Advertisement

Multifaceted Activity of Listeriolysin O, the Cholesterol-Dependent Cytolysin of Listeria monocytogenes

  • Stephanie SeveauEmail author
Chapter
Part of the Subcellular Biochemistry book series (SCBI, volume 80)

Abstract

The cholesterol-dependent cytolysins (CDCs) are a large family of pore-forming toxins that are produced by numerous Gram-positive bacterial pathogens. These toxins are released in the extracellular environment as water-soluble monomers or dimers that bind to cholesterol-rich membranes and assemble into large pore complexes. Depending upon their concentration, the nature of the host cell and membrane (cytoplasmic or intracellular) they target, the CDCs can elicit many different cellular responses. Among the CDCs, listeriolysin O (LLO), which is a major virulence factor of the facultative intracellular pathogen Listeria monocytogenes, is involved in several stages of the intracellular lifecycle of the bacterium and displays unique characteristics. It has long been known that following L. monocytogenes internalization into host cells, LLO disrupts the internalization vacuole, enabling the bacterium to replicate into the host cell cytosol. LLO is then used by cytosolic bacteria to spread from cell to cell, avoiding bacterial exposure to the extracellular environment. Although LLO is continuously produced during the intracellular lifecycle of L. monocytogenes, several processes limit its toxicity to ensure the survival of infected cells. It was previously thought that LLO activity was limited to mediating vacuolar escape during bacterial entry and cell to cell spreading. This concept has been challenged by compelling evidence suggesting that LLO secreted by extracellular L. monocytogenes perforates the host cell plasma membrane, triggering important host cell responses. This chapter provides an overview of the well-established intracellular activity of LLO and the multiple roles attributed to LLO secreted by extracellular L. monocytogenes.

Keywords

Bacterial toxin Cholesterol-dependent cytolysin Infectious disease Listeria monocytogenes Listeriolysin O 

Abbreviations

ALO

Anthrolysin O

ASM

Acid sphingomyelinase

CDC

Cholesterol-dependent cytolysin

CFTR

Cystic fibrosis transmembrane conductance regulator

ER

Endoplasmic reticulum

ERK

Extracellular-signal-regulated kinase

GILT

Gamma-interferon inducible lysosomal thiol reductase

HGF

Hepatocyte growth factor receptor

HNP1

Human neutrophil peptide

ILY

Intermedilysin O

InlA

Internalin A

InlB

Internalin B

IPTG

Isopropyl β-D-1-thiogalactopyranoside

JNK

C-Jun N-terminal kinase

LIPI-1

Listeria pathogenicity island

LLO

Listeriolysin O

MAPK

Mitogen-activated protein kinase

MHC

Major histocompatibility complex

Mpl

Metalloprotease

NLRs

NOD-like receptors

PERK

Double-stranded RNA activated protein kinase (PKR)-like ER kinase

PC-PLC

Phosphatidylcholine-specific phospholipase

PI-PLC

Phosphatidylinositol-specific phospholipase

PFO

Perfringolysin O

PLY

Pneumolysin

PrfA

Positive regulatory factor A

ROS

Reactive oxygen species

SLO

Streptolysin O

SUMO

Small ubiquitin-like modifier

UPR

Unfolded protein response

UTR

Untranslated region

Notes

Acknowledgements

This work was made possible by Grant R01AI107250 (Stephanie Seveau) from the National Institutes of Health (NIAID) and its contents are solely the responsibility of the author and do not necessarily represent the official views of the NIAID.

