Structural Features of Cholesterol Dependent Cytolysins and Comparison to Other MACPF-Domain Containing Proteins

  • Robert GilbertEmail author
Part of the Subcellular Biochemistry book series (SCBI, volume 80)


Five different cholesterol-dependent cytolysins (CDCs) have now had their atomic structures solved. Here their structures are compared and shown to vary less in the C-terminal region than they do in their N-terminal MACPF/CDC homology region. The most variable region of the C-terminal domain is the undecapeptide, which is observed in two clusters of conformations, and comparison of this domain with the C2 domain of perforin shows that the two structures have a common ancestor. Structural studies of CDC pre-pore and pore oligomers by cryo-electron microscopy and atomic force microscopy have revealed much about their mechanism of action. Understanding the activity of CDCs has required a combination of structural, biophysical and functional assays but current models of pore formation still require development to account for variable functional pore size.


Cryo-electron microscopy Monomeric CDC structure Oligomeric CDC structures Perforin Structural phylogeny X-ray crystallography 





Analytical ultracentrifugation


Cholesterol-dependent cytolysins




Listeriolysin O


Multi-angle light scattering


Perfringolysin O




Root mean square deviation


Streptolysin O




Transmembrane hairpin


  1. 1.
    Gilbert RJ (2002) Pore-forming toxins. Cell Mol Life Sci 59:832–844PubMedCrossRefGoogle Scholar
  2. 2.
    Menestrina G, Bashford CL, Pasternak CA (1990) Pore-forming toxins: experiments with S. aureus alpha-toxin, C. perfringens theta-toxin and E. coli haemolysin in lipid bilayers, liposomes and intact cells. Toxicon 28:477–491PubMedCrossRefGoogle Scholar
  3. 3.
    Tweten RK (2005) Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73:6199–6209PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Rossjohn J, Feil SC, McKinstry WJ, Tweten RK, Parker MW (1997) Structure of a cholesterol-binding, thiol-activated cytolysin and a model of its membrane form. Cell 89:685–692PubMedCrossRefGoogle Scholar
  5. 5.
    Morgan PJ, Hyman SC, Byron O, Andrew PW, Mitchell TJ, Rowe AJ (1994) Modeling the bacterial protein toxin, pneumolysin, in its monomeric and oligomeric form. J Biol Chem 269:25315–25320PubMedGoogle Scholar
  6. 6.
    Morgan PJ, Hyman SC, Rowe AJ, Mitchell TJ, Andrew PW, Saibil HR (1995) Subunit organisation and symmetry of pore-forming, oligomeric pneumolysin. FEBS Lett 371:77–80PubMedCrossRefGoogle Scholar
  7. 7.
    Olofsson A, Hebert H, Thelestam M (1993) The projection structure of perfringolysin O (Clostridium perfringens theta-toxin). FEBS Lett 319:125–127PubMedCrossRefGoogle Scholar
  8. 8.
    Palmer M, Saweljew P, Vulicevic I, Valeva A, Kehoe M, Bhakdi S (1996) Membrane-penetrating domain of streptolysin O identified by cysteine scanning mutagenesis. J Biol Chem 271:26664–26667PubMedCrossRefGoogle Scholar
  9. 9.
    Shepard LA, Heuck AP, Hamman BD, Rossjohn J, Parker MW, Ryan KR, Johnson AE, Tweten RK (1998) Identification of a membrane-spanning domain of the thiol-activated pore-forming toxin Clostridium perfringens perfringolysin O: an alpha-helical to beta-sheet transition identified by fluorescence spectroscopy. Biochemistry 37:14563–14574PubMedCrossRefGoogle Scholar
  10. 10.
    Shatursky O, Heuck AP, Shepard LA, Rossjohn J, Parker MW, Johnson AE, Tweten RK (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins. Cell 99:293–299PubMedCrossRefGoogle Scholar
  11. 11.
    Bhakdi S, Tranum-Jensen J, Sziegoleit A (1985) Mechanism of membrane damage by streptolysin-O. Infect Immun 47:52–60PubMedCentralPubMedGoogle Scholar
  12. 12.
    Gilbert RJ, Mikelj M, Dalla Serra M, Froelich CJ, Anderluh G (2013) Effects of MACPF/CDC proteins on lipid membranes. Cell Mol Life Sci 70:2083–2098PubMedCrossRefGoogle Scholar
  13. 13.
