Production of Chemicals in Supercritical Water

Chapter

Abstract

Supercritical water (SCW) is expected to be a green solvent for dissolving substances, for chemical synthesis, or for chemical reactions, and thus various study has been carried out. Production of chemicals has been found possible in SCW. This chapter reviews the chemical production in terms of feedstocks and reactions. The feedstocks can include biomass (cellulose, hemicellulose and lignin), plastics, other wastes (e.g., tire, rubber), inorganics and waste water. The reactions include SCW gasification (where hydrolysis and pyrolysis take important roles), SCW oxidation, depolymerization, precipitation, hydrothermal synthesis, other organic reactions for synthesis of chemicals. In these reactions, roles of H2O are: (1) Reactant/product (hydrolysis, hydration, hydrogen source and free-radical chemistry) or catalyst (Acid/base catalyst precursor and catalyst in the transition state); (2) Intermolecular interactions in high temperature water: Solvation effects (effects of preferential solvation, hydrophobicity and solvent dynamics) and density inhomogeneity effects (ions, organic compounds, noble gases and radicals); (3) Medium: Energy transfer, diffusion and solvent cages and phase behavior. However, low selectivity and yield and high production cost are barriers for the commercialization of production of chemicals in SCW.

Keywords

Feedstocks Biomass Wastes Reaction Hydrolysis Hydration Catalyst 

References

  1. 1.
    Antal Jr MJ, Allen SG, Schulman D, Xu X. Biomass gasification in supercritical water. Ind Eng Chem Res. 2000;39:4040–53.Google Scholar
  2. 2.
    Siskin M, Katritzky AR. A review of the reactivity of organic compounds with oxygen-containing functionality in superheated water. J Anal Appl Pyrolysis. 2000;54:193–214.Google Scholar
  3. 3.
    Jin F, Zeng X, Jing Z, Enomoto H. A potentially useful technology by mimicking nature—rapid conversion of biomass and CO2 into chemicals and fuels under hydrothermal conditions. Ind Eng Chem Res. 2012;51(30):9921–37.Google Scholar
  4. 4.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics. Ind Eng Chem Res. 1999;38:2888–95.Google Scholar
  5. 5.
    Fang Z, Minowa T, Smith Jr RL, Ogi T, Kozinski JA. Liquefaction and gasification of cellulose with Na2CO3 and Ni in subcritical water at 350 °C. Ind Eng Chem Res. 2004;43(10):2454–63.Google Scholar
  6. 6.
    Kabyemela BM, Adschiri T, Malaluan RM, Arai K. Kinetics of glucose epimerization and decomposition in sub critical and supercritical water. Ind Eng Chem Res. 1997;36:1552–8.Google Scholar
  7. 7.
    Behrendt F, Neubauer Y, Oevermann M, Wilmes B, Zobel N. Direct liquefaction of biomass. Chem Eng Technol. 2008;31(5):667–77.Google Scholar
  8. 8.
    Chuntanapum A, Matsumura Y. Formation of tarry material from 5-HMF in subcritical and supercritical water. Ind Eng Chem Res. 2009;48:9837–46.Google Scholar
  9. 9.
    Chuntanapum A, Matsumura Y. Char formation mechanism in supercritical water gasification process: a study of model compounds. Ind Eng Chem Res. 2010;49:4055–62.Google Scholar
  10. 10.
    Chuntanapum A, Matsumura Y. Role of 5-HMF in supercritical water gasification of glucose. J Chem Eng Jpn. 2011;44(2):91–7.Google Scholar
  11. 11.
    Chuntanapum A, Shii T, Matsumura Y. Acid-catalyzed char formation from 5-HMF in subcritical water. J Chem Eng Jpn. 2011;44(6):431–6.Google Scholar
  12. 12.
    Chuntanapum A, Yong TL-K, Miyake S, Matsumura Y. Behavior of 5-HMF in subcritical and supercritical water. Ind Eng Chem Res. 2008;47:2956–62.Google Scholar
  13. 13.
