Geophysical Studies of the Lithosphere Along the Dead Sea Transform

  • Michael WeberEmail author
  • Khalil Abu-Ayyash
  • Zvi Ben-Avraham
  • Sungchan Choi
  • Jaser Darwish
  • Radwan El-Kelani
  • Zvi Garfunkel
  • Hans-Jürgen Götze
  • Abraham Hofstetter
  • Ivan Koulakov
  • Gabi Laske
  • James Mechie
  • Uwe Meyer
  • Ayman Mohsen
  • Alexei Petrunin
  • Ernesto Meneses Rioseco
  • Trond Ryberg
  • Georg Rümpker
  • Stephan V. Sobolev
  • DESERT & DESIRE Groups
Part of the Modern Approaches in Solid Earth Sciences book series (MASE, volume 6)


In this chapter we report on the deep structure of the Dead Sea Transform (DST) as derived from geophysical observations and numerical modelling, calibrated by geological and geodynamic evidence.

We use seismics, seismology and gravity to study the crust and lithosphere of the Dead Sea Transform (DST) system. These observations are integrated with 3D thermo-mechanical modelling of the evolution of the DST through time to understand the deeper structure of the DST. The three seismic profiles crossing the DST from the Mediterranean in the West to the Jordan highlands in the East show an increase in Moho depth from about 25 km to about 35 km; with only minor topography. This depth increase of about 10 km of the Moho from West to East is also found in tomographic images using regional and teleseismic events, which shows additionally a N – S trending thickening of the crust under the Arava/Araba Fault (AF). In the Dead Sea Basin (DSB) proper the imaging of the Moho is complicated by the presence of the Lisan Salt dome. From these results and other evidence we conclude that the Dead Sea basin is a mostly upper crustal feature with a decoupling zone at about 20 km depth. Using SKS waves we find below the Moho under the DST a narrow, ca. 20 km wide, vertical decoupling zone reaching into the mantle, representing the boundary layer between the African and Arabian plates. This observation agrees with the results from the study of surface waves that also show a region of reduced S-velocities under the DST, reaching down into the lithosphere. Whereas the lithosphere thins gradually east of the DST from N to S from ca. 80 to ca. 67 km, below about 120 km depth little structure can be observed in tomographic images.

The abovementioned observational constraints can all be fitted with the classical pull-apart model, if the lithosphere was thermally eroded to 80 km thickness about 20 Ma ago, combined with weak rheologies for crust and upper mantle. The most likely explanation of the features described is thus a thinning of the lithosphere around the DST in the Late Cenozoic, likely following by rifting and spreading of the Red Sea.


Geophysics Modelling Moho Arava/Araba fault Lithosphere Upper mantle 



The work presented here was supported by the Deutsche Forschungsgemeinschaft (DFG) and the Deutsches GeoForschungs-Zentrum Potsdam (GFZ). We thank the editors Z. Garfunkel, Z. Ben-Avraham and E. Kagan, and W. Mooney for their comments to this manuscript. We are grateful to U. ten Brink for providing the model of his studies of the DST and A. Siebert for her help in drafting many of the figures, most of them created with the GMT software (Wessel and Smith 1998). We thank the National Ministry of Infrastructure of Israel, the Natural Resources Authority (NRA) of Jordan, the German embassies in Tel Aviv and Amman and the An-Najah National University in Nablus, Palestine, for their support during the field work. We thank our contractors the Geophysical Institute of Israel, the Site Group (Jordan) and the Chemical and Mining Industries (Jordan) for their excellent work under difficult logistic conditions. The instruments for the field work were provided by the Geophysical Instrument Pool of the GFZ. For more information on DESERT and DESIRE, respectively, see:


  1. Agnon A, Marco S, Migowski C (2006) Intraclast breccia layers in laminated sequences: recorders of paleo-earthquakes, New Frontiers In: Enzel Y, Agnon A, Stein M (eds) Paleoenvironmental research. Geol Soc Amer Spec Paper 401, pp 195–214. doi:  10.1130/2006.2401(13)
  2. Aldersons F, Ben-Avraham Z (2014) The seismogenic thickness along the Dead Sea Transform. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) The Dead Sea Transform. Springer, Dordrecht, pp 53–89Google Scholar
  3. Aldersons F, Ben-Avraham Z, Hofstetter A, Kissling E, Al-Yazjeen T (2003) Lower-crustal strength under the Dead Sea basin from local earthquake data and rheological modelling. Earth Planet Sci Lett 214:129–142CrossRefGoogle Scholar
  4. Ambraseys NN, Melville CP, Adams RD (1994) The seismicity of Egypt, Arabia and the Red Sea: a historical review. Cambridge University Press, Cambridge, p 201CrossRefGoogle Scholar
  5. Amiran DHK, Arieh E, Turcotte T (1994) Earthquakes in Israel and adjacent areas, macroscopic observations since 100 B.C.E. Isr Explor J 44:260–305Google Scholar
  6. Amrat AQ, Feldman L, Shapira A (2001) The unified earthquake catalog of the Dead Sea Region.
  7. Bartov Y, Sagy H (2004) Late Pleistocene extension and strike slip in the Dead Sea Basin. Geol Mag 141:565–572CrossRefGoogle Scholar
  8. Ben-Avraham Z (1985) Structural framework of the Gulf of Elat (Aqaba), northern Red Sea. J Geophys Res 90:703–726CrossRefGoogle Scholar
  9. Ben-Avraham Z (2014) Geophysical studies of the crustal structure along the Dead Sea Transform. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) The Dead Sea Transform. Springer, Dordrecht, pp 1–27Google Scholar
  10. Ben-Avraham Z, Schubert G (2006) Deep “drop down” basin in the southern Dead Sea: earth planet. Sci Lett 251:254–263Google Scholar
  11. Ben-Avraham Z, Hänel R, Villinger H (1978) Heat flow through the Dead Sea rift. Mar Geol 28:253–269CrossRefGoogle Scholar
  12. Ben-Avraham Z, Garfunkel Z, Lazar M (2008) Geology and evolution of the Southern Dead Sea fault with emphasis on subsurface structure. Annu Rev Earth Planet Sci 36:357–387. doi: 10.1146/ CrossRefGoogle Scholar
  13. Ben-Avraham Z, Lyakhovsky V, Schubert G (2010) Drop-down formation of deep basins along the Dead Sea and other strike-slip fault systems. Geophys J Int 181:185–197CrossRefGoogle Scholar
  14. Braeuer B, Asch G, Hofstetter R, Haberland C, Jaser D, El-Kelani R, Weber M (2012) Micro-seismicity distribution in the southern Dead Sea area and its implications on the structure of the basin. Geophys J Int 188(3):873–878. doi: 10.1111/j.1365-246X.2011.05318.x CrossRefGoogle Scholar
  15. Choi S, Götze HJ, Meyer U, DESIRE Group (2011) 3D density modelling of underground structures and spatial distribution of salt diapirism in the Dead Sea Basin. Geophys J Int 184:1131–1146. doi: 10.1111/j.1365-246X.2011.04939.x CrossRefGoogle Scholar
  16. DESERT Group (2004) The crustal structure of the Dead Sea Transform. Geophys J Int 156:655–681CrossRefGoogle Scholar
  17. Dziewonski AM, Anderson DL (1981) Preliminary reference earth model. Phys Earth Planet Inter 25:297–356CrossRefGoