Nanodiamonds as Intracellular Probes for Imaging in Biology and Medicine

  • Jitka Slegerova
  • Ivan Rehor
  • Jan Havlik
  • Helena Raabova
  • Eva Muchova
  • Petr Cigler
Chapter
Part of the Fundamental Biomedical Technologies book series (FBMT, volume 7)

Abstract

In recent years, diamond nanoparticles have received a great deal of attention due to their unique photophysical and biological properties. Nanodiamonds (NDs) show low toxicity and are considered to be a highly biocompatible carbon nanomaterial useful in a wide range of applications. Thanks to their ability to accommodate nitrogen-vacancy (N-V) color centers, NDs are a prime example of non-photobleachable fluorescent labels and nanosensors. Here, we present a survey of ND applications in biology and medicine with an emphasis on bio-imaging. We focus on distinguishing the properties of detonation NDs and high-pressure high-temperature (HPHT) NDs and describing their physicochemical properties, structure and possible modifications by small molecules and biomolecules. We summarize and critically evaluate in vitro and in vivo data on ND toxicity and biocompatibility, cellular internalization, localization and targeting by surface-attached ligands. We discuss current achievements in bioimaging using fluorescent NDs and the potential of NDs in diagnostics and drug delivery.

Keywords

Nanodiamond Fluorescence Nitrogen-vacancy center Intracellular probe Bioimaging Biocompatibility Targeting Cellular internalization Drug delivery 