    Promdej C, Chuntanapum A, Matsumura Y. Effect of temperature on tarry material production of glucose in supercritical water gasification. J Jpn Inst Energy. 2010;89(12):1179–84.Google Scholar
  14. 14.
    Promdej C, Matsumura Y. Temperature effect on hydrothermal decomposition of glucose in sub- and supercritical water. Ind Eng Chem Res. 2011;50(14):8492–7.Google Scholar
  15. 15.
    Kruse A, Gaulik A. Biomass conversion in water at 330–410 °C and 30–50 MPa. Identification of key compounds for indicating different chemical reaction pathways. Ind Eng Chem Res. 2003;42:267–79.Google Scholar
  16. 16.
    Smith RL, Fang Z. Techniques, applications and future prospects of diamond anvil cells for studying supercritical water systems. J Supercrit Fluids. 2009;47(3):431–46.Google Scholar
  17. 17.
    Minowa T, Fang Z. Hydrogen production from cellulose in hot compressed water using reduced nickel catalyst: product distribution at different reaction temperatures. J Chem Eng Jpn. 1998;31(3):488–91.Google Scholar
  18. 18.
    Minowa T, Fang Z, Ogi T. Cellulose decomposition in hot-compressed water with alkali or nickel catalyst. J Supercrit Fluids. 1998;13:253–9.Google Scholar
  19. 19.
    Minowa T, Fang Z, Ogi T, Varhegyi G. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. J Chem Eng Jpn. 1998;31(1):131–4.Google Scholar
  20. 20.
    Fang Z, Sato T, Smith Jr RL, Inomata H, Arai K, Kozinski JA. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water. Bioresour Technol. 2008;99(9):3424–30.Google Scholar
  21. 21.
    Yong TL-K, Matsumura Y. Reaction kinetics of the lignin conversion in supercritical water. Ind Eng Chem Res. 2012;51(37):11975–88.Google Scholar
  22. 22.
    Yong TL-K, Matsumura Y. Kinetic analysis of lignin hydrothermal conversion in sub- and supercritical water. Ind Eng Chem Res. 2013;52(16):5626–39.Google Scholar
  23. 23.
    Yong TL-K, Matsumura Y. Kinetic analysis of guaiacol conversion in sub- and supercritical water. Ind Eng Chem Res. 2013;52(26):9048–59.Google Scholar
  24. 24.
    Yong TL-K, Matsumura Y. Reaction pathways of phenol and benzene decomposition in supercritical water gasification. J Jpn Petrol Inst. 2013;56(5):331–43.Google Scholar
  25. 25.
    Saka S, Konishi R. Chemical conversion of biomass resources to useful chemicals and fuels by supercritical water treatment. In: Bridgwater AV, editor. Progress in thermochemical biomass conversion. Oxford: Blackwell Science Ltd; 2001. p. 1338–48.Google Scholar
  26. 26.
    Veski R, Palu V, Kruusement K. Co-liquefaction of kukersite oil shale and pine wood in supercritical water. Oil Shale. 2006;23(3):236–48.Google Scholar
  27. 27.
    Demirbas AH, Demirbas I. Importance of rural bioenergy for developing countries. Energy Convers Manag. 2007;48(8):2386–98.Google Scholar
  28. 28.
    Savage PE. A perspective on catalysis in sub- and supercritical water. J Supercrit Fluids. 2009;47(3):407–14.Google Scholar
  29. 29.
    Saka S, Ehara K, Minami E. Efficient utilization of woody biomass with supercritical fluid technologies (in Japanese). Mokuzai Gakkaishi. 2005;51(4):207–17.Google Scholar
  30. 30.
    Arai K, Smith RL, Aida TM. Decentralized chemical processes with supercritical fluid technology for sustainable society. J Supercrit Fluids. 2009;47(3):628–36.Google Scholar
  31. 31.