References

  1. 1.
    Oevermann A, Zurbriggen A, Vandevelde M (2010) Rhombencephalitis caused by Listeria monocytogenes in humans and ruminants: a zoonosis on the rise? Interdiscip Perspect Infect Dis 2010:632513PubMedPubMedCentralGoogle Scholar
  2. 2.
    Swaminathan B, Gerner-Smidt P (2007) The epidemiology of human listeriosis. Microbes Infect 9:1236–1243PubMedGoogle Scholar
  3. 3.
    Linnan MJ, Mascola L, Lou XD, Goulet V, May S, Salminen C, Hird DW, Yonekura ML, Hayes P, Weaver R et al (1988) Epidemic listeriosis associated with Mexican-style cheese. N Engl J Med 319:823–828PubMedGoogle Scholar
  4. 4.
    Murray EGD, Webb RA, HBR S (1926) A disease of rabbits characterized by a large mononuclear leucoytosis caused by a hitherto undescribed bacillus Bacterium monocytogenes. J Pathol Bacteriol 29:407–439Google Scholar
  5. 5.
    Schlech WF 3rd, Lavigne PM, Bortolussi RA, Allen AC, Haldane EV, Wort AJ, Hightower AW, Johnson SE, King SH, Nicholls ES, Broome CV (1983) Epidemic listeriosis–evidence for transmission by food. N Engl J Med 308:203–206PubMedGoogle Scholar
  6. 6.
    Barbuddhe SB, Chakraborty T (2009) Listeria as an enteroinvasive gastrointestinal pathogen. Curr Top Microbiol Immunol 337:173–195PubMedGoogle Scholar
  7. 7.
    Begley M, Gahan CG, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012PubMedPubMedCentralGoogle Scholar
  8. 8.
    Chaturongakul S, Raengpradub S, Wiedmann M, Boor KJ (2008) Modulation of stress and virulence in Listeria monocytogenes. Trends Microbiol 16:388–396PubMedPubMedCentralGoogle Scholar
  9. 9.
    Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, Cossart P (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106PubMedGoogle Scholar
  10. 10.
    Grif K, Patscheider G, Dierich MP, Allerberger F (2003) Incidence of fecal carriage of Listeria monocytogenes in three healthy volunteers: a one-year prospective stool survey. Eur J Clin Microbiol Infect Dis 22:16–20PubMedGoogle Scholar
  11. 11.
    Ooi ST, Lorber B (2005) Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis 40:1327–1332PubMedGoogle Scholar
  12. 12.
    Wing EJ, Gregory SH (2002) Listeria monocytogenes: clinical and experimental update. J Infect Dis 185:S18–S24PubMedGoogle Scholar
  13. 13.
    Alonzo F 3rd, Bobo LD, Skiest DJ, Freitag NE (2011) Evidence for subpopulations of Listeria monocytogenes with enhanced invasion of cardiac cells. J Med Microbiol 60:423–434PubMedPubMedCentralGoogle Scholar
  14. 14.
    Disson O, Lecuit M (2012) Targeting of the central nervous system by Listeria monocytogenes. Virulence 3:213–221PubMedPubMedCentralGoogle Scholar
  15. 15.
    Goulet V, Hebert M, Hedberg C, Laurent E, Vaillant V, De Valk H, Desenclos JC (2012) Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. Clin Infect Dis 54:652–660PubMedGoogle Scholar
  16. 16.
    Poulsen KP, Czuprynski CJ (2013) Pathogenesis of listeriosis during pregnancy. Anim Health Res Rev 14:30–39PubMedGoogle Scholar
  17. 17.
    Ramaswamy V, Cresence VM, Rejitha JS, Lekshmi MU, Dharsana KS, Prasad SP, Vijila HM (2007) Listeria–review of epidemiology and pathogenesis. J Microbiol Immunol Infect 40:4–13PubMedGoogle Scholar
  18. 18.
    Robbins JR, Bakardjiev AI (2012) Pathogens and the placental fortress. Curr Opin Microbiol 15:36–43PubMedPubMedCentralGoogle Scholar
  19. 19.
    Temple ME, Nahata MC (2000) Treatment of listeriosis. Ann Pharmacother 34(5):656–661PubMedGoogle Scholar
  20. 20.
    Le Monnier A, Abachin E, Beretti JL, Berche P, Kayal S (2011) Diagnosis of Listeria monocytogenes meningoencephalitis by real-time PCR for the hly gene. J Clin Microbiol 49:3917–3923PubMedPubMedCentralGoogle Scholar
  21. 21.
    Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B, Kreft J, Goebel W (2001) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584PubMedGoogle Scholar
  22. 22.
    Vazquez-Boland JA, Kuhn M, Berche P, Chakraborty T, Dominguez-Bernal G, Goebel W, Gonzalez-Zorn B, Wehland J, Kreft J (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640PubMedPubMedCentralGoogle Scholar
  23. 23.
    Perry KJ, Higgins DE (2013) A differential fluorescence-based genetic screen identifies Listeria monocytogenes determinants required for intracellular replication. J Bacteriol. doi:  10.1128/JB.00210-13 (in press)
  24. 24.
    Glaser P, Frangeul L, Buchrieser C, Rusniok C, Amend A, Baquero F, Berche P, Bloecker H, Brandt P, Chakraborty T, Charbit A, Chetouani F, Couve E, de Daruvar A, Dehoux P, Domann E, Dominguez-Bernal G, Duchaud E, Durant L, Dussurget O, Entian KD, Fsihi H, Garcia-del Portillo F, Garrido P, Gautier L, Goebel W, Gomez-Lopez N, Hain T, Hauf J, Jackson D, Jones LM, Kaerst U, Kreft J, Kuhn M, Kunst F, Kurapkat G, Madueno E, Maitournam A, Vicente JM, Ng E, Nedjari H, Nordsiek G, Novella S, de Pablos B, Perez-Diaz JC, Purcell R, Remmel B, Rose M, Schlueter T, Simoes N, Tierrez A, Vazquez-Boland JA, Voss H, Wehland J, Cossart P (2001) Comparative genomics of Listeria species. Science 294:849–852PubMedGoogle Scholar
  25. 25.
    Joseph B, Przybilla K, Stuhler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W (2006) Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568PubMedPubMedCentralGoogle Scholar
  26. 26.
    Gaillard JL, Berche P, Mounier J, Richard S, Sansonetti P (1987) In vitro model of penetration and intracellular growth of Listeria monocytogenes in the human enterocyte-like cell line Caco-2. Infect Immun 55:2822–2829PubMedPubMedCentralGoogle Scholar
  27. 27.
    Braun L, Ohayon H, Cossart P (1998) The InIB protein of Listeria monocytogenes is sufficient to promote entry into mammalian cells. Mol Microbiol 27:1077–1087PubMedGoogle Scholar