Abbreviations

ATRP

Atom-transfer radical-polymerization

CVD

Chemical vapor deposition

DND

Detonation nanodiamond

DOX

Doxorubicin hydrochloride

ESR

Electron spin resonance

FND

Fluorescent nanodiamond

GH

Growth hormone

GHR

Growth hormone receptor

HCPT

10-Hydroxycamptothecin

HPHT

High-pressure high-temperature

MTT

3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide

MWNT

Multi-walled carbon nanotubes

ND

Nanodiamond

ND-FA

Nanodiamond conjugated with folic acid

ND-Tx

Nanodiamond conjugated with chlorotoxin

N-V center

Nitrogen-vacancy center

PAH

Polyallylamine

PEI-800

Polyethyleneimine-800

SWNT

Single-walled carbon nanotubes

TE-DNDs

Targeted epirubicin-loaded DNDs

ZPL

Zero phonon line

References

  1. Adnan A, Lam R, Chen H, Lee J, Schaffer DJ, Barnard AS, Schatz GC, Ho D, Liu WK (2011) Atomistic simulation and measurement of pH dependent cancer therapeutic interactions with nanodiamond carrier. Mol Pharm 8:368–374. doi:10.1021/mp1002398 PubMedGoogle Scholar
  2. Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photonics 5:397–405. doi:10.1038/nphoton.2011.54 Google Scholar
  3. Alhaddad A, Adam M-P, Botsoa J, Dantelle G, Perruchas S, Gacoin T, Mansuy C, Lavielle S, Malvy C, Treussart F, Bertrand J-R (2011) Nanodiamond as a vector for siRNA delivery to Ewing sarcoma cells. Small 7:3087–3095. doi:10.1002/smll.201101193 PubMedGoogle Scholar
  4. Alhaddad A, Durieu C, Dantelle G, Le Cam E, Malvy C, Treussart F, Bertrand J-R (2012) Influence of the internalization pathway on the efficacy of siRNA delivery by cationic fluorescent nanodiamonds in the Ewing sarcoma cell model. PLoS ONE 7:e52207. doi:10.1371/journal.pone.0052207 PubMedCentralPubMedGoogle Scholar
  5. Badea I, Kaur, Michel, Chitanda, Maley, Yang, Borondics, Verrall (2012) Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies. Int J Nanomedicine 3851. doi:10.2147/IJN.S32877
  6. Bakowicz-Mitura K, Bartosz G, Mitura S (2007) Influence of diamond powder particles on human gene expression. Surf Coatings Technol 201:6131–6135. doi:10.1016/j.surfcoat.2006.08.142 Google Scholar
  7. Balasubramanian G, Chan IY, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer PR, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F, Wrachtrup J (2008) Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455:648–651. doi:10.1038/nature07278 PubMedGoogle Scholar
  8. Barnard AS (2009) Diamond standard in diagnostics: nanodiamond biolabels make their mark. Analyst 134:1751. doi:10.1039/b908532g PubMedGoogle Scholar
  9. Blaber SP, Hill CJ, Webster RA, Say JM, Brown LJ, Wang S-C, Vesey G, Herbert BR (2013) Effect of labeling with iron oxide particles or nanodiamonds on the functionality of adipose-derived mesenchymal stem cells. PLoS ONE 8:e52997. doi:10.1371/journal.pone.0052997 PubMedCentralPubMedGoogle Scholar
  10. Boudou J-P, Curmi PA, Jelezko F, Wrachtrup J, Aubert P, Sennour M, Balasubramanian G, Reuter R, Thorel A, Gaffet E (2009) High yield fabrication of fluorescent nanodiamonds. Nanotechnology 20:235602. doi:10.1088/0957-4484/20/23/235602 PubMedCentralPubMedGoogle Scholar
  11. Bradac C, Gaebel T, Naidoo N, Sellars MJ, Twamley J, Brown LJ, Barnard AS, Plakhotnik T, Zvyagin AV, Rabeau JR (2010) Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nat Nanotechnol 5:345–349. doi:10.1038/nnano.2010.56 PubMedGoogle Scholar
  12. Bumb A, Sarkar SK, Billington N, Brechbiel MW, Neuman KC (2013) Silica encapsulation of fluorescent nanodiamonds for colloidal stability and facile surface functionalization. J Am Chem Soc 135:7815–7818. doi:10.1021/ja4016815 PubMedGoogle Scholar
  13. Burleson T, Yusuf N, Stanishevsky A (2009) Surface modification of nanodiamonds for biomedical application and analysis by infrared spectroscopy. J Ach Mat Manufac Eng 37:258–263Google Scholar
  14. Butler JE, Sumant AV (2008) The CVD of nanodiamond materials. Chem Vap Depos 14:145–160. doi:10.1002/cvde.200700037 Google Scholar
  15. Cao L (2005) Immobilised enzymes: science or art? Curr Opin Chem Biol 9:217–226. doi:10.1016/j.cbpa.2005.02.014 PubMedGoogle Scholar
  16. Chang Y-R, Lee H-Y, Chen K, Chang C-C, Tsai D-S, Fu C-C, Lim T-S, Tzeng Y-K, Fang C-Y, Han C-C, Chang H-C, Fann W (2008) Mass production and dynamic imaging of fluorescent nanodiamonds. Nat Nanotechnol 3:284–288. doi:10.1038/nnano.2008.99 PubMedGoogle Scholar
  17. Chang L-Y, Ōsawa E, Barnard AS (2011) Confirmation of the electrostatic self-assembly of nanodiamonds. Nanoscale 3:958. doi:10.1039/c0nr00883d PubMedGoogle Scholar
  18. Chao JI, Perevedentseva E, Chung PH, Liu KK, Cheng CY, Chang CC, Cheng CL (2007) Nanometer-sized diamond particle as a probe for biolabeling. Biophys J 93:2199–2208PubMedCentralPubMedGoogle Scholar
  19. Chen M, Pierstorff ED, Lam R, Li S-Y, Huang H, Osawa E, Ho D (2009) Nanodiamond-mediated delivery of water-insoluble therapeutics. ACS Nano 3:2016–2022. doi:10.1021/nn900480m PubMedGoogle Scholar
  20. Chen M, Zhang X-Q, Man HB, Lam R, Chow EK, Ho D (2010) Nanodiamond vectors functionalized with polyethylenimine for siRNA delivery. J Phys Chem Lett 1:3167–3171. doi:10.1021/jz1013278 Google Scholar
  21. Cheng C-Y, Perevedentseva E, Tu J-S, Chung P-H, Cheng C-L, Liu K-K, Chao J-I, Chen P-H, Chang C-C (2007) Direct and in vitro observation of growth hormone receptor molecules in A549 human lung epithelial cells by nanodiamond labeling. Appl Phys Lett 90:163903. doi:10.1063/1.2727557 Google Scholar
