates air quality and visibility for aviation. Dust is removed from the atmosphere by gravitational settling, turbulence or precipitation. Deposition on plants, snow and ice changes the amount of reflected solar radiation. Iron and other nutrients contained in dust fertilise both terrestrial and marine ecosystems. Dust deposits in glaciers, soils and ocean or lake sediments constitute an important archive of past environmental changes. For the first time, this book gives a detailed account of the state of the art in the fascinating, highly interdisciplinary and dynamically evolving area of dust research including results from field campaigns, laboratory, aircraft, satellite, modelling and theoretical studies. This chapter gives a short introduction into the topic, placing several recent developments in dust research into a historical context.

Keywords

Overview History Chapter Publications Observations Modelling Field campaigns Player Recorder Environmental change 

References

  1. Ansmann A, Petzold A, Kandler K et al (2011) Saharan mineral dust experiments SAMUM-1 and SAMUM-2: what have we learned? Tellus B 63:403–429CrossRefGoogle Scholar
  2. Bagnold RA (1941) The physics of blown sand and desert dunes. Methuen, LondonGoogle Scholar
  3. Bisal F, Hsieh J (1966) Influence of moisture on erodibility of soil by wind. Soil Sci 102:143–146CrossRefGoogle Scholar
  4. Brindley H, Ignatov A (2006) Retrieval of mineral aerosol optical depth and size information from Meteosat Second Generation solar reflectance bands. Remote Sens Environ 102:344–363CrossRefGoogle Scholar
  5. Bristow CS, Hudson-Edwards KA, Chappell A (2010) Fertilizing the Amazon and equatorial Atlantic with West African dust. Geophys Res Lett 37:L14807CrossRefGoogle Scholar
  6. Carlson TN, Prospero JM (1972) The large-scale movement of Saharan air outbreaks over the northern equatorial Atlantic. J Appl Meteorol 11(2):283–297CrossRefGoogle Scholar
  7. Chun J, Cho H, Chung H, Lee M (2008) Historical records of Asian dust events (Hwansa) in Korea. Bull Am Meteorol Soc 89(6):823–827CrossRefGoogle Scholar
  8. Darwin CR (1846) An account of the fine dust which often falls on vessels in the Atlantic ocean. Q J Geol Soc Lond 2:26–30CrossRefGoogle Scholar
  9. De Deckker P, Abed RMM, de Beer D et al (2008) Geochemical and microbiological fingerprinting of airborne dust that fell in Canberra, Australia, in October 2002. Geochem Geophys Geosyst 9. doi:10.1029/2008GC002091Google Scholar
  10. Dobson M (1781) An account of the Harmattan, a singular African wind. Phil Trans R Soc Lond 71:46–57CrossRefGoogle Scholar
  11. Ehrenberg CG (1849) Passatstaub und Blutregen – ein großes organisches unsichtbares Wirken und Leben in der Atmosphäre. Druckerei der Königlichen Akademie der. Wissenschaften, BerlinGoogle Scholar
  12. Forster P, Ramaswamy V, Artaxo P et al (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Quin D, Manning M et al (eds) Climate change 2007: the physical science basis. Cambridge University Press, CambridgeGoogle Scholar
  13. Fraser RS (1976) Satellite measurement of mass of Sahara dust in the atmosphere. Appl Opt 15(10):2471–2479CrossRefGoogle Scholar
  14. Gillette DA (1974) On the production of soil wind erosion aerosols having the potential for long range transport. J Rech Atmos 8:735–744Google Scholar
  15. Gillette DA (1977) Fine particulate emissions due to wind erosion. Trans Am Soc Agric Eng 20:890–897CrossRefGoogle Scholar
  16. Gillette DA, Adams J, Muhs DR, Khil R (1982) Threshold friction velocities and rupture moduli for crusted desert soils for the input of soil particles into the air. J Geophys Res 87:9003–9015CrossRefGoogle Scholar