  28. 28.
    Dramsi S, Biswas I, Maguin E, Braun L, Mastroeni P, Cossart P (1995) Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol 16:251–261PubMedGoogle Scholar
  29. 29.
    Gaillard JL, Berche P, Frehel C, Gouin E, Cossart P (1991) Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell 65:1127–1141PubMedGoogle Scholar
  30. 30.
    Jonquieres R, Bierne H, Fiedler F, Gounon P, Cossart P (1999) Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol 34:902–914PubMedGoogle Scholar
  31. 31.
    Jonquieres R, Pizarro-Cerda J, Cossart P (2001) Synergy between the N- and C-terminal domains of InlB for efficient invasion of non-phagocytic cells by Listeria monocytogenes. Mol Microbiol 42:955–965PubMedGoogle Scholar
  32. 32.
    Marino M, Banerjee M, Jonquieres R, Cossart P, Ghosh P (2002) GW domains of the Listeria monocytogenes invasion protein InlB are SH3-like and mediate binding to host ligands. EMBO J 21:5623–5634PubMedPubMedCentralGoogle Scholar
  33. 33.
    Pizarro-Cerda J, Kuhbacher A, Cossart P (2012) Entry of Listeria monocytogenes in mammalian epithelial cells: an updated view. Cold Spring Harb Perspect Med 2:a010009PubMedGoogle Scholar
  34. 34.
    Seveau S, Pizarro-Cerda J, Cossart P (2007) Molecular mechanisms exploited by Listeria monocytogenes during host cell invasion. Microbes Infect 9:1167–1175PubMedGoogle Scholar
  35. 35.
    Geoffroy C, Gaillard JL, Alouf JE, Berche P (1987) Purification, characterization, and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from Listeria monocytogenes. Infect Immun 55:1641–1646PubMedPubMedCentralGoogle Scholar
  36. 36.
    Geoffroy C, Gaillard JL, Alouf JE, Berche P (1989) Production of thiol-dependent haemolysins by Listeria monocytogenes and related species. J Gen Microbiol 135:481–487PubMedGoogle Scholar
  37. 37.
    Portnoy DA, Jacks PS, Hinrichs DJ (1988) Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med 167:1459–1471PubMedGoogle Scholar
  38. 38.
    Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P (1989) Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect Immun 57:3629–3636PubMedPubMedCentralGoogle Scholar
  39. 39.
    Gaillard JL, Berche P, Sansonetti P (1986) Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52:50–55PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kathariou S, Metz P, Hof H, Goebel W (1987) Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol 169:1291–1297PubMedPubMedCentralGoogle Scholar
  41. 41.
    Mengaud J, Chenevert J, Geoffroy C, Gaillard JL, Cossart P (1987) Identification of the structural gene encoding the SH-activated hemolysin of Listeria monocytogenes: listeriolysin O is homologous to streptolysin O and pneumolysin. Infect Immun 55:3225–3227PubMedPubMedCentralGoogle Scholar
  42. 42.
    Kocks C, Gouin E, Tabouret M, Berche P, Ohayon H, Cossart P (1992) L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell 68:521–531PubMedGoogle Scholar
  43. 43.
    Welch MD, Rosenblatt J, Skoble J, Portnoy DA, Mitchison TJ (1998) Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281:105–108PubMedGoogle Scholar
  44. 44.
    Mounier J, Ryter A, Coquis-Rondon M, Sansonetti PJ (1990) Intracellular and cell-to-cell spread of Listeria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun 58:1048–1058PubMedPubMedCentralGoogle Scholar
  45. 45.
    Tilney LG, Portnoy DA (1989) Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J Cell Biol 109:1597–1608PubMedGoogle Scholar
  46. 46.
    Gedde MM, Higgins DE, Tilney LG, Portnoy DA (2000) Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun 68:999–1003PubMedPubMedCentralGoogle Scholar
  47. 47.
    Sun AN, Camilli A, Portnoy DA (1990) Isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun 58:3770–3778PubMedPubMedCentralGoogle Scholar
  48. 48.
    Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H (1995) The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun 63:4231–4237PubMedPubMedCentralGoogle Scholar
  49. 49.
    Hamon MA, Batsche E, Regnault B, Tham TN, Seveau S, Muchardt C, Cossart P (2007) Histone modifications induced by a family of bacterial toxins. Proc Natl Acad Sci USA 104:13467–13472PubMedPubMedCentralGoogle Scholar
  50. 50.
    Hamon MA, Ribet D, Stavru F, Cossart P (2012) Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol 20:360–368PubMedGoogle Scholar
  51. 51.
    Chakraborty T, Leimeister-Wachter M, Domann E, Hartl M, Goebel W, Nichterlein T, Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174:568–574PubMedPubMedCentralGoogle Scholar
  52. 52.
    de las Heras A, Cain RJ, Bielecka MK, Vazquez-Boland JA (2011) Regulation of Listeria virulence: PrfA master and commander. Curr Opin Microbiol 14:118–127PubMedGoogle Scholar
  53. 53.
    Leimeister-Wachter M, Haffner C, Domann E, Goebel W, Chakraborty T (1990) Identification of a gene that positively regulates expression of listeriolysin, the major virulence factor of listeria monocytogenes. Proc Natl Acad Sci USA 87:8336–8340PubMedPubMedCentralGoogle Scholar
  54. 54.
    Freitag NE, Youngman P, Portnoy DA (1992) Transcriptional activation of the Listeria monocytogenes hemolysin gene in Bacillus subtilis. J Bacteriol 174:1293–1298PubMedPubMedCentralGoogle Scholar
  55. 55.
    Behari J, Youngman P (1998) Regulation of hly expression in Listeria monocytogenes by carbon sources and pH occurs through separate mechanisms mediated by PrfA. Infect Immun 66:3635–3642PubMedPubMedCentralGoogle Scholar
  56. 56.
    Datta AR, Kothary MH (1993) Effects of glucose, growth temperature, and pH on listeriolysin O production in Listeria monocytogenes. Appl Environ Microbiol 59:3495–3497PubMedPubMedCentralGoogle Scholar
  57. 57.