  22. Cheng L-C, Chen HM, Lai T-C, Chan Y-C, Liu R-S, Sung JC, Hsiao M, Chen C-H, Her L-J, Tsai DP (2013) Targeting polymeric fluorescent nanodiamond-gold/silver multi-functional nanoparticles as a light-transforming hyperthermia reagent for cancer cells. Nanoscale 5:3931–3940. doi:10.1039/C3NR34091K PubMedGoogle Scholar
  23. Chi Y, Chen G, Jelezko F, Wu E, Zeng H (2011) Enhanced photoluminescence of single-photon emitters in nanodiamonds on a gold film. IEEE Photonics Technol Lett 23:374–376. doi:10.1109/LPT.2011.2106488 Google Scholar
  24. Chow EK, Zhang X-Q, Chen M, Lam R, Robinson E, Huang H, Schaffer D, Osawa E, Goga A, Ho D (2011) Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci Transl Med 3:73ra21Google Scholar
  25. Chu Z, Zhang S, Zhang B, Zhang C, Fang C-Y, Rehor I, Cigler P, Chang H-C, Lin G, Liu R, Li Q (2014) Unambiguous observation of shape effects on cellular fate of nanoparticles. Sci Reports 4:4495. doi:10.1038/srep04495
  26. Chung P-H, Perevedentseva E, Tu J-S, Chang CC, Cheng C-L (2006) Spectroscopic study of bio-functionalized nanodiamonds. Diam Relat Mater 15:622–625. doi:10.1016/j.diamond.2005.11.019 Google Scholar
  27. Dahoumane SA, Nguyen MN, Thorel A, Boudou J-P, Chehimi MM, Mangeney C (2009) Protein-functionalized hairy diamond nanoparticles. Langmuir 25:9633–9638. doi:10.1021/la9009509 PubMedGoogle Scholar
  28. Danilenko VV (2004) On the history of the discovery of nanodiamond synthesis. Phys Solid State 46:595–599Google Scholar
  29. Davies G, Lawson SC, Collins AT, Mainwood A, Sharp SJ (1992) Vacancy-related centers in diamond. Phys Rev B 46:13157. doi:10.1103/PhysRevB.46.13157 Google Scholar
  30. Dolmatov VY (2007) Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications. Russ Chem Rev 76:339–360. doi:10.1070/RC2007v076n04ABEH003643 Google Scholar
  31. Eidelman ED, Siklitsky VI, Sharonova LV, Yagovkina MA, Vul’ AY, Takahashi M, Inakuma M, Ozawa M, Ōsawa E (2005) A stable suspension of single ultrananocrystalline diamond particles. Diam Relat Mater 14:1765–1769. doi:10.1016/j.diamond.2005.08.057 Google Scholar
  32. Faklaris O, Garrot D, Joshi V, Druon F, Boudou JP, Sauvage T, Georges P, Curmi PA, Treussart F (2008) Detection of single photoluminescent diamond nanoparticles in cells and study of the internalization pathway. Small 4:2236–2239PubMedGoogle Scholar
  33. Faklaris O, Joshi V, Irinopoulou T, Tauc P, Sennour M, Girard H, Gesset C, Arnault JC, Thorel A, Boudou JP (2009a) Photoluminescent diamond nanoparticles for cell labeling: study of the uptake mechanism in mammalian cells. ACS Nano 3:3955–3962PubMedGoogle Scholar
  34. Faklaris O, Garrot D, Treussart F, Joshi V, Curmi P, Boudou J-P, Sauvage T (2009b) Comparison of the photoluminescence properties of semiconductor quantum dots and non-blinking diamond nanoparticles. Observation of the diffusion of diamond nanoparticles in living cells. ArXiv Prepr. ArXiv09042648Google Scholar
  35. Fang C-Y, Vaijayanthimala V, Cheng C-A, Yeh S-H, Chang C-F, Li C-L, Chang H-C (2011) The exocytosis of fluorescent nanodiamond and its use as a long-term cell tracker. Small 7:3363–3370. doi:10.1002/smll.201101233 PubMedGoogle Scholar
  36. Fu CC, Lee HY, Chen K, Lim TS, Wu HY, Lin PK, Wei PK, Tsao PH, Chang HC, Fann W (2007) Characterization and application of single fluorescent nanodiamonds as cellular biomarkers. Proc Natl Acad Sci 104:727–732PubMedCentralPubMedGoogle Scholar
  37. Fu K-MC, Santori C, Barclay PE, Beausoleil RG (2010) Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation. Appl Phys Lett 96:121907. doi:10.1063/1.3364135 Google Scholar
  38. Fu Y, An N, Zheng S, Liang A, Li Y (2012) BmK CT-conjugated fluorescence nanodiamond as potential glioma-targeted imaging and drug. Diam Relat Mater 21:73–76. doi:10.1016/j.diamond.2011.10.010 Google Scholar
  39. Gaebel T, Domhan M, Wittmann C, Popa I, Jelezko F, Rabeau J, Greentree A, Prawer S, Trajkov E, Hemmer PR, Wrachtrup J (2006) Photochromism in single nitrogen-vacancy defect in diamond. Appl Phys B 82:243–246. doi:10.1007/s00340-005-2056-2 Google Scholar
  40. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191. doi:10.1038/nmat1849 PubMedGoogle Scholar
  41. Gracio JJ, Fan QH, Madaleno JC (2010) Diamond growth by chemical vapour deposition. J Phys Appl Phys 43:374017. doi:10.1088/0022-3727/43/37/374017 Google Scholar
  42. Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, von Borczyskowski C (1997) Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–2014. doi:10.1126/science.276.5321.2012 Google Scholar
  43. Guan B, Zou F, Zhi J (2010) Nanodiamond as the pH-responsive vehicle for an anticancer drug. Small 6:1514–1519. doi:10.1002/smll.200902305 PubMedGoogle Scholar
  44. Hall LT, Beart GCG, Thomas EA, Simpson DA, McGuinness LP, Cole JH, Manton JH, Scholten RE, Jelezko F, Wrachtrup J, Petrou S, Hollenberg LCL (2012) High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond. Sci Reports. doi:10.1038/srep00401 Google Scholar
  45. Havlik J, Petrakova V, Rehor I, Petrak V, Gulka M, Stursa J, Kucka J, Ralis J, Rendler T, Lee S-Y, Reuter R, Wrachtrup J, Ledvina M, Nesladek M, Cigler P (2013) Boosting nanodiamond fluorescence: towards development of brighter probes. Nanoscale 5:3208–3211. doi:10.1039/c2nr32778c PubMedGoogle Scholar
  46. Hegyi A, Yablonovitch E (2013) Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds. Nano Lett 13:1173–1178. doi:10.1021/nl304570b PubMedGoogle Scholar
  47. Hens SC, Cunningham G, Tyler T, Moseenkov S, Kuznetsov V, Shenderova O (2008) Nanodiamond bioconjugate probes and their collection by electrophoresis. Diam Relat Mater 17:1858–1866. doi:10.1016/j.diamond.2008.03.020 Google Scholar