  17. Giorgi F (1988) Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model. Tellus 40B:23–41CrossRefGoogle Scholar
  18. Goudie AS, Middleton NJ (2006) Desert dust in the global system. Springer, Berlin/Heidelberg/New YorkGoogle Scholar
  19. Griffin DW, Kellogg CA, Shinn EA (2001) Dust in the wind: long range transport of dust in the atmosphere and its implications for global public and ecosystem health. Glob Change Hum Health 2(1):20–33CrossRefGoogle Scholar
  20. Haywood JM, Pelon J, Formenti P et al (2008) Overview of the dust and biomass-burning experiment and African monsoon multidisciplinary analysis special observing period-0. J Geophys Res 113:D00C17. doi: 10.1029/2008JD010077 Google Scholar
  21. Haywood JM, Johnson BT, Osborne SR et al (2011) Motivation, rationale and key results from the GERBILS Saharan dust measurement campaign. Q J R Meteorol Soc 137:1106–1116CrossRefGoogle Scholar
  22. Heinold B, Knippertz P, Marsham JH et al (2013) The role of deep convection and low-level jets for dust emissions in West Africa. J Geophys Res 118(10):4385–4400. doi: 10.1002/jgrd.50402 Google Scholar
  23. Heintzenberg J (2009) The SAMUM-1 experiment over Southern Morocco: overview and introduction. Tellus 61B:2–11CrossRefGoogle Scholar
  24. Hobby M, Gascoyne M, Marsham JH (2013) The Fennec automatic weather station (AWS) network: monitoring the Saharan climate system. J Atmos Ocean Technol 30:709–724CrossRefGoogle Scholar
  25. Hsu NC, Tsay SC, King MD, Herman JR (2004) Aerosol properties over bright-reflecting source regions. IEEE Trans Geosci Rem Sens 42:557–569CrossRefGoogle Scholar
  26. Ishizuka M, Mikami M, Leys JF et al (2008) Effects of soil moisture and dried rain droplet crust on saltation and dust emission. J Geophys Res 113:D24212. doi: 10.1029/2008JD009955 CrossRefGoogle Scholar
  27. Jaenicke R, Schütz L (1978) Comprehensive study of physical and chemical properties of the surface aerosols in the Cape Verde Islands region. J Geophys Res 83(C7):3585–3599CrossRefGoogle Scholar
  28. Jickells TD, An ZS, Andersen KK et al (2005) Global iron connections between desert dust, ocean biogeochemistry, and climate. Science 308:67–71CrossRefGoogle Scholar
  29. Kalashnikova OV, Kahn RA, Sokolik IN, Li W-H (2005) The ability of multi-angle remote sensing observations to identify and distinguish mineral dust types: Part 1. Optical models and retrievals of optically thick plumes. J Geophys Res 110:D18(27). doi: 10.1029/2004JD004550 Google Scholar
  30. Karyampudi VM, Carlson TN (1988) Analysis and numerical simulations of the Saharan air layer and its effect on easterly wave disturbances. J Atmos Sci 45:3103–3136CrossRefGoogle Scholar
  31. Karyampudi VM, Pierce HF (2002) Synoptic-scale influence of the Saharan air layer on tropical cyclogenesis over the Eastern Atlantic. Mon Weather Rev 130:3100–3128CrossRefGoogle Scholar
  32. Kaufman YJ, Koren I, Remer LA et al (2005) Dust transport and deposition observed from the Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) spacecraft over the Atlantic Ocean. J Geophys Res 110:D10S12. doi: 10.1029/2003JD004436 CrossRefGoogle Scholar
  33. Klose M, Shao Y (2012) Stochastic parameterization of dust emission and application to convective atmospheric conditions. Atmos Chem Phys 12:7309–7320CrossRefGoogle Scholar
  34. Klüser L, Martynenko D, Holzer-Popp T (2011) Thermal infrared remote sensing of mineral dust over land and ocean: a spectral SVD based retrieval approach for IASI. Atmos Meas Tech 4:757–773CrossRefGoogle Scholar
  35. Knippertz P, Todd MC (2012) Mineral dust aerosols over the Sahara: processes of emission and transport, and implications for modeling. Rev Geophys 50:RG1007. doi: 10.1029/2011RG000362 Google Scholar