    King JW, Srinivas K. Multiple unit processing using sub- and supercritical fluids. J Supercrit Fluids. 2009;47(3):598–610.Google Scholar
  32. 32.
    Matsumura Y, Minowa T, Potic B, Kersten S, Prins W, Vanswaaij W, Vandebeld B, Elliott D, Neuenschwander G, Kruse A. Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy. 2005;29(4):269–92.Google Scholar
  33. 33.
    Balat M, Balat M, Kırtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Convers Manag. 2009;50(12):3158–68.Google Scholar
  34. 34.
    Saxena RC, Seal D, Kumar S, Goyal HB. Thermo-chemical routes for hydrogen rich gas from biomass: a review. Renew Sust Energ Rev. 2008;12(7):1909–27.Google Scholar
  35. 35.
    Sievers C, Valenzuela-Olarte MB, Marzialetti T, Musin I, Agrawal PK, Jones CW. Ionic-liquid-phase hydrolysis of pine wood. Ind Eng Chem Res. 2009;48:1277–86.Google Scholar
  36. 36.
    Sealock JLJ, Elliott DC, Baker EG, Butner RS. Chemical processing in high-pressure aqueous environments. 1. Historical perspective and continuing developments. Ind Eng Chem Res. 1993;32:1535–41.Google Scholar
  37. 37.
    Elliott DC, Phelps MR, Sealock Jr LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 4. Continuous-flow reactor process development experiments for organics destruction. Ind Eng Chem Res. 1994;33:566–74.Google Scholar
  38. 38.
    Elliott DC, Sealock Jr LJ. Chemical processing in high-pressure aqueous environments: low-temperature catalytic gasification. Chem Eng Res Des. 1996;74:563–6.Google Scholar
  39. 39.
    Elliott DC, Sealock Jr LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 2. Development of catalysts for gasification. Ind Eng Chem Res. 1993;32:1542–8.Google Scholar
  40. 40.
    Elliott DC, Sealock Jr LJ, Baker EG. Chemical processing in high-pressure aqueous environments. 3. Batch reactor process development experiments for organics destruction. Ind Eng Chem Res. 1994;33:558–65.Google Scholar
  41. 41.
    Sealock LJ, Elliott DC, Baker EG, Fassbender AG, Silva LJ. Chemical processing in high-pressure aqueous environments. 5. New processing concepts. Ind Eng Chem Res. 1996;35:4111–8.Google Scholar
  42. 42.
    Elliott DC, Newenschwander GG, Phelps MR, Hart TR, Zacher AH, Silva LJ. Chemical processing in high-pressure aqueous environments. 6. Demonstration of catalytic gasification for chemical manufacturing wastewater cleanup in industrial plants. Ind Eng Chem Res. 1999;38:879–83.Google Scholar
  43. 43.
    Osada M, Sato T, Watanabe M, Adschiri T, Arai K. Low-temperature catalytic gasification of lignin and cellulose with a ruthenium catalyst in supercritical water. Energy Fuel. 2004;18:327–33.Google Scholar
  44. 44.
    Yoshida T, Matsumura Y. Gasification of cellulose, xylan and lignin mixtures in supercritical water. Ind Eng Chem Res. 2001;40(23):5469–74.Google Scholar
  45. 45.
    Yoshida T, Oshima Y, Matsumura Y. Gasification of biomass model compounds and real biomass in supercritical water. Biomass Bioenergy. 2004;26(1):71–8.Google Scholar
  46. 46.
    Kruse A, Meier D, Rimbrecht P, Schacht M. Gasification of pyrocatechol in supercritical water in the presence of potassium hydroxide. Ind Eng Chem Res. 2000;39:4842–8.Google Scholar
  47. 47.
    Xu X, Matsumura Y, Stenberg J, Antal Jr MJ. Carbon-catalyzed gasification of organic feedstocks in supercritical water. Ind Eng Chem Res. 1996;35:2522–30.Google Scholar
  48. 48.