    Polekhina G, Giddings KS, Tweten RK, Parker MW (2005) Insights into the action of the superfamily of cholesterol-dependent cytolysins from studies of intermedilysin. Proc Nat Acad Sci USA 102:600–605PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Bourdeau RW, Malito E, Chenal A, Bishop BL, Musch MW, Villereal ML, Chang EB, Mosser EM, Rest RF, Tang WJ (2009) Cellular functions and X-ray structure of anthrolysin O, a cholesterol-dependent cytolysin secreted by Bacillus anthracis. J Biol Chem 284:14645–14656PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Xu L, Huang B, Du H, Zhang XC, Xu J, Li X, Rao Z (2010) Crystal structure of cytotoxin protein suilysin from Streptococcus suis. Protein Cell 1:96–105PubMedCrossRefGoogle Scholar
  16. 16.
    Feil SC, Ascher DB, Kuiper MJ, Tweten RK, Parker MW (2013) Structural studies of streptococcus pyogenes streptolysin o provide insights into the early steps of membrane penetration. J Mol Biol (in press). doi: 10.1016/j.jmb.2013.11.020
  17. 17.
    Koster S, Hudel M, Chakraborty T, Yildiz O (2013) Crystallization and X-ray crystallographic analysis of the cholesterol-dependent cytolysin listeriolysin O from Listeria monocytogenes. Acta Crystallogr Sect F Struct Biol Cryst Commun 69:1212–1215PubMedCrossRefGoogle Scholar
  18. 18.
    Czajkowsky DM, Hotze EM, Shao Z, Tweten RK (2004) Vertical collapse of a cytolysin prepore moves its transmembrane beta-hairpins to the membrane. EMBO J 23:3206–3215PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121:247–256PubMedCrossRefGoogle Scholar
  20. 20.
    Soltani CE, Hotze EM, Johnson AE, Tweten RK (2007) Structural elements of the cholesterol-dependent cytolysins that are responsible for their cholesterol-sensitive membrane interactions. Proc Nat Acad Sci USA 104:20226–20231PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Johnson S, Brooks NJ, Smith RA, Lea SM, Bubeck D (2013) Structural basis for recognition of the pore-forming toxin intermedilysin by human complement receptor CD59. Cell Rep 3:1369–1377PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Gilbert RJ, Jimenez JL, Chen S, Tickle IJ, Rossjohn J, Parker M, Andrew PW, Saibil HR (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae. Cell 97:647–655PubMedCrossRefGoogle Scholar
  23. 23.
    Rossjohn J, Gilbert RJ, Crane D, Morgan PJ, Mitchell TJ, Rowe AJ, Andrew PW, Paton JC, Tweten RK, Parker MW (1998) The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae. J Mol Biol 284:449–461PubMedCrossRefGoogle Scholar
  24. 24.
    Law RH, Lukoyanova N, Voskoboinik I, Caradoc-Davies TT, Baran K, Dunstone MA, D’Angelo ME, Orlova EV, Coulibaly F, Verschoor S, Browne KA, Ciccone A, Kuiper MJ, Bird PI, Trapani JA, Saibil HR, Whisstock JC (2010) The structural basis for membrane binding and pore formation by lymphocyte perforin. Nature 468:447–451PubMedCrossRefGoogle Scholar
  25. 25.
    Sonnen AF, Yu C, Evans EJ, Stuart DI, Davis SJ, Gilbert RJ (2010) Domain metastability: a molecular basis for immunoglobulin deposition? J Mol Biol 399:207–213PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Kafsack BF, Carruthers VB (2010) Apicomplexan perforin-like proteins. Commun Integr Biol 3:18–23PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Gilbert RJ (2005) Inactivation and activity of cholesterol-dependent cytolysins: what structural studies tell us. Structure 13:1097–1106PubMedCrossRefGoogle Scholar
  28. 28.
    Gilbert RJ, Heenan RK, Timmins PA, Gingles NA, Mitchell TJ, Rowe AJ, Rossjohn J, Parker MW, Andrew PW, Byron O (1999) Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering. J Mol Biol 293:1145–1160PubMedCrossRefGoogle Scholar
  29. 29.