  36. Kok JF (2011) A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle. Proc Natl Acad Sci U S A 108:1016–1021CrossRefGoogle Scholar
  37. Koopmann B (1981) Sedimentation von Saharastaub im subtropischen Nordatlantik während der letzten 25.000 Jahre. Meteor Forsch C 35:23–59Google Scholar
  38. Lebel T, Parker DJ, Flamant C et al (2011) The AMMA field campaigns: accomplishments and lessons learned. Atmos Sci Lett 12(1):123–128CrossRefGoogle Scholar
  39. Lee I-Y (1983) Simulation of transport and removal processes of the Saharan dust. J Clim Appl Meteorol 22:632–639CrossRefGoogle Scholar
  40. Marshall J (1971) Drag measurements in roughness areas of varying density and distribution. Agric Meteorol 8:269–292CrossRefGoogle Scholar
  41. Marsham JH, Hobby M, Allen CJT et al (2013) Meteorology and dust in the central Sahara: observations from Fennec supersite-1 during the June 2011 Intensive Observation Period. J Geophys Res. doi: 10.1002/jgrd.50211 Google Scholar
  42. Marticorena B, Chatenet B, Rajot JL (2010) Temporal variability of mineral dust concentrations over West Africa: analyses of a pluriannual monitoring from the AMMA Sahelian Dust Transect. Atmos Chem Phys 10:8899–8915CrossRefGoogle Scholar
  43. Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleocean 5:1–13CrossRefGoogle Scholar
  44. Martinez-Garcia A, Rosell-Mele A, Jaccard SL et al (2011) Southern Ocean dust-climate coupling over the past four million years. Nature 476:312–315CrossRefGoogle Scholar
  45. McConnell CL, Highwood EJ, Coe H et al (2008) Seasonal variations of the physical and optical characteristics of Saharan dust: results from the Dust Outflow and Deposition to the Ocean (DODO) experiment. J Geophys Res 113:D14S05. doi: 10.1029/2007JD009606 CrossRefGoogle Scholar
  46. McTainsh GH, Lynch AW, Burgess RC (1990) Wind erosion in eastern Australia. Aust J Soil Res 28:323–339CrossRefGoogle Scholar
  47. Morales C (1979) Saharan dust, mobilization, transport, deposition, vol 14, SCOPE. Wiley, Chichester/New York/Brisbane/TorontoGoogle Scholar
  48. Myhre G, Shindell D, Bréon F-M, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque J-F, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H (2013) Anthropogenic and natural radiative forcing. In: Stocker TF et al (eds) Climate change 2013: the physical science basis. Cambridge University Press, Cambridge/New YorkGoogle Scholar
  49. Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycle 18, GB2005. doi: 10.1029/2003GB002145 Google Scholar
  50. Peyridieu S, Chédin A, Tanré D et al (2010) Saharan dust infrared optical depth and altitude retrieved from AIRS: a focus over North Atlantic – comparison to MODIS and CALIPSO. Atmos Chem Phys 10:1953–1967CrossRefGoogle Scholar
  51. Pitty AF (1968) Particle size of the Saharan dust which fell in Britain in July 1968. Nature 220:364–365CrossRefGoogle Scholar
  52. Policard A, Collet A (1952) Deposition of siliceous dust in the lungs of the inhabitants of the Saharan regions. AMA Arch Ind Hyg Occup Med 5(6):527–534Google Scholar
  53. Prospero JM, Carlson TN (1980) Saharan air outbreaks over the tropical North Atlantic. Pure Appl Geophys 119(3):677–691CrossRefGoogle Scholar
  54. Prospero JM, Nees RT (1976) Dust concentration in the atmosphere of the equatorial North Atlantic: possible relationship to Sahelian drought. Science 196:1196–1198CrossRefGoogle Scholar
  55. Pye K (1987) Aeolian dust and dust deposits. Academic Press, London/Orlando/San Diego/New York/Austin/Boston/Sydney/Tokyo/Toronto, ix+ 334pp. ISBN 0125686900Google Scholar