    Azadi P, Farnood R. Review of heterogeneous catalysts for sub- and supercritical water gasification of biomass and wastes. Int J Hydrog Energy. 2011;36(16):9529–41.Google Scholar
  49. 49.
    Rinaldi R, Schüth F. Design of solid catalysts for the conversion of biomass. Energy Environ Sci. 2009;2(6):610.Google Scholar
  50. 50.
    Peterson AA, Vogel F, Lachance RP, Fröling M, Antal JMJ, Tester JW. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci. 2008;1(1):32–65.Google Scholar
  51. 51.
    Goto M. Chemical recycling of plastics using sub- and supercritical fluids. J Supercrit Fluids. 2009;47(3):500–7.MathSciNetGoogle Scholar
  52. 52.
    Cansell F, Rey S, Beslin P. Thermodynamic aspects of supercritical fluids processing: applications to polymers and wastes treatment. Revue de l’Institut Francais du Petrole. 1998;53(1):71–98.Google Scholar
  53. 53.
    Fang Z, Kozinski JA. A comparative study of polystyrene decomposition in supercritical water and air environments using diamond anvil cell. J Appl Polym Sci. 2001;81(14):3565–77.Google Scholar
  54. 54.
    Kronholm J, Vastamaki P, Rasanen R, Ahonen A, Hartonen K, Riekkola M-L. Thermal field-flow fractionation and gas chromatography-mass spectrometry in determination of decomposition products of expandable polystyrene after reactions in pressurized hot water and supercritical water. Ind Eng Chem Res. 2006;45:3029–35.Google Scholar
  55. 55.
    Jankauskaite V, Macijauskas G, Lygaitis R. Polyethylene terephthalate waste recycling and application possibilities: a review. Mater Sci Medziagotyra. 2008;14(2):119–27.Google Scholar
  56. 56.
    Goto M, Koyamoto H, Kodama A, Hirose T, Nagaoka S. Depolymerization of polyethylene terephthalate in supercritical methanol. J Phys Condens Matter. 2002;14(44):11427–30.Google Scholar
  57. 57.
    Genta M, Iwaya T, Sasaki M, Goto M. Supercritical methanol for polyethylene terephthalate depolymerization: observation using simulator. Waste Manag. 2007;27(9):1167–77.Google Scholar
  58. 58.
    Park Y, Hool JN, Curtis CW, Robers CB. Depolymerization of styrene-butadiene copolymer in near-critical and supercritical water. Ind Eng Chem Res. 2001;40:756–67.Google Scholar
  59. 59.
    Onwudili JA, Williams PT. Reaction of different carbonaceous materials in alkaline hydrothermal media for hydrogen gas production. Green Chem. 2011;13(10):2837.Google Scholar
  60. 60.
    Balat M, Balat M, Kırtay E, Balat H. Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Convers Manag. 2009;50(12):3147–57.Google Scholar
  61. 61.
    Szuppa T, Stolle A, Ondruschka B. Fate of monoterpenes in near-critical water and supercritical alcohols assisted by microwave irradiation. Org Biomol Chem. 2010;8(7):1560–7.Google Scholar
  62. 62.
    Funke A, Ziegler F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin. 2010;4:160–77.Google Scholar
  63. 63.
    Lü X, Saka S. Hydrolysis of Japanese beech by batch and semi-flow water under subcritical temperatures and pressures. Biomass Bioenergy. 2010;34(8):1089–97.Google Scholar
  64. 64.
    Luterbacher JS, Tester JW, Walker LP. High-solids biphasic CO2-H2O pretreatment of lignocellulosic biomass. Biotechnol Bioeng. 2010;107(3):451–60.Google Scholar
  65. 65.
    Brebu M, Vasile C. Thermal degradation of lignin – a review. Cell Chem Technol. 2010;44:353–63.Google Scholar
  66. 66.