    Milenbachs AA, Brown DP, Moors M, Youngman P (1997) Carbon-source regulation of virulence gene expression in Listeria monocytogenes. Mol Microbiol 23:1075–1085PubMedGoogle Scholar
  58. 58.
    Johansson J, Mandin P, Renzoni A, Chiaruttini C, Springer M, Cossart P (2002) An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell 110:551–561PubMedGoogle Scholar
  59. 59.
    Leimeister-Wachter M, Domann E, Chakraborty T (1992) The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol 174:947–952PubMedPubMedCentralGoogle Scholar
  60. 60.
    Bubert A, Sokolovic Z, Chun SK, Papatheodorou L, Simm A, Goebel W (1999) Differential expression of Listeria monocytogenes virulence genes in mammalian host cells. Mol Gen Genet 261:323–336PubMedGoogle Scholar
  61. 61.
    Shen A, Higgins DE (2005) The 5’ untranslated region-mediated enhancement of intracellular listeriolysin O production is required for Listeria monocytogenes pathogenicity. Mol Microbiol 57:1460–1473PubMedGoogle Scholar
  62. 62.
    Schnupf P, Portnoy DA, Decatur AL (2006) Phosphorylation, ubiquitination and degradation of listeriolysin O in mammalian cells: role of the PEST-like sequence. Cell Microbiol 8:353–364PubMedGoogle Scholar
  63. 63.
    Mengaud J, Vicente MF, Chenevert J, Pereira JM, Geoffroy C, Gicquel-Sanzey B, Baquero F, Perez-Diaz JC, Cossart P (1988) Expression in Escherichia coli and sequence analysis of the listeriolysin O determinant of Listeria monocytogenes. Infect Immun 56:766–772PubMedPubMedCentralGoogle Scholar
  64. 64.
    Arnett E, Lehrer RI, Pratikhya P, Lu W, Seveau S (2011) Defensins enable macrophages to inhibit the intracellular proliferation of Listeria monocytogenes. Cell Microbiol 13:635–651PubMedGoogle Scholar
  65. 65.
    Lehrer RI, Jung G, Ruchala P, Wang W, Micewicz ED, Waring AJ, Gillespie EJ, Bradley KA, Ratner AJ, Rest RF, Lu W (2009) Human alpha-defensins inhibit hemolysis mediated by cholesterol-dependent cytolysins. Infect Immun 77:4028–4040PubMedPubMedCentralGoogle Scholar
  66. 66.
    Arnett E, Seveau S (2011) The multifaceted activities of mammalian defensins. Curr Pharm Des 17:4254–4269PubMedGoogle Scholar
  67. 67.
    Koster S, Hudel M, Chakraborty T, Yildiz O (2013) Crystallization and X-ray crystallographic analysis of the cholesterol-dependent cytolysin listeriolysin O from Listeria monocytogenes. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 69:1212–1215Google Scholar
  68. 68.
    Dunstone MA, Tweten RK (2012) Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 22:342–349PubMedPubMedCentralGoogle Scholar
  69. 69.
    Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692PubMedGoogle Scholar
  70. 70.
    Heuck AP, Moe PC, Johnson BB (2010) The cholesterol-dependent cytolysin family of gram-positive bacterial toxins. Subcell Biochem 51:551–577PubMedGoogle Scholar
  71. 71.
    Hotze EM, Tweten RK (2012) Membrane assembly of the cholesterol-dependent cytolysin pore complex. Biochim Biophys Acta 1818:1028–1038PubMedPubMedCentralGoogle Scholar
  72. 72.
    Ramachandran R, Heuck AP, Tweten RK, Johnson AE (2002) Structural insights into the membrane-anchoring mechanism of a cholesterol-dependent cytolysin. Nat Struct Biol 9:823–827PubMedGoogle Scholar
  73. 73.
    Solovyova AS, Nollmann M, Mitchell TJ, Byron O (2004) The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys J 87:540–552PubMedPubMedCentralGoogle Scholar
  74. 74.
    Palmer M, Harris R, Freytag C, Kehoe M, Tranum-Jensen J, Bhakdi S (1998) Assembly mechanism of the oligomeric streptolysin O pore: the early membrane lesion is lined by a free edge of the lipid membrane and is extended gradually during oligomerization. EMBO J 17:1598–1605PubMedPubMedCentralGoogle Scholar
  75. 75.
    Repp H, Pamukci Z, Koschinski A, Domann E, Darji A, Birringer J, Brockmeier D, Chakraborty T, Dreyer F (2002) Listeriolysin of Listeria monocytogenes forms Ca2+-permeable pores leading to intracellular Ca2+ oscillations. Cell Microbiol 4:483–491PubMedGoogle Scholar
  76. 76.
    Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA (2006) Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol 8:781–792PubMedPubMedCentralGoogle Scholar
  77. 77.
    Ramachandran R, Tweten RK, Johnson AE (2004) Membrane-dependent conformational changes initiate cholesterol-dependent cytolysin oligomerization and intersubunit beta-strand alignment. Nat Struct Mol Biol 11:697–705PubMedGoogle Scholar
  78. 78.
    Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Specific protein-membrane contacts are required for prepore and pore assembly by a cholesterol-dependent cytolysin. J Biol Chem 282:15709–15716PubMedPubMedCentralGoogle Scholar
  79. 79.
    Farrand AJ, LaChapelle S, Hotze EM, Johnson AE, Tweten RK (2010) Only two amino acids are essential for cytolytic toxin recognition of cholesterol at the membrane surface. Proc Natl Acad Sci USA 107:4341–4346PubMedPubMedCentralGoogle Scholar
  80. 80.
    Bavdek A, Gekara NO, Priselac D, Gutierrez Aguirre I, Darji A, Chakraborty T, Macek P, Lakey JH, Weiss S, Anderluh G (2007) Sterol and pH interdependence in the binding, oligomerization, and pore formation of Listeriolysin O. Biochemistry 46:4425–4437PubMedGoogle Scholar
  81. 81.
    Coconnier MH, Lorrot M, Barbat A, Laboisse C, Servin AL (2000) Listeriolysin O-induced stimulation of mucin exocytosis in polarized intestinal mucin-secreting cells: evidence for toxin recognition of membrane-associated lipids and subsequent toxin internalization through caveolae. Cell Microbiol 2:487–504PubMedGoogle Scholar
  82. 82.
    Gelber SE, Aguilar JL, Lewis KL, Ratner AJ (2008) Functional and phylogenetic characterization of Vaginolysin, the human-specific cytolysin from Gardnerella vaginalis. J Bacteriol 190:3896–3903PubMedPubMedCentralGoogle Scholar