  48. Ho D (2009) Beyond the sparkle: the impact of nanodiamonds as biolabeling and therapeutic agents. ACS Nano 3:3825–3829. doi:10.1021/nn9016247 PubMedGoogle Scholar
  49. Ho D (2010) Nanodiamonds: applications in biology and nanoscale medicine. Springer, BerlinGoogle Scholar
  50. Holt KB (2007) Diamond at the nanoscale: applications of diamond nanoparticles from cellular biomarkers to quantum computing. Philos Trans R Soc Math Phys Eng Sci 365:2845–2861. doi:10.1098/rsta.2007.0005 Google Scholar
  51. Horie M, Komaba LK, Kato H, Nakamura A, Yamamoto K, Endoh S, Fujita K, Kinugasa S, Mizuno K, Hagihara Y, Yoshida Y, Iwahashi H (2012) Evaluation of cellular influences induced by stable nanodiamond dispersion; the cellular influences of nanodiamond are small. Diam Relat Mater 24:15–24. doi:10.1016/j.diamond.2012.01.037 Google Scholar
  52. Hu W, Li Z, Yang J, Hou J (2013) Nondecaying long range effect of surface decoration on the charge state of NV center in diamond. J Chem Phys 138:034702. doi:10.1063/1.4775364 PubMedGoogle Scholar
  53. Huang L-CL, Chang H-C (2004) Adsorption and immobilization of cytochrome c on nanodiamonds. Langmuir 20:5879–5884. doi:10.1021/la0495736 PubMedGoogle Scholar
  54. Huang H, Pierstorff E, Osawa E, Ho D (2007) Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett 7:3305–3314. doi:10.1021/nl071521o PubMedGoogle Scholar
  55. Hui YY, Cheng CL, Chang HC (2010) Nanodiamonds for optical bioimaging. J Phys Appl Phys 43:374021Google Scholar
  56. Iakoubovskii K, Adriaenssens GJ, Nesladek M (2000) Photochromism of vacancy-related centres in diamond. J Phys Condens Matter 12:189–199. doi:10.1088/0953-8984/12/2/308 Google Scholar
  57. Igarashi R, Yoshinari Y, Yokota H, Sugi T, Sugihara F, Ikeda K, Sumiya H, Tsuji S, Mori I, Tochio H, Harada Y, Shirakawa M (2012) Real-time background-free selective imaging of fluorescent nanodiamonds in vivo. Nano Lett 12:5726–5732. doi:10.1021/nl302979d PubMedGoogle Scholar
  58. Jakub JW, Pendas S, Reintgen DS (2003) Current status of sentinel lymph node mapping and biopsy: facts and controversies. Oncologist 8:59–68. doi:10.1634/theoncologist.8-1-59 PubMedGoogle Scholar
  59. Jelezko F, Wrachtrup J (2006) Single defect centres in diamond: a review. Phys Status Solidi 203:3207–3225. doi:10.1002/pssa.200671403 Google Scholar
  60. Jiang T, Xu K (1995) FTIR study of ultradispersed diamond powder synthesized by explosive detonation. Carbon 33:1663–1671. doi:10.1016/0008-6223(95)00115-1 Google Scholar
  61. Karpukhin AV, Avkhacheva NV, Yakovlev RY, Kulakova II, Yashin VA, Lisichkin GV, Safronova VG (2011) Effect of detonation nanodiamonds on phagocyte activity. Cell Biol Int 35:727–733. doi:10.1042/CBI20100548 PubMedGoogle Scholar
  62. Kharisov BI, Kharissova OV, Chávez-Guerrero L (2010) Synthesis techniques, properties, and applications of nanodiamonds. Synth React Inorg, Met Org, Nano Met Chem 40:84–101Google Scholar
  63. Kong XL, Huang LCL, Hsu C-M, Chen W-H, Han C-C, Chang H-C (2005) High-affinity capture of proteins by diamond nanoparticles for mass spectrometric analysis. Anal Chem 77:259–265. doi:10.1021/ac048971a PubMedGoogle Scholar
  64. Kratochvílová I, Kovalenko A, Taylor A, Fendrych F, Řezáčová V, Vlček J, Záliš S, Šebera J, Cígler P, Ledvina M, Nesládek M (2010) The fluorescence of variously terminated nanodiamond particles: quantum chemical calculations. Phys Status Solidi 207:2045–2048. doi:10.1002/pssa.201000012 Google Scholar
  65. Krueger A (2008a) New carbon materials: biological applications of functionalized nanodiamond materials. Chem Eur J 14:1382–1390. doi:10.1002/chem.200700987 PubMedGoogle Scholar
  66. Krueger A (2008b) The structure and reactivity of nanoscale diamond. J Mater Chem 18:1485. doi:10.1039/b716673g Google Scholar
  67. Krueger A (2008c) Diamond nanoparticles: jewels for chemistry and physics. Adv Mater 20:2445–2449. doi:10.1002/adma.200701856 Google Scholar
  68. Krueger A (2010) Nanodiamond. Carbon Mater. Nanotechnol. Wiley-VCH Verlag GmbH & Co. KGaA, pp 329–388Google Scholar
  69. Krueger A (2011) Beyond the shine: recent progress in applications of nanodiamond. J Mater Chem 21:12571. doi:10.1039/c1jm11674f Google Scholar
  70. Krueger A, Lang D (2012) Functionality is key: recent progress in the surface modification of nanodiamond. Adv Funct Mater 22:890–906. doi:10.1002/adfm.201102670 Google Scholar
  71. Krueger A, Stegk J, Liang Y, Lu L, Jarre G (2008) Biotinylated nanodiamond: simple and efficient functionalization of detonation diamond. Langmuir 24:4200–4204. doi:10.1021/la703482v PubMedGoogle Scholar
  72. Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE, Vul’ AY, Ōsawa E (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43:1722–1730. doi:10.1016/j.carbon.2005.02.020 Google Scholar
  73. Krüger A, Liang Y, Jarre G, Stegk J (2006) Surface functionalisation of detonation diamond suitable for biological applications. J Mater Chem 16:2322–2328. doi:10.1039/B601325B Google Scholar
  74. Kuo Y, Hsu T-Y, Wu Y-C, Hsu J-H, Chang H-C (2013) Fluorescence lifetime imaging microscopy of nanodiamonds in vivo. In: Hasan ZU, Hemmer PR, Lee H, Santori CM (eds) pp 863503Google Scholar
  75. Lee JW, Lee S, Jang S, Han KY, Kim Y, Hyun J, Kim SK, Lee Y (2013) Preparation of non-aggregated fluorescent nanodiamonds (FNDs) by non-covalent coating with a block copolymer and proteins for enhancement of intracellular uptake. Mol BioSyst 9:1004. doi:10.1039/c2mb25431j PubMedGoogle Scholar