    Akhtar J, Amin NAS. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass. Renew Sust Energ Rev. 2011;15(3):1615–24.Google Scholar
  67. 67.
    Zhu G, Zhu X, Fan Q, Wan X. Recovery of biomass wastes by hydrolysis in sub-critical water. Resour Conserv Recycl. 2011;55(4):409–16.Google Scholar
  68. 68.
    Moller M, Nilges P, Harnisch F, Schroder U. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation. ChemSusChem. 2011;4:566–79.Google Scholar
  69. 69.
    Pang J, Zheng M, Wang A, Zhang T. Catalytic hydrogenation of corn stalk to ethylene glycol and 1,2-propylene glycol. Ind Eng Chem Res. 2011;50(11):6601–8.Google Scholar
  70. 70.
    Adschiri T, Lee Y-W, Goto M, Takami S. Green materials synthesis with supercritical water. Green Chem. 2011;13(6):1380.Google Scholar
  71. 71.
    Toor SS, Rosendahl L, Rudolf A. Hydrothermal liquefaction of biomass: a review of subcritical water technologies. Energy. 2011;36(5):2328–42.Google Scholar
  72. 72.
    Zetzl C, Gairola K, Kirsch C, Perez-Cantu L, Smirnova I. High pressure processes in biorefineries. Chem Ing Tech. 2011;83(7):1016–25.Google Scholar
  73. 73.
    Kruse A. Behandlung von Biomasse mit überkritischem Wasser. Chem Ing Tech. 2011;83:1381–9.Google Scholar
  74. 74.
    Robbins MP, Evans G, Valentine J, Donnison IS, Allison GG. New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energy Combust Sci. 2012;38(2):138–55.Google Scholar
  75. 75.
    Kiran E. Supercritical fluid processing in the pulp and paper and the forest products industries. ACS Symp Ser. 1995;608:380–401.Google Scholar
  76. 76.
    Savage P, Gopalan S, Mizan T, Martino C, Brock E. Reactions at supercritical conditions – applications and fundamentals. AlChE J. 1995;41:1723–78.Google Scholar
  77. 77.
    Pandey MP, Kim CS. Lignin depolymerization and conversion: a review of thermochemical methods. Chem Eng Technol. 2011;34(1):29–41.Google Scholar
  78. 78.
    Mohammed MAA, Salmiaton A, Wan Azlina WAKG, Mohammad Amran MS, Fakhru’l-Razi A, Taufiq-Yap YH. Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia. Renew Sust Energ Rev. 2011;15(2):1258–70.Google Scholar
  79. 79.
    Zhou CH, Xia X, Lin CX, Tong DS, Beltramini J. Catalytic conversion of lignocellulosic biomass to fine chemicals and fuels. Chem Soc Rev. 2011;40(11):5588–617.Google Scholar
  80. 80.
    Shen D, Xiao R, Gu S, Luo K. The pyrolytic behavior of cellulose in lignocellulosic biomass: a review. RSC Adv. 2011;1(9):1641–60.Google Scholar
  81. 81.
    Rezende CA, de Lima MA, Maziero P, Deazevedo ER, Garcia W, Polikarpov I. Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol Biofuels. 2011;4(1):54.Google Scholar
  82. 82.
    Kruse A, Ebert K. Chemical reactions in supercritical water.1. Pyrolysis of tert-butylbenzene. Berichte der Bunsen-Gesellschaft. 1996;100(1):80–3.Google Scholar
  83. 83.
    Sasaki M, Kabyemela B, Malaluan R, Hirose S, Takeda N, Adschiri T, Arai K. Cellulose hydrolysis in subcritical and supercritical water. J Supercrit Fluids. 1998;13:261–8.Google Scholar
  84. 84.
    Guo Y, Wang SZ, Xu DH, Gong YM, Ma HH, Tang XY. Review of catalytic supercritical water gasification for hydrogen production from biomass. Renew Sust Energ Rev. 2010;14(1):334–43.Google Scholar
  85. 85.