  83. 83.
    Giddings KS, Zhao J, Sims PJ, Tweten RK (2004) Human CD59 is a receptor for the cholesterol-dependent cytolysin intermedilysin. Nat Struct Mol Biol 11:1173–1178PubMedGoogle Scholar
  84. 84.
    Jacobs T, Darji A, Frahm N, Rohde M, Wehland J, Chakraborty T, Weiss S (1998) Listeriolysin O: cholesterol inhibits cytolysis but not binding to cellular membranes. Mol Microbiol 28:1081–1089PubMedGoogle Scholar
  85. 85.
    Dowd KJ, Tweten RK (2012) The cholesterol-dependent cytolysin signature motif: a critical element in the allosteric pathway that couples membrane binding to pore assembly. PLoS Pathog 8:e1002787PubMedPubMedCentralGoogle Scholar
  86. 86.
    Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299PubMedGoogle Scholar
  87. 87.
    Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574PubMedGoogle Scholar
  88. 88.
    Hotze EM, Wilson-Kubalek EM, Rossjohn J, Parker MW, Johnson AE, Tweten RK (2001) Arresting pore formation of a cholesterol-dependent cytolysin by disulfide trapping synchronizes the insertion of the transmembrane beta-sheet from a prepore intermediate. J Biol Chem 276:8261–8268PubMedGoogle Scholar
  89. 89.
    Vadia S, Arnett E, Haghighat AC, Wilson-Kubalek EM, Tweten RK, Seveau S (2011) The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes. PLoS Pathog 7:e1002356PubMedPubMedCentralGoogle Scholar
  90. 90.
    Schnupf P, Portnoy DA (2007) Listeriolysin O: a phagosome-specific lysin. Microbes Infect 9:1176–1187PubMedGoogle Scholar
  91. 91.
    Bavdek A, Kostanjsek R, Antonini V, Lakey JH, Dalla Serra M, Gilbert RJ, Anderluh G (2012) pH dependence of listeriolysin O aggregation and pore-forming ability. FEBS J 279:126–141PubMedGoogle Scholar
  92. 92.
    Schuerch DW, Wilson-Kubalek EM, Tweten RK (2005) Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci USA 102:12537–12542PubMedPubMedCentralGoogle Scholar
  93. 93.
    Ribet D, Hamon M, Gouin E, Nahori MA, Impens F, Neyret-Kahn H, Gevaert K, Vandekerckhove J, Dejean A, Cossart P (2010) Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 464:1192–1195PubMedPubMedCentralGoogle Scholar
  94. 94.
    Stavru F, Bouillaud F, Sartori A, Ricquier D, Cossart P (2011) Listeria monocytogenes transiently alters mitochondrial dynamics during infection. Proc Natl Acad Sci USA 108:3612–3617PubMedPubMedCentralGoogle Scholar
  95. 95.
    Glomski IJ, Gedde MM, Tsang AW, Swanson JA, Portnoy DA (2002) The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells. J Cell Biol 156:1029–1038PubMedPubMedCentralGoogle Scholar
  96. 96.
    Michel E, Reich KA, Favier R, Berche P, Cossart P (1990) Attenuated mutants of the intracellular bacterium Listeria monocytogenes obtained by single amino acid substitutions in listeriolysin O. Mol Microbiol 4:2167–2178PubMedGoogle Scholar
  97. 97.
    Singh R, Jamieson A, Cresswell P (2008) GILT is a critical host factor for Listeria monocytogenes infection. Nature 455:1244–1247PubMedPubMedCentralGoogle Scholar
  98. 98.
    Burrack LS, Harper JW, Higgins DE (2009) Perturbation of vacuolar maturation promotes listeriolysin O-independent vacuolar escape during Listeria monocytogenes infection of human cells. Cell Microbiol 11:1382–1398PubMedPubMedCentralGoogle Scholar
  99. 99.
    Grundling A, Gonzalez MD, Higgins DE (2003) Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol 185:6295–6307PubMedPubMedCentralGoogle Scholar
  100. 100.
    Marquis H, Doshi V, Portnoy DA (1995) The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun 63:4531–4534PubMedPubMedCentralGoogle Scholar
  101. 101.
    Camilli A, Tilney LG, Portnoy DA (1993) Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol 8:143–157PubMedGoogle Scholar
  102. 102.
    Wadsworth SJ, Goldfine H (2002) Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun 70:4650–4660PubMedPubMedCentralGoogle Scholar
  103. 103.
    Beauregard KE, Lee KD, Collier RJ, Swanson JA (1997) pH-dependent perforation of macrophage phagosomes by listeriolysin O from Listeria monocytogenes. J Exp Med 186:1159–1163PubMedPubMedCentralGoogle Scholar
  104. 104.
    Henry R, Shaughnessy L, Loessner MJ, Alberti-Segui C, Higgins DE, Swanson JA (2006) Cytolysin-dependent delay of vacuole maturation in macrophages infected with Listeria monocytogenes. Cell Microbiol 8:107–119PubMedPubMedCentralGoogle Scholar
  105. 105.
    Radtke AL, Anderson KL, Davis MJ, DiMagno MJ, Swanson JA, O’Riordan MX (2011) Listeria monocytogenes exploits cystic fibrosis transmembrane conductance regulator (CFTR) to escape the phagosome. Proc Natl Acad Sci USA 108:1633–1638PubMedPubMedCentralGoogle Scholar
  106. 106.
    Lam GY, Fattouh R, Muise AM, Grinstein S, Higgins DE, Brumell JH (2011) Listeriolysin O suppresses phospholipase C-mediated activation of the microbicidal NADPH oxidase to promote Listeria monocytogenes infection. Cell Host Microbe 10:627–634PubMedPubMedCentralGoogle Scholar
  107. 107.
    Madden JC, Ruiz N, Caparon M (2001) Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104:143–152PubMedGoogle Scholar
  108. 108.
    Shaughnessy LM, Swanson JA (2007) The role of the activated macrophage in clearing Listeria monocytogenes infection. Front Biosci 12:2683–2692PubMedPubMedCentralGoogle Scholar
  109. 109.
    Arnett E, Vadia S, Nackerman CC, Oghumu S, Satoskar AR, McLeish KR, Uriarte SM, Seveau S (2014) The pore-forming toxin listeriolysin O is degraded by neutrophil metalloproteiase-8 and is fails to mediate Listeria monocytogenes intracellular survival in neutrophils. J Immunol. doi: 10.4049/jimmunol.1301302 (in press)
  110. 110.