    Solovyova AS, Nollmann M, Mitchell TJ, Byron O (2004) The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O. Biophys J 87:540–552PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Rossjohn J, Polekhina G, Feil SC, Morton CJ, Tweten RK, Parker MW (2007) Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins. J Mol Biol 367:1227–1236PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Aleshin AE, Schraufstatter IU, Stec B, Bankston LA, Liddington RC, Discipio RG (2012) Structure of complement C6 suggests a mechanism for initiation and unidirectional, sequential assembly of the membrane attack complex (MAC). J Biol Chem 287:10210–10222PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Lovelace LL, Cooper CL, Sodetz JM, Lebioda L (2011) Structure of human C8 protein provides mechanistic insight into membrane pore formation by complement. J Biol Chem 286:17585–17592PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Gilbert RJ (2010) Cholesterol-dependent cytolysins. Adv Exp Med Biol 677:56–66PubMedCrossRefGoogle Scholar
  34. 34.
    Korchev YE, Bashford CL, Pederzolli C, Pasternak CA, Morgan PJ, Andrew PW, Mitchell TJ (1998) A conserved tryptophan in pneumolysin is a determinant of the characteristics of channels formed by pneumolysin in cells and planar lipid bilayers. Biochem J 329:571–577PubMedCentralPubMedGoogle Scholar
  35. 35.
    Marchioretto M, Podobnik M, Dalla Serra M, Anderluh G (2013) What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins. Biophys Chem 182:64–70PubMedCrossRefGoogle Scholar
  36. 36.
    Birmingham CL, Canadien V, Kaniuk NA, Steinberg BE, Higgins DE, Brumell JH (2008) Listeriolysin O allows Listeria monocytogenes replication in macrophage vacuoles. Nature 451:350–354PubMedCrossRefGoogle Scholar
  37. 37.
    El-Rachkidy RG, Davies NW, Andrew PW (2008) Pneumolysin generates multiple conductance pores in the membrane of nucleated cells. Biochem Biophys Res Comm 368:786–792PubMedCrossRefGoogle Scholar
  38. 38.
    Metkar SS, Wang B, Catalan E, Anderluh G, Gilbert RJ, Pardo J, Froelich CJ (2011) Perforin rapidly induces plasma membrane phospholipid flip-flop. PLoS One 6:e24286PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Praper T, Sonnen AF, Kladnik A, Andrighetti AO, Viero G, Morris KJ, Volpi E, Lunelli L, Dalla Serra M, Froelich CJ, Gilbert RJ, Anderluh G (2011) Perforin activity at membranes leads to invaginations and vesicle formation. Proc Nat Acad Sci USA 108:21016–21021PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Praper T, Sonnen AF, Viero G, Kladnik A, Froelich CJ, Anderluh G, Dalla Serra M, Gilbert RJ (2011) Human perforin employs different avenues to damage membranes. J Biol Chem 286:2946–2955PubMedCentralPubMedCrossRefGoogle Scholar
  41. 41.
    Volkmann N, Marassi FM, Newmeyer DD, Hanein D (2013) The rheostat in the membrane: BCL-2 family proteins and apoptosis. Cell Death Differ (in press). doi: 10.1038/cdd.2013.153
  42. 42.
    Xu XP, Zhai D, Kim E, Swift M, Reed JC, Volkmann N, Hanein D (2013) Three-dimensional structure of Bax-mediated pores in membrane bilayers. Cell Death Dis 4:e683PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Basanez G, Nechushtan A, Drozhinin O, Chanturiya A, Choe E, Tutt S, Wood KA, Hsu Y, Zimmerberg J, Youle RJ (1999) Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Nat Acad Sci USA 96:5492–5497PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Qian S, Wang W, Yang L, Huang HW (2008) Structure of transmembrane pore induced by Bax-derived peptide: evidence for lipidic pores. Proc Nat Acad Sci USA 105:17379–17383PubMedCentralPubMedCrossRefGoogle Scholar
  45. 45.
    Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612PubMedCrossRefGoogle Scholar
  46. 46.
    Riffel N, Harlos K, Iourin O, Rao Z, Kingsman A, Stuart D, Fry E (2002) Atomic resolution structure of moloney murine leukemia virus matrix protein and its relationship to other retroviral matrix proteins. Structure 10:1627–1636PubMedCrossRefGoogle Scholar
  47. 47.
    Felsenstein J (1997) An alternating least squares approach to inferring phylogenies from pairwise distances. Syst Biol 46:101–111PubMedCrossRefGoogle Scholar
  48. 48.
    Stivala A, Wybrow M, Wirth A, Whisstock JC, Stuckey PJ (2011) Automatic generation of protein structure cartoons with pro-origami. Bioinformatics 27:3315–3316PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Division of Structural Biology, Wellcome Trust Centre for Human GeneticsUniversity of OxfordOxfordUK

Personalised recommendations