  56. Reinfried F, Tegen I, Heinold B et al (2009) Density currents in the Atlas Region leading to dust mobilization: a model sensitivity study. J Geophys Res 114:D08127. doi: 10.1029/2008JD010844 Google Scholar
  57. Sarnthein M, Koopmann B (1980) Late quaternary deep-sea record on northwest African dust supply and wind circulation. Palaeoecol Afr Surr Isl 12:239–253Google Scholar
  58. Sarnthein M, Tetzlaff G, Koopmann B et al (1981) Glacial and interglacial wind regimes over the eastern subtropical Atlantic and North-West Africa. Nature 293:193–196CrossRefGoogle Scholar
  59. Schepanski K, Tegen I, Laurent B et al (2007) A new Saharan dust source activation frequency map derived from MSG-SEVIRI IR-channels. Geophys Res Lett 34. doi:10.1029/2007GL030168Google Scholar
  60. Schroedter-Homscheidt M, Oumbe A, Benedetti A, Morcrette J-J (2013) Aerosols for concentrating solar electricity production forecasts: requirement quantification and ECMWF/MACC aerosol forecast assessment. Bull Am Meteorol Soc 94:903–914CrossRefGoogle Scholar
  61. Schulz M, Prospero JM, Baker AR et al (2012) The atmospheric transport and deposition of mineral dust to the ocean: implications for research needs. Environ Sci Technol 46:10390–10404. doi: 10.1021/es300073u CrossRefGoogle Scholar
  62. Schütz L, Jaenicke R (1974) Particle number and mass distributions above 10−4 cm radius in sand and aerosol of the Sahara Desert. J Appl Meteorol 13:863–870CrossRefGoogle Scholar
  63. Semmelhack W (1934) Die Staubfälle im Nordwestafrikanischen Gebiet des atlantischen Ozeans. Ann Hydrogr 62:273–277Google Scholar
  64. Sinclair PC (1969) General characteristics of dust devils. J Appl Meteorol 8:32–45CrossRefGoogle Scholar
  65. Slinn SA, Slinn WGN (1980) Prediction for particle deposition on natural waters. Atmos Environ 14:1013–1016CrossRefGoogle Scholar
  66. Stanhill G (2001) The growth of climate change science: a scientometric study. Clim Change 48:515–524CrossRefGoogle Scholar
  67. Sutton LJ (1925) Haboobs. Q J R Meteorol Soc 51:25–30CrossRefGoogle Scholar
  68. Thomson MC, Molesworth A, Djingarey MH et al (2006) Potential of environmental models to predict meningitis epidemics in Africa. Trop Med Int Health 11:781–788CrossRefGoogle Scholar
  69. Todd MC, Allen CJT, Bart M et al (2013) Meteorological and dust aerosol conditions over the Western Saharan region observed at Fennec supersite-2 during the Intensive Observation Period in June 2011. J Geophys Res. doi: 10.1002/jgrd.50470 Google Scholar
  70. von Humboldt A (1807) Ansichten der Natur. Verlag der J. G. Cotta’schen Buchhandlung, StuttgartGoogle Scholar
  71. Washington R, Todd MC, Engelstaedter S, Mbainayel S, Mitchell F (2006) Dust and the low-level circulation over the Bodélé Depression, Chad: observations from BoDEx 2005. J Geophys Res 111(D3). doi:10.1029/2005JD006502Google Scholar
  72. Westphal DL, Toon OB, Carlson TN (1988) A case study of mobilization and transport of Saharan dust. J Atmos Sci 45:2145–2175CrossRefGoogle Scholar
  73. Winker DM, Vaughan MA, Omar A et al (2009) Overview of the CALIPSO mission and CALIOP data processing algorithms. J Atmos Ocean Technol 26:2310–2323CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.School of Earth & EnvironmentUniversity of LeedsLeedsUK
  2. 2.Institute for Meteorology and Climate ResearchKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Department of Marine Geology and Chemical OceanographyNIOZ – Royal Netherlands Institute for Sea ResearchTexelThe Netherlands
  4. 4.MARUM – Center for Marine Environmental Sciences, Department of Marine SedimentologyUniversity of BremenBremenGermany

Personalised recommendations