  76. Li Y, Zhou X (2010) Transferrin-coupled fluorescence nanodiamonds as targeting intracellular transporters: An investigation of the uptake mechanism. Diam Relat Mater 19:1163–1167Google Scholar
  77. Li L, Davidson JL, Lukehart CM (2006) Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44:2308–2315. doi:10.1016/j.carbon.2006.02.023 Google Scholar
  78. Li J, Zhu Y, Li W, Zhang X, Peng Y, Huang Q (2010) Nanodiamonds as intracellular transporters of chemotherapeutic drug. Biomaterials 31:8410–8418. doi:10.1016/j.biomaterials.2010.07.058 PubMedGoogle Scholar
  79. Li X, Shao J, Qin Y, Shao C, Zheng T, Ye L (2011a) TAT-conjugated nanodiamond for the enhanced delivery of doxorubicin. J Mater Chem 21:7966. doi:10.1039/c1jm10653h Google Scholar
  80. Li Y, Zhou X, Wang D, Yang B, Yang P (2011b) Nanodiamond mediated delivery of chemotherapeutic drugs. J Mater Chem 21:16406. doi:10.1039/c1jm10926j Google Scholar
  81. Liang Y, Ozawa M, Krueger A (2009) A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3:2288–2296. doi:10.1021/nn900339s PubMedGoogle Scholar
  82. Liang Y, Meinhardt T, Jarre G, Ozawa M, Vrdoljak P, SchOll A, Reinert F, Krueger A (2011) Deagglomeration and surface modification of thermally annealed nanoscale diamond. J Colloid Interface Sci 354:23–30. doi:10.1016/j.jcis.2010.10.044 PubMedGoogle Scholar
  83. Lin Y-C, Perevedentseva E, Tsai L-W, Wu K-T, Cheng C-L (2012) Nanodiamond for intracellular imaging in the microorganisms in vivo. J Biophotonics 5:838–847. doi:10.1002/jbio.201200088 PubMedGoogle Scholar
  84. Liu KK, Cheng CL, Chang CC, Chao JI (2007) Biocompatible and detectable carboxylated nanodiamond on human cell. Nanotechnology 18:325102Google Scholar
  85. Liu K-K, Chen M-F, Chen P-Y, Lee TJF, Cheng C-L, Chang C-C, Ho Y-P, Chao J-I (2008) Alpha-bungarotoxin binding to target cell in a developing visual system by carboxylated nanodiamond. Nanotechnology 19:205102. doi:10.1088/0957-4484/19/20/205102 PubMedGoogle Scholar
  86. Liu K-K, Wang C-C, Cheng C-L, Chao J-I (2009) Endocytic carboxylated nanodiamond for the labeling and tracking of cell division and differentiation in cancer and stem cells. Biomaterials 30:4249–4259. doi:10.1016/j.biomaterials.2009.04.056 PubMedGoogle Scholar
  87. Liu K-K, Zheng W-W, Wang C-C, Chiu Y-C, Cheng C-L, Lo Y-S, Chen C, Chao J-I (2010) Covalent linkage of nanodiamond-paclitaxel for drug delivery and cancer therapy. Nanotechnology 21:315106. doi:10.1088/0957-4484/21/31/315106 PubMedGoogle Scholar
  88. Liu J-H, Yang S-T, Chen X-X, Wang H (2012) Fluorescent carbon dots and nanodiamonds for biological imaging: preparation, application, pharmacokinetics and toxicity. Curr Drug Metab 13:1046–1056. doi:10.2174/138920012802850083 PubMedGoogle Scholar
  89. Maitra U, Gomathi A, Rao CNR (2008) Covalent and noncovalent functionalisation and solubilisation of nanodiamond. J Exp Nanosci 3:271–278. doi:10.1080/17458080802574155 Google Scholar
  90. Man HB, Ho D (2012) Diamond as a nanomedical agent for versatile applications in drug delivery, imaging, and sensing. Phys Status Solidi sAppl Mater Sci 209:1609–1618. doi:10.1002/pssa.201200470 Google Scholar
  91. Marcon L, Riquet F, Vicogne D, Szunerits S, Bodart J-F, Boukherroub R (2010) Cellular and in vivo toxicity of functionalized nanodiamond in Xenopus embryos. J Mater Chem 20:8064. doi:10.1039/c0jm01570a Google Scholar
  92. Martín R, Álvaro M, Herance JR, García H (2010a) Fenton-treated functionalized diamond nanoparticles as gene delivery system. ACS Nano 4:65–74. doi:10.1021/nn901616c PubMedGoogle Scholar
  93. Martín R, Menchón C, Apostolova N, Victor VM, Álvaro M, Herance JR, García H (2010b) Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress. ACS Nano 4:6957–6965. doi:10.1021/nn1019412 PubMedGoogle Scholar
  94. Maze JR, Stanwix PL, Hodges JS, Hong S, Taylor JM, Cappellaro P, Jiang L, Dutt MVG, Togan E, Zibrov AS, Yacoby A, Walsworth RL, Lukin MD (2008) Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455:644–647. doi:10.1038/nature07279 PubMedGoogle Scholar
  95. McGuinness LP, Yan Y, Stacey A, Simpson DA, Hall LT, Maclaurin D, Prawer S, Mulvaney P, Wrachtrup J, Caruso F, Scholten RE, Hollenberg LCL (2011) Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nat Nanotechnol 6:358–363. doi:10.1038/nnano.2011.64 PubMedGoogle Scholar
  96. Mkandawire M, Pohl A, Gubarevich T, Lapina V, Appelhans D, ROdel G, Pompe W, Schreiber J, Opitz J (2009) Selective targeting of green fluorescent nanodiamond conjugates to mitochondria in HeLa cells. J Biophotonics 2:596–606. doi:10.1002/jbio.200910002
  97. Mochalin V, Osswald S, Gogotsi Y (2009) Contribution of functional groups to the Raman Spectrum of nanodiamond powders. Chem Mater 21:273–279. doi:10.1021/cm802057q Google Scholar
  98. Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2011) The properties and applications of nanodiamonds. Nat Nanotechnol 7:11–23. doi:10.1038/nnano.2011.209 PubMedGoogle Scholar
  99. Mohan N, Chen C-S, Hsieh H-H, Wu Y-C, Chang H-C (2010) In vivo imaging and toxicity assessments of fluorescent nanodiamonds in caenorhabditis elegans. Nano Lett 10:3692–3699. doi:10.1021/nl1021909 PubMedGoogle Scholar
  100. Moore L, Chow EK-H, Osawa E, Bishop JM, Ho D (2013) Diamond-lipid hybrids enhance chemotherapeutic tolerance and mediate tumor regression. Adv Mater 25:3532–3541. doi:10.1002/adma.201300343 PubMedGoogle Scholar
  101. Neugart F, Zappe A, Jelezko F, Tietz C, Boudou JP, Krueger A, Wrachtrup J (2007) Dynamics of diamond nanoparticles in solution and cells. Nano Lett 7:3588–3591. doi:10.1021/nl0716303 PubMedGoogle Scholar