    Myers JT, Tsang AW, Swanson JA (2003) Localized reactive oxygen and nitrogen intermediates inhibit escape of Listeria monocytogenes from vacuoles in activated macrophages. J Immunol 171:5447–5453PubMedPubMedCentralGoogle Scholar
  111. 111.
    del Cerro-Vadillo E, Madrazo-Toca F, Carrasco-Marin E, Fernandez-Prieto L, Beck C, Leyva-Cobian F, Saftig P, Alvarez-Dominguez C (2006) Cutting edge: a novel nonoxidative phagosomal mechanism exerted by cathepsin-D controls Listeria monocytogenes intracellular growth. J Immunol 176:1321–1325PubMedGoogle Scholar
  112. 112.
    Davis MJ, Gregorka B, Gestwicki JE, Swanson JA (2012) Inducible renitence limits Listeria monocytogenes escape from vacuoles in macrophages. J Immunol 189:4488–4495PubMedPubMedCentralGoogle Scholar
  113. 113.
    Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T, Cossart P, Higgins DE, Brumell JH (2007) Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–451PubMedGoogle Scholar
  114. 114.
    Py BF, Lipinski MM, Yuan J (2007) Autophagy limits Listeria monocytogenes intracellular growth in the early phase of primary infection. Autophagy 3:117–125PubMedGoogle Scholar
  115. 115.
    Meyer-Morse N, Robbins JR, Rae CS, Mochegova SN, Swanson MS, Zhao Z, Virgin HW, Portnoy D (2010) Listeriolysin O is necessary and sufficient to induce autophagy during Listeria monocytogenes infection. PLoS ONE 5:e8610PubMedPubMedCentralGoogle Scholar
  116. 116.
    Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA, Wiemer EA, Dussurget O, Cossart P (2011) Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLoS Pathog 7:e1002168PubMedPubMedCentralGoogle Scholar
  117. 117.
    Alberti-Segui C, Goeden KR, Higgins DE (2007) Differential function of Listeria monocytogenes listeriolysin O and phospholipases C in vacuolar dissolution following cell-to-cell spread. Cell Microbiol 9:179–195PubMedGoogle Scholar
  118. 118.
    Dancz CE, Haraga A, Portnoy DA, Higgins DE (2002) Inducible control of virulence gene expression in Listeria monocytogenes: temporal requirement of listeriolysin O during intracellular infection. J Bacteriol 184:5935–5945PubMedPubMedCentralGoogle Scholar
  119. 119.
    Villanueva MS, Sijts AJ, Pamer EG (1995) Listeriolysin is processed efficiently into an MHC class I-associated epitope in Listeria monocytogenes-infected cells. J Immunol 155:5227–5233PubMedGoogle Scholar
  120. 120.
    Decatur AL, Portnoy DA (2000) A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992–995PubMedGoogle Scholar
  121. 121.
    Glomski IJ, Decatur AL, Portnoy DA (2003) Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun 71:6754–6765PubMedPubMedCentralGoogle Scholar
  122. 122.
    Frehel C, Lety MA, Autret N, Beretti JL, Berche P, Charbit A (2003) Capacity of ivanolysin O to replace listeriolysin O in phagosomal escape and in vivo survival of Listeria monocytogenes. Microbiology 149:611–620PubMedGoogle Scholar
  123. 123.
    Jones S, Portnoy DA (1994) Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of listeriolysin O. Infect Immun 62:5608–5613PubMedPubMedCentralGoogle Scholar
  124. 124.
    Wei Z, Schnupf P, Poussin MA, Zenewicz LA, Shen H, Goldfine H (2005) Characterization of Listeria monocytogenes expressing anthrolysin O and phosphatidylinositol-specific phospholipase C from Bacillus anthracis. Infect Immun 73:6639–6646PubMedPubMedCentralGoogle Scholar
  125. 125.
    Carrero JA, Calderon B, Unanue ER (2004) Listeriolysin O from Listeria monocytogenes is a lymphocyte apoptogenic molecule. J Immunol 172:4866–4874PubMedGoogle Scholar
  126. 126.
    Lety MA, Frehel C, Dubail I, Beretti JL, Kayal S, Berche P, Charbit A (2001) Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Mol Microbiol 39:1124–1139PubMedGoogle Scholar
  127. 127.
    Schnupf P, Zhou J, Varshavsky A, Portnoy DA (2007) Listeriolysin O secreted by Listeria monocytogenes into the host cell cytosol is degraded by the N-end rule pathway. Infect Immun 75:5135–5147PubMedPubMedCentralGoogle Scholar
  128. 128.
    Viala JP, Mochegova SN, Meyer-Morse N, Portnoy DA (2008) A bacterial pore-forming toxin forms aggregates in cells that resemble those associated with neurodegenerative diseases. Cell Microbiol 10:985–993PubMedGoogle Scholar
  129. 129.
    Tsuchiya K, Kawamura I, Takahashi A, Nomura T, Kohda C, Mitsuyama M (2005) Listeriolysin O-induced membrane permeation mediates persistent interleukin-6 production in Caco-2 cells during Listeria monocytogenes infection in vitro. Infect Immun 73:3869–3877PubMedPubMedCentralGoogle Scholar
  130. 130.
    Cassidy SK, Hagar JA, Kanneganti TD, Franchi L, Nunez G, O’Riordan MX (2012) Membrane damage during Listeria monocytogenes infection triggers a caspase-7 dependent cytoprotective response. PLoS Pathog 8:e1002628PubMedPubMedCentralGoogle Scholar
  131. 131.
    Vadia S, Seveau S (2014) Fluxes of Ca2+ and K+ are required for the LLO-dependent internalization pathway of Listeria monocytogenes. Infect Immun (in press)Google Scholar
  132. 132.
    Abreu-Blanco MT, Verboon JM, Parkhurst SM (2011) Single cell wound repair: dealing with life’s little traumas. Bioarchitecture 1:114–121PubMedPubMedCentralGoogle Scholar
  133. 133.
    McNeil PL (2002) Repairing a torn cell surface: make way, lysosomes to the rescue. J Cell Sci 115:873–879PubMedGoogle Scholar
  134. 134.
    Steinhardt RA (2005) The mechanisms of cell membrane repair: a tutorial guide to key experiments. Ann N Y Acad Sci 1066:152–165PubMedGoogle Scholar
  135. 135.
    Draeger A, Monastyrskaya K, Babiychuk EB (2011) Plasma membrane repair and cellular damage control: the annexin survival kit. Biochem Pharmacol 81:703–712PubMedGoogle Scholar
  136. 136.
    Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008) Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180:905–914PubMedPubMedCentralGoogle Scholar
  137. 137.
    Rodriguez A, Webster P, Ortego J, Andrews NW (1997) Lysosomes behave as Ca2+-regulated exocytic vesicles in fibroblasts and epithelial cells. J Cell Biol 137:93–104PubMedPubMedCentralGoogle Scholar
  138. 138.
    Steinhardt RA, Bi G, Alderton JM (1994) Cell membrane resealing by a vesicular mechanism similar to neurotransmitter release. Science 263:390–393PubMedGoogle Scholar
  139. 139.
    Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He X, Schuchman E, Tabas I, Andrews NW (2010) Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189:1027–1038PubMedPubMedCentralGoogle Scholar
  140. 140.
    Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I, Maxfield FR (1998) Sphingomyelinase treatment induces ATP-independent endocytosis. J Cell Biol 140:39–47PubMedPubMedCentralGoogle Scholar
  141. 141.
    Corrotte M, Fernandes MC, Tam C, Andrews NW (2012) Toxin pores endocytosed during plasma membrane repair traffic into the lumen of MVBs for degradation. Traffic 13:483–494PubMedPubMedCentralGoogle Scholar
  142. 142.
    Potez S, Luginbuhl M, Monastyrskaya K, Hostettler A, Draeger A, Babiychuk EB (2011) Tailored protection against plasmalemmal injury by annexins with different Ca2+ sensitivities. J Biol Chem 286:17982–17991PubMedPubMedCentralGoogle Scholar
  143. 143.
    Dong Z, Saikumar P, Weinberg JM, Venkatachalam MA (2006) Calcium in cell injury and death. Annu Rev Pathol 1:405–434PubMedGoogle Scholar
  144. 144.
    Gekara NO, Weiss S (2004) Lipid rafts clustering and signalling by listeriolysin O. Biochem Soc Trans 32:712–714PubMedGoogle Scholar
  145. 145.
    Dramsi S, Cossart P (2003) Listeriolysin O-mediated calcium influx potentiates entry of Listeria monocytogenes into the human Hep-2 epithelial cell line. Infect Immun 71:3614–3618PubMedPubMedCentralGoogle Scholar
  146. 146.
    Gekara NO, Westphal K, Ma B, Rohde M, Groebe L, Weiss S (2007) The multiple mechanisms of Ca2+ signalling by listeriolysin O, the cholesterol-dependent cytolysin of Listeria monocytogenes. Cell Microbiol 9:2008–2021PubMedGoogle Scholar
  147. 147.
    Rose F, Zeller SA, Chakraborty T, Domann E, Machleidt T, Kronke M, Seeger W, Grimminger F, Sibelius U (2001) Human endothelial cell activation and mediator release in response to Listeria monocytogenes virulence factors. Infect Immun 69:897–905PubMedPubMedCentralGoogle Scholar
  148. 148.
    Wadsworth SJ, Goldfine H (1999) Listeria monocytogenes phospholipase C-dependent calcium signaling modulates bacterial entry into J774 macrophage-like cells. Infect Immun 67:1770–1778PubMedPubMedCentralGoogle Scholar
  149. 149.
    Gonzalez MR, Bischofberger M, Freche B, Ho S, Parton RG, van der Goot FG (2011) Pore-forming toxins induce multiple cellular responses promoting survival. Cell Microbiol 13:1026–1043PubMedGoogle Scholar
  150. 150.
    Arthur JS, Ley SC (2013) Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 13:679–692PubMedGoogle Scholar
  151. 151.
    Tang P, Sutherland CL, Gold MR, Finlay BB (1998) Listeria monocytogenes invasion of epithelial cells requires the MEK-1/ERK-2 mitogen-activated protein kinase pathway. Infect Immun 66:1106–1112PubMedPubMedCentralGoogle Scholar
  152. 152.
    Weiglein I, Goebel W, Troppmair J, Rapp UR, Demuth A, Kuhn M (1997) Listeria monocytogenes infection of HeLa cells results in listeriolysin O-mediated transient activation of the Raf-MEK-MAP kinase pathway. FEMS Microbiol Lett 148:189–195PubMedGoogle Scholar
  153. 153.
    Flotho A, Melchior F (2013) Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82:357–385PubMedGoogle Scholar
  154. 154.
    Ribet D, Cossart P (2010) SUMOylation and bacterial pathogens. Virulence 1:532–534PubMedGoogle Scholar
  155. 155.
    Seveau S, Bierne H, Giroux S, Prevost MC, Cossart P (2004) Role of lipid rafts in E-cadherin– and HGF-R/Met–mediated entry of Listeria monocytogenes into host cells. J Cell Biol 166:743–753PubMedPubMedCentralGoogle Scholar
  156. 156.
    Seveau S, Tham TN, Payrastre B, Hoppe AD, Swanson JA, Cossart P (2007) A FRET analysis to unravel the role of cholesterol in Rac1 and PI 3-kinase activation in the InlB/Met signalling pathway. Cell Microbiol 9:790–803PubMedGoogle Scholar
  157. 157.
    Fernandes MC, Cortez M, Flannery AR, Tam C, Mortara RA, Andrews NW (2011) Trypanosoma cruzi subverts the sphingomyelinase-mediated plasma membrane repair pathway for cell invasion. J Exp Med 208:909–921PubMedPubMedCentralGoogle Scholar
  158. 158.
    Logsdon LK, Hakansson AP, Cortes G, Wessels MR (2011) Streptolysin o inhibits clathrin-dependent internalization of group a streptococcus. MBio 2:e00332-e00310Google Scholar
  159. 159.
    Sukeno A, Nagamune H, Whiley RA, Jafar SI, Aduse-Opoku J, Ohkura K, Maeda T, Hirota K, Miyake Y, Kourai H (2005) Intermedilysin is essential for the invasion of hepatoma HepG2 cells by Streptococcus intermedius. Microbiol Immunol 49:681–694PubMedGoogle Scholar
  160. 160.
    Sovolyova N, Healy S, Samali A, Logue SE (2014) Stressed to death—mechanisms of ER stress-induced cell death. Biol Chem 395:1–13PubMedGoogle Scholar
  161. 161.
    Carrara M, Prischi F, Ali MM (2013) UPR signal activation by luminal sensor domains. Int J Mol Sci 14:6454–6466PubMedPubMedCentralGoogle Scholar
  162. 162.
    Pillich H, Loose M, Zimmer KP, Chakraborty T (2012) Activation of the unfolded protein response by Listeria monocytogenes. Cell Microbiol 14:949–964PubMedGoogle Scholar
  163. 163.