    Ju Y-H, Huynh L-H, Kasim NS, Guo T-J, Wang J-H, Fazary AE. Analysis of soluble and insoluble fractions of alkali and subcritical water treated sugarcane bagasse. Carbohydr Polym. 2011;83(2):591–9.Google Scholar
  86. 86.
    Rackemann DW, Doherty WOS. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod Biorefin. 2011;5(2):198–214.Google Scholar
  87. 87.
    Guo F, Fang Z, Xu CC, Smith RL. Solid acid mediated hydrolysis of biomass for producing biofuels. Prog Energy Combust Sci. 2012;38(5):672–90.Google Scholar
  88. 88.
    Jerome KS, Parsons EJ. Metal-catalyzed alkyne cyclotrimerizations in supercritical water. Organometallics. 1993;12(8):2991–3.Google Scholar
  89. 89.
    Hu B, Wang K, Wu L, Yu SH, Antonietti M, Titirici MM. Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater. 2010;22(7):813–28.Google Scholar
  90. 90.
    Glezakou VA, Rousseau R, Dang LX, McGrail BP. Structure, dynamics and vibrational spectrum of supercritical CO2/H2O mixtures from ab initio molecular dynamics as a function of water cluster formation. Phys Chem Chem Phys PCCP. 2010;12(31):8759–71.Google Scholar
  91. 91.
    Rana MK, Chandra A. Solvation structure of nanoscopic hydrophobic solutes in supercritical water: results for varying thickness of hydrophobic walls, solute–solvent interaction and solvent density. Chem Phys. 2012;408:28–35.Google Scholar
  92. 92.
    Fedyaeva ON, Vostrikov AA. Disposal of hazardous organic substances in supercritical water. Russ J Phys Chem B. 2013;6(7):844–60.Google Scholar
  93. 93.
    Sasaki M, Goto K, Tajima K, Adschiri T, Arai K. Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water. Green Chem. 2002;4(3):285–7.Google Scholar
  94. 94.
    Karinen R, Vilonen K, Niemela M. Biorefining: heterogeneously catalyzed reactions of carbohydrates for the production of furfural and hydroxymethylfurfural. ChemSusChem. 2011;4:1002–16.Google Scholar
  95. 95.
    Lesoin L, Boutin O, Crampon C, Badens E. CO2/water/surfactant ternary systems and liposome formation using supercritical CO2: a review. Colloids Surf A Physicochem Eng Asp. 2011;377(1–3):1–14.Google Scholar
  96. 96.
    Torres-Alacan J, Kratz S, Vohringer P. Independent pairs and Monte-Carlo simulations of the geminate recombination of solvated electrons in liquid-to-supercritical water. Phys Chem Chem Phys PCCP. 2011;13(46):20806–19.Google Scholar
  97. 97.
    Foustoukos DI, Mysen BO. D/H fractionation in the H2–H2O system at supercritical water conditions: compositional and hydrogen bonding effects. Geochim Cosmochim Acta. 2012;86:88–102.Google Scholar
  98. 98.
    Wallen S, Palmer B, Pfund D, Fulton J, Newville M, Ma Y, Stern E. Hydration of bromide ion in supercritical water: an X-ray absorption fine structure and molecular dynamics study. J Phys Chem A. 1997;101(50):9632–40.Google Scholar
  99. 99.
    Lü X, Saka S. New insights on monosaccharides’ isomerization, dehydration and fragmentation in hot-compressed water. J Supercrit Fluids. 2012;61:146–56.Google Scholar
  100. 100.
    Gosselink RJ, Teunissen W, van Dam JE, de Jong E, Gellerstedt G, Scott EL, Sanders JP. Lignin depolymerisation in supercritical carbon dioxide/acetone/water fluid for the production of aromatic chemicals. Bioresour Technol. 2012;106:173–7.Google Scholar
  101. 101.