  102. Nguyen T, Chang HC, Wu VWK (2007) Adsorption and hydrolytic activity of lysozyme on diamond nanocrystallites. Diam Relat Mater 16:872–876Google Scholar
  103. Opitz J, Mkandawire M, Sorge M, Rose N, Rudolph M, Krueger P, Hannstein I, Lapina VA, Appelhans D, Pompe W, Schreiber J, Roedel G (2010) Green fluorescent nanodiamond conjugates and their possible applications for biosensing In: Mohseni H, Razeghi M (eds) SPIE nano science + engineering pp 775914Google Scholar
  104. Ozawa M, Inaguma M, Takahashi M, Kataoka F, Krüger A, Ōsawa E (2007) Preparation and behavior of Brownish, clear nanodiamond colloids. Adv Mater 19:1201–1206. doi:10.1002/adma.200601452 Google Scholar
  105. Perevedentseva E, Cheng C-Y, Chung P-H, Tu J-S, Hsieh Y-H, Cheng C-L (2007) The interaction of the protein lysozyme with bacteria E. coli observed using nanodiamond labelling. Nanotechnology 18:315102. doi:10.1088/0957-4484/18/31/315102 Google Scholar
  106. Perevedentseva E, Cai P-J, Chiu Y-C, Cheng C-L (2011) Characterizing protein activities on the lysozyme and nanodiamond complex prepared for bio applications. Langmuir 27:1085–1091. doi:10.1021/la103155c PubMedGoogle Scholar
  107. Petrakova V, Taylor A, Kratochvilova I, Fendrych F, Vacik J, Kucka J, Stursa J, Cigler P, Ledvina M, Fiserova A, Kneppo P, Nesladek M (2012) Luminescence of nanodiamond driven by atomic functionalization: towards novel detection principles. Adv Funct Mater 22:812–819. doi:10.1002/adfm.201101936 Google Scholar
  108. Petráková V, Nesladek M, Taylor A, Fendrych F, Cigler P, Ledvina M, Vacik J, Stursa J, Kucka J (2011) Luminescence properties of engineered nitrogen vacancy centers in a close surface proximity. Phys Status Solidi 208:2051–2056. doi:10.1002/pssa.201100035 Google Scholar
  109. Philip J, Hess P, Feygelson T, Butler JE, Chattopadhyay S, Chen KH, Chen LC (2003) Elastic, mechanical, and thermal properties of nanocrystalline diamond films. J Appl Phys 93:2164–2171. doi:10.1063/1.1537465 Google Scholar
  110. Pinto H, Jones R, Palmer DW, Goss JP, Briddon PR, Oberg S (2011) Theory of the surface effects on the luminescence of the NV—defect in nanodiamond. Phys Status Solidi 208:2045–2050. doi:10.1002/pssa.201100013 Google Scholar
  111. Pinto H, Jones R, Palmer DW, Goss JP, Tiwari AK, Briddon PR, Wright NG, Horsfall AB, Rayson MJ, Oberg S (2012) First-principles studies of the effect of (001) surface terminations on the electronic properties of the negatively charged nitrogen-vacancy defect in diamond. Phys Rev B. doi:10.1103/PhysRevB.86.045313 Google Scholar
  112. Prabhakar N, Näreoja T, von Haartman E, Karaman DŞ, Jiang H, Koho S, Dolenko TA, Hänninen PE, Vlasov DI, Ralchenko VG, Hosomi S, Vlasov II, Sahlgren C, Rosenholm JM (2013) Core—shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery II: application. Nanoscale 5:3713. doi:10.1039/c3nr33926b PubMedGoogle Scholar
  113. Purtov KV, Burakova LP, Puzyr AP, Bondar VS (2008) The interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation. Nanotechnology 19:325101. doi:10.1088/0957-4484/19/32/325101 PubMedGoogle Scholar
  114. Puzyr AP, Neshumayev DA, Tarskikh SV, Makarskaya GV, Dolmatov VY, Bondar VS (2004) Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro. Diam Relat Mater 13:2020–2023. doi:10.1016/j.diamond.2004.06.003 Google Scholar
  115. Puzyr AP, Baron AV, Purtov KV, Bortnikov EV, Skobelev NN, Mogilnaya OA, Bondar VS (2007) Nanodiamonds with novel properties: a biological study. Diam Relat Mater 16:2124–2128. doi:10.1016/j.diamond.2007.07.025 Google Scholar
  116. Puzyr’ AP, Purtov KV, Shenderova OA, Luo M, Brenner DW, Bondar VS (2007) The adsorption of aflatoxin B1 by detonation-synthesis nanodiamonds. Dokl Biochem Biophys 417:299–301. doi:10.1134/S1607672907060026 Google Scholar
  117. Rehor I, Cigler P (2014) Precise Estimation of HPHT Nanodiamond Size Distribution Based on Transmission Electron Microscopy Image Analysis. Diam Relat Mater. doi:10.1016/j.diamond.2014.04.002
  118. Rehor I, Mackova H, Filippov SK, Kucka J, Proks V, Slegerova J, Turner S, Vandeloo GV, Ledvina M, Hruby M, Cigler P (2014a) Fluorescent nanodiamonds with bioorthogonally reactive protein-resistant polymeric coatings. Chem Plus Chem 79:21–24. doi:10.1002/cplu.201300339 Google Scholar
  119. Rehor I, Slegerova J, Kucka J, Proks V, Petrakova V, Adam M-P, Treussart F, Turner S, Bals S, Sacha P, Ledvina M, Wen AM, Steinmetz NF, Cigler P (2014b) Fluorescent nanodiamonds embedded in biocompatible translucent shells. Small 10:1106–1115. doi:10.1002/smll.201302336 PubMedGoogle Scholar
  120. Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T (2008) Quantum dots versus organic dyes as fluorescent labels. Nat Methods 5:763–775. doi:10.1038/nmeth.1248 PubMedGoogle Scholar
  121. Rojas S, Gispert JD, Martín R, Abad S, Menchón C, Pareto D, Víctor VM, Álvaro M, García H, Herance JR (2011) Biodistribution of amino-functionalized diamond nanoparticles. In Vivo studies based on 18 F radionuclide emission. ACS Nano 5:5552–5559. doi:10.1021/nn200986z PubMedGoogle Scholar
  122. Rondin L, Dantelle G, Slablab A, Grosshans F, Treussart F, Bergonzo P, Perruchas S, Gacoin T, Chaigneau M, Chang H-C, Jacques V, Roch J-F (2010) Surface-induced charge state conversion of nitrogen-vacancy defects in nanodiamonds. Phys Rev B. doi:10.1103/PhysRevB.82.115449 Google Scholar
  123. Sahoo H (2012) Fluorescent labeling techniques in biomolecules: a flashback. RSC Adv 2:7017–7029. doi:10.1039/C2RA20389H Google Scholar