    Gekara NO, Groebe L, Viegas N, Weiss S (2008) Listeria monocytogenes desensitizes immune cells to subsequent Ca2+ signaling via listeriolysin O-induced depletion of intracellular Ca2+ stores. Infect Immun 76:857–862PubMedPubMedCentralGoogle Scholar
  164. 164.
    Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789PubMedGoogle Scholar
  165. 165.
    Bischof LJ, Kao CY, Los FC, Gonzalez MR, Shen Z, Briggs SP, van der Goot FG, Aroian RV (2008) Activation of the unfolded protein response is required for defenses against bacterial pore-forming toxin in vivo. PLoS Pathog 4:e1000176PubMedPubMedCentralGoogle Scholar
  166. 166.
    de Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J 29:2715–2723PubMedPubMedCentralGoogle Scholar
  167. 167.
    Stavru F, Palmer AE, Wang C, Youle RJ, Cossart P (2013) Atypical mitochondrial fission upon bacterial infection. Proc Natl Acad Sci USA 110:16003–16008PubMedPubMedCentralGoogle Scholar
  168. 168.
    Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395PubMedPubMedCentralGoogle Scholar
  169. 169.
    Hamon MA, Cossart P (2011) K+ efflux is required for histone H3 dephosphorylation by Listeria monocytogenes listeriolysin O and other pore-forming toxins. Infect Immun 79:2839–2846PubMedPubMedCentralGoogle Scholar
  170. 170.
    Eitel J, Suttorp N, Opitz B (2010) Innate immune recognition and inflammasome activation in listeria monocytogenes infection. Front Microbiol 1:149PubMedPubMedCentralGoogle Scholar
  171. 171.
    O’Riordan M, Yi CH, Gonzales R, Lee KD, Portnoy DA (2002) Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc Natl Acad Sci USA 99:13861–13866PubMedPubMedCentralGoogle Scholar
  172. 172.
    Opitz B, Puschel A, Beermann W, Hocke AC, Forster S, Schmeck B, van Laak V, Chakraborty T, Suttorp N, Hippenstiel S (2006) Listeria monocytogenes activated p38 MAPK and induced IL-8 secretion in a nucleotide-binding oligomerization domain 1-dependent manner in endothelial cells. J Immunol 176:484–490PubMedGoogle Scholar
  173. 173.
    Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145PubMedGoogle Scholar
  174. 174.
    Meixenberger K, Pache F, Eitel J, Schmeck B, Hippenstiel S, Slevogt H, N’Guessan P, Witzenrath M, Netea MG, Chakraborty T, Suttorp N, Opitz B (2010) Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3. J Immunol 184:922–930PubMedGoogle Scholar
  175. 175.
    Im SS, Osborne TF (2012) Protection from bacterial-toxin-induced apoptosis in macrophages requires the lipogenic transcription factor sterol regulatory element binding protein 1a. Mol Cell Biol 32:2196–2202PubMedPubMedCentralGoogle Scholar
  176. 176.
    Kayal S, Lilienbaum A, Poyart C, Memet S, Israel A, Berche P (1999) Listeriolysin O-dependent activation of endothelial cells during infection with Listeria monocytogenes: activation of NF-kappa B and upregulation of adhesion molecules and chemokines. Mol Microbiol 31:1709–1722PubMedGoogle Scholar
  177. 177.
    Park JM, Ng VH, Maeda S, Rest RF, Karin M (2004) Anthrolysin O and other gram-positive cytolysins are toll-like receptor 4 agonists. J Exp Med 200:1647–1655PubMedPubMedCentralGoogle Scholar
  178. 178.
    Sun R, Liu Y (2013) Listeriolysin O as a strong immunogenic molecule for the development of new anti-tumor vaccines. Hum Vaccin Immunother 9:1058–1068PubMedPubMedCentralGoogle Scholar
  179. 179.
    Wallecha A, Wood L, Pan ZK, Maciag PC, Shahabi V, Paterson Y (2013) Listeria monocytogenes-derived listeriolysin O has pathogen-associated molecular pattern-like properties independent of its hemolytic ability. Clin Vaccine Immunol 20:77–84PubMedPubMedCentralGoogle Scholar
  180. 180.
    Carrero JA, Unanue ER (2012) Mechanisms and immunological effects of apoptosis caused by Listeria monocytogenes. Adv Immunol 113:157–174PubMedGoogle Scholar
  181. 181.
    Rogers HW, Callery MP, Deck B, Unanue ER (1996) Listeria monocytogenes induces apoptosis of infected hepatocytes. J Immunol 156:679–684PubMedGoogle Scholar
  182. 182.
    Carrero JA, Calderon B, Vivanco-Cid H, Unanue ER (2009) Recombinant Listeria monocytogenes expressing a cell wall-associated listeriolysin O is weakly virulent but immunogenic. Infect Immun 77:4371–4382PubMedPubMedCentralGoogle Scholar
  183. 183.
    Edelson BT, Cossart P, Unanue ER (1999) Cutting edge: paradigm revisited: antibody provides resistance to Listeria infection. J Immunol 163:4087–4090PubMedGoogle Scholar
  184. 184.
    Edelson BT, Unanue ER (2001) Intracellular antibody neutralizes Listeria growth. Immunity 14:503–512PubMedGoogle Scholar
  185. 185.
    Carrero JA, Vivanco-Cid H, Unanue ER (2008) Granzymes drive a rapid listeriolysin O-induced T cell apoptosis. J Immunol 181:1365–1374PubMedPubMedCentralGoogle Scholar
  186. 186.
    Carrero JA, Calderon B, Unanue ER (2004) Type I interferon sensitizes lymphocytes to apoptosis and reduces resistance to Listeria infection. J Exp Med 200:535–540PubMedPubMedCentralGoogle Scholar
  187. 187.
    Carrero JA, Unanue ER (2007) Impact of lymphocyte apoptosis on the innate immune stages of infection. Immunol Res 38:333–341PubMedGoogle Scholar
  188. 188.
    Cossart P (2011) Illuminating the landscape of host-pathogen interactions with the bacterium Listeria monocytogenes. Proc Natl Acad Sci USA 108:19484–19491PubMedPubMedCentralGoogle Scholar
  189. 189.
    Rajabian T, Gavicherla B, Heisig M, Muller-Altrock S, Goebel W, Gray-Owen SD, Ireton K (2009) The bacterial virulence factor InlC perturbs apical cell junctions and promotes cell-to-cell spread of Listeria. Nat Cell Biol 11:1212–1218PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Department of Microbiology, Department of Microbial Infection and ImmunityThe Ohio State UniversityColumbusUSA

Personalised recommendations