    Kalinci Y, Hepbasli A, Dincer I. Biomass-based hydrogen production: a review and analysis. Int J Hydrog Energy. 2009;34(21):8799–817.Google Scholar
  102. 102.
    Marrone PA, Hong GT. Corrosion control methods in supercritical water oxidation and gasification processes. J Supercrit Fluids. 2009;51(2):83–103.Google Scholar
  103. 103.
    Yeh T, Dickinson J, Franck A, Linic S, Thompson L, Savage P. Hydrothermal catalytic production of fuels and chemicals from aquatic biomass. J Chem Technol Biotechnol. 2013;88:13–24.Google Scholar
  104. 104.
    Yanagida T, Minowa T, Nakamura A, Matsumura Y, Noda Y. Behavior of inorganic elements in poultry manure during supercritical water gasification. J Jpn Inst Energy. 2008;87(9):731–6.Google Scholar
  105. 105.
    Yanagida T, Minowa T, Shimizu Y, Matsumura Y, Noda Y. Recovery of activated carbon catalyst, calcium, nitrogen and phosphate from effluent following supercritical water gasification of poultry manure. Bioresour Technol. 2009;100(20):4884–6.Google Scholar
  106. 106.
    Clarke MJ, Harrison KL, Johnston KP, Howdle SM. Water in supercritical carbon dioxide microemulsions: spectroscopic investigation of a new environment for aqueous inorganic chemistry. J Am Chem Soc. 1997;119:6399–406.Google Scholar
  107. 107.
    Adschiri T, Shibata R, Sato T, Watanabe M, Arai K. Catalytic hydrodesulfurization of dibenzothiophene through partial oxidation and a water-gas shift reaction in supercritical water. Ind Eng Chem Res. 1998;37:2634–8.Google Scholar
  108. 108.
    Brunner G. Near and supercritical water. Part II: Oxidative processes. J Supercrit Fluids. 2009;47(3):382–90.Google Scholar
  109. 109.
    Cabeza P, Bermejo MD, Jimenez C, Cocero MJ. Experimental study of the supercritical water oxidation of recalcitrant compounds under hydrothermal flames using tubular reactors. Water Res. 2011;45(8):2485–95.Google Scholar
  110. 110.
    Tan Z, Lagerkvist A. Phosphorus recovery from the biomass ash: a review. Renew Sust Energ Rev. 2011;15(8):3588–602.Google Scholar
  111. 111.
    Mishra VS, Mahajani VV, Joshi JB. Wet air oxidation. Ind Eng Chem Res. 1995;34:2–48.Google Scholar
  112. 112.
    Ding ZY, Frisch MA, Li LX, Gloyna EF. Catalytic oxidation in supercritical water. Ind Eng Chem Res. 1996;35(10):3257–79.Google Scholar
  113. 113.
    Aki SNVK, Abraham MA. Mass transfer and chemical reaction during catalytic supercritical water oxidation of pyridine. ACS Symp Ser. 1997;670:232–41.Google Scholar
  114. 114.
    Hoffmann MM, Conradi MS. Nuclear magnetic resonance probe for supercritical water and aqueous solutions. Rev Sci Instrum. 1997;68(1):159.Google Scholar
  115. 115.
    Matsumura Y, Harada M, Li D, Komiyama H, Yoshida Y, Ishitani H. Biomass gasification in supercritical water with partial oxidation. J Jpn Inst Energy. 2003;82(12):919–25.Google Scholar
  116. 116.
    Matějová L, Matěj Z, Fajgar R, Cajthaml T, Šolcová O. TiO2 Powders synthesized by pressurized fluid extraction and supercritical drying: effect of water and methanol on structural properties and purity. Mater Res Bull. 2012;47(11):3573–9.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Energy and Environmental Engineering, Institute of EngineeringHiroshima UniversityHigashi-HiroshimaJapan
  2. 2.Department of Mechanical Science and Engineering, Graduate School of EngineeringHiroshima UniversityHigashi-HiroshimaJapan

Personalised recommendations