  124. Schietinger S, Barth M, Aichele T, Benson O (2009) Plasmon-enhanced single photon emission from a nanoassembled metal—Diamond hybrid structure at room temperature. Nano Lett 9:1694–1698. doi:10.1021/nl900384c PubMedGoogle Scholar
  125. Schrand AM, Huang H, Carlson C, Schlager JJ, Osawa E, Hussain SM, Dai L (2007a) Are diamond nanoparticles cytotoxic? J Phys Chem B 111:2–7PubMedGoogle Scholar
  126. Schrand AM, Dai L, Schlager JJ, Hussain SM, Osawa E (2007b) Differential biocompatibility of carbon nanotubes and nanodiamonds. Diam Relat Mater 16:2118–2123. doi:10.1016/j.diamond.2007.07.020 Google Scholar
  127. Schrand AM, Hens SAC, Shenderova OA (2009) Nanodiamond particles: properties and perspectives for bioapplications. Crit Rev Solid State Mater Sci 34:18–74. doi:10.1080/10408430902831987 Google Scholar
  128. Schrand AM, Lin JB, Hens SC, Hussain SM (2011) Temporal and mechanistic tracking of cellular uptake dynamics with novel surface fluorophore-bound nanodiamonds. Nanoscale 3:435. doi:10.1039/c0nr00408a PubMedGoogle Scholar
  129. Shenderova OA, Zhirnov VV, Brenner DW (2002) Carbon nanostructures. Crit Rev Solid State Mater Sci 27:227–356. doi:10.1080/10408430208500497 Google Scholar
  130. Shimkunas RA, Robinson E, Lam R, Lu S, Xu X, Zhang X-Q, Huang H, Osawa E, Ho D (2009) Nanodiamond–insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 30:5720–5728. doi:10.1016/j.biomaterials.2009.07.004 PubMedGoogle Scholar
  131. Slepetz B, Laszlo I, Gogotsi Y, Hyde-Volpe D, Kertesz M (2010) Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory. Phys Chem Chem Phys 12:14017–14022. doi:10.1039/c0cp00523a PubMedGoogle Scholar
  132. Solarska K, Gajewska A, Skolimowski J, Woś R, Bartosz G, Mitura K (2010) Effect of non-modified and modified nanodiamond particles by Fenton reaction on human endothelial cells. Manuf Eng 43:603–607Google Scholar
  133. Solarska K, Gajewska A, Bartosz G, Mitura K (2012a) Induction of apoptosis in human endothelial cells by nanodiamond particles. J Nanosci Nanotechnol 12:5117–5121. doi:10.1166/jnn.2012.4952 PubMedGoogle Scholar
  134. Solarska K, Gajewska A, Kaczorowski W, Bartosz G, Mitura K (2012b) Effect of nanodiamond powders on the viability and production of reactive oxygen and nitrogen species by human endothelial cells. Diam Relat Mater 21:107–113. doi:10.1016/j.diamond.2011.10.020 Google Scholar
  135. Solarska-Ściuk K, Gajewska A, Skolimowski J, Mitura K, Bartosz G (2013) Stimulation of production of reactive oxygen and nitrogen species in endothelial cells by unmodified and Fenton-modified ultradisperse detonation diamond. Biotechnol Appl Biochem 60:259–265. doi:10.1002/bab.1071 PubMedGoogle Scholar
  136. Sreenivasan VKA, Ivukina EA, Deng W, Kelf TA, Zdobnova TA, Lukash SV, Veryugin BV, Stremovskiy OA, Zvyagin AV, Deyev SM (2011) Barstar: barnase—a versatile platform for colloidal diamond bioconjugation. J Mater Chem 21:65. doi:10.1039/c0jm02819c Google Scholar
  137. Thomas V, Halloran BA, Ambalavanan N, Catledge SA, Vohra YK (2012) In vitro studies on the effect of particle size on macrophage responses to nanodiamond wear debris. Acta Biomater 8:1939–1947. doi:10.1016/j.actbio.2012.01.033 PubMedCentralPubMedGoogle Scholar
  138. Tisler J, Reuter R, Lämmle A, Jelezko F, Balasubramanian G, Hemmer PR, Reinhard F, Wrachtrup J (2011) Highly efficient FRET from a single nitrogen-vacancy center in nanodiamonds to a single organic molecule. ACS Nano 5:7893–7898. doi:10.1021/nn2021259 PubMedGoogle Scholar
  139. Tu J-S, Perevedentseva E, Chung P-H, Cheng C-L (2006) Size-dependent surface CO stretching frequency investigations on nanodiamond particles. J Chem Phys 125:174713. doi:10.1063/1.2370880
  140. Tzeng Y-K, Faklaris O, Chang B-M, Kuo Y, Hsu J-H, Chang H-C (2011) Superresolution imaging of albumin-conjugated fluorescent nanodiamonds in cells by stimulated emission depletion. Angew Chem Int Ed 50:2262–2265. doi:10.1002/anie.201007215 Google Scholar
  141. Vaijayanthimala V, Chang H-C (2009) Functionalized fluorescent nanodiamonds for biomedical applications. Nanomed 4:47–55. doi:10.2217/17435889.4.1.47 Google Scholar
  142. Vaijayanthimala V, Tzeng Y-K, Chang H-C, Li C-L (2009) The biocompatibility of fluorescent nanodiamonds and their mechanism of cellular uptake. Nanotechnology 20:425103. doi:10.1088/0957-4484/20/42/425103 PubMedGoogle Scholar
  143. Vaijayanthimala V, Cheng P-Y, Yeh S-H, Liu K-K, Hsiao C-H, Chao J-I, Chang H-C (2012) The long-term stability and biocompatibility of fluorescent nanodiamond as an in vivo contrast agent. Biomaterials 33:7794–7802. doi:10.1016/j.biomaterials.2012.06.084 PubMedGoogle Scholar
  144. Vertegel AA, Siegel RW, Dordick JS (2004) Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme. Langmuir 20:6800–6807. doi:10.1021/la0497200 PubMedGoogle Scholar
  145. Vial S, Mansuy C, Sagan S, Irinopoulou T, Burlina F, Boudou J-P, Chassaing G, Lavielle S (2008) Peptide-grafted nanodiamonds: preparation, cytotoxicity and uptake in cells. Chem Bio Chem 9:2113–2119. doi:10.1002/cbic.200800247 PubMedGoogle Scholar
  146. Villalba P, Ram MK, Gomez H, Bhethanabotla V, Helms MN, Kumar A, Kumar A (2012) Cellular and in vitro toxicity of nanodiamond-polyaniline composites in mammalian and bacterial cell. Mater Sci Eng C 32:594–598. doi:10.1016/j.msec.2011.12.017 Google Scholar
  147. von Haartman E, Jiang H, Khomich AA, Zhang J, Burikov SA, Dolenko TA, Ruokolainen J, Gu H, Shenderova OA, Vlasov II, Rosenholm JM (2013) Core—shell designs of photoluminescent nanodiamonds with porous silica coatings for bioimaging and drug delivery I: fabrication. J Mater Chem B 1:2358–2366. doi:10.1039/C3TB20308E Google Scholar
  148. Wang H-D, Niu CH, Yang Q, Badea I (2011) Study on protein conformation and adsorption behaviors in nanodiamond particle–protein complexes. Nanotechnology 22:145703. doi:10.1088/0957-4484/22/14/145703 PubMedGoogle Scholar
  149. Wee T-L, Mau Y-W, Fang C-Y, Hsu H-L, Han C-C, Chang H-C (2009) Preparation and characterization of green fluorescent nanodiamonds for biological applications. Diam Relat Mater 18:567–573. doi:10.1016/j.diamond.2008.08.012 Google Scholar
  150. Wei L, Zhang W, Lu H, Yang P (2010) Immobilization of enzyme on detonation nanodiamond for highly efficient proteolysis. Talanta 80:1298–1304PubMedGoogle Scholar
  151. Wei Q, Zhan L, Juanjuan B, Jing W, Jianjun W, Taoli S, Yi’an G, Wangsuo W (2012) Biodistribution of co-exposure to multi-walled carbon nanotubes and nanodiamonds in mice. Nanoscale Res Lett 7:1–9Google Scholar
  152. Weissleder R, Ntziachristos V (2003) Shedding light onto live molecular targets. Nat Med 9:123–128. doi:10.1038/nm0103-123 PubMedGoogle Scholar
  153. Weng MF, Chiang SY, Wang NS, Niu H (2009) Fluorescent nanodiamonds for specifically targeted bioimaging: application to the interaction of transferrin with transferrin receptor. Diam Relat Mater 18:587–591Google Scholar
  154. Weng M-F, Chang B-J, Chiang S-Y, Wang N-S, Niu H (2012) Cellular uptake and phototoxicity of surface-modified fluorescent nanodiamonds. Diam Relat Mater 22:96–104. doi:10.1016/j.diamond.2011.12.035 Google Scholar
  155. Williams DF (1987) Definitions in biomaterials: proceedings of a consensus conference of the European Society for Biomaterials, Chester. Elsevier, 3–5 Mar 1986Google Scholar
  156. Williams OA (2011) Nanocrystalline diamond. Diam Relat Mater 20:621–640. doi:10.1016/j.diamond.2011.02.015 Google Scholar
  157. Wrachtrup J, Jelezko F, Grotz B, McGuinness L (2013) Nitrogen-vacancy centers close to surfaces. MRS Bull 38:149–154. doi:10.1557/mrs.2013.22 Google Scholar
  158. Wu VW-K (2010) Preparation for optimal conformation of lysozyme with nanodiamond and nanosilica as carriers. Chin J Chem 28:2520–2526Google Scholar
  159. Xing Y, Xiong W, Zhu L, Osawa E, Hussin S, Dai L (2011) DNA damage in embryonic stem cells caused by nanodiamonds. ACS Nano 5:2376Google Scholar
  160. Yan J, Guo Y, Altawashi A, Moosa B, Lecommandoux S, Khashab NM (2012) Experimental and theoretical evaluation of nanodiamonds as pH triggered drug carriers. New J Chem 36:1479. doi:10.1039/c2nj40226b Google Scholar
  161. Yeap WS, Tan YY, Loh KP (2008) Using detonation nanodiamond for the specific capture of glycoproteins. Anal Chem 80:4659–4665. doi:10.1021/ac800009v PubMedGoogle Scholar
  162. Yu S-J, Kang M-W, Chang H-C, Chen K-M, Yu Y-C (2005) Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J Am Chem Soc 127:17604–17605. doi:10.1021/ja0567081 PubMedGoogle Scholar
  163. Yuan Y, Chen Y, Liu J-H, Wang H, Liu Y (2009) Biodistribution and fate of nanodiamonds in vivo. Diam Relat Mater 18:95–100. doi:10.1016/j.diamond.2008.10.031 Google Scholar
  164. Yuan Y, Wang X, Jia G, Liu J-H, Wang T, Gu Y, Yang S-T, Zhen S, Wang H, Liu Y (2010) Pulmonary toxicity and translocation of nanodiamonds in mice. Diam Relat Mater 19:291–299. doi:10.1016/j.diamond.2009.11.022 Google Scholar
  165. Zhang B, Li Y, Fang C-Y, Chang C-C, Chen C-S, Chen Y-Y, Chang H-C (2009a) Receptor-mediated cellular uptake of folate-conjugated fluorescent nanodiamonds: a combined ensemble and single-particle study. Small 5:2716–2721. doi:10.1002/smll.200900725 PubMedGoogle Scholar
  166. Zhang X-Q, Chen M, Lam R, Xu X, Osawa E, Ho D (2009b) Polymer-functionalized nanodiamond platforms as vehicles for gene delivery. ACS Nano 3:2609–2616. doi:10.1021/nn900865g PubMedGoogle Scholar
  167. Zhang X, Yin J, Kang C, Li J, Zhu Y, Li W, Huang Q, Zhu Z (2010) Biodistribution and toxicity of nanodiamonds in mice after intratracheal instillation. Toxicol Lett 198:237–243. doi:10.1016/j.toxlet.2010.07.001 PubMedGoogle Scholar
  168. Zhang X-Q, Lam R, Xu X, Chow EK, Kim H-J, Ho D (2011) Multimodal nanodiamond drug delivery carriers for selective targeting, imaging, and enhanced chemotherapeutic efficacy. Adv Mater 23:4770–4775. doi:10.1002/adma.201102263 PubMedGoogle Scholar
  169. Zhang X, Fu C, Feng L, Ji Y, Tao L, Huang Q, Li S, Wei Y (2012a) PEGylation and polyPEGylation of nanodiamond. Polymer 53:3178–3184. doi:10.1016/j.polymer.2012.05.029 Google Scholar
  170. Zhang X, Hu W, Li J, Tao L, Wei Y (2012b) A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol Res 1:62. doi:10.1039/c2tx20006f Google Scholar
  171. Zhao L, Takimoto T, Ito M, Kitagawa N, Kimura T, Komatsu N (2011) Chromatographic separation of highly soluble diamond nanoparticles prepared by polyglycerol grafting. Angew Chem Int Ed 50:1388–1392. doi:10.1002/anie.201006310 Google Scholar
  172. Zhao N, Honert J, Schmid B, Klas M, Isoya J, Markham M, Twitchen D, Jelezko F, Liu R-B, Fedder H, Wrachtrup J (2012) Sensing single remote nuclear spins. Nat Nanotechnol 7:657–662. doi:10.1038/NNANO.2012.152 PubMedGoogle Scholar
  173. Zhu Y (2012) The Biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2:302–312. doi:10.7150/thno.3627 PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Jitka Slegerova
    • 1
  • Ivan Rehor
    • 1
  • Jan Havlik
    • 1
  • Helena Raabova
    • 1
  • Eva Muchova
    • 1
  • Petr Cigler
    • 1
  1. 1.Laboratory of Synthetic NanochemistryInstitute of Organic Chemistry and Biochemistry AS CR v. v. i.Prague 6Czech Republic

Personalised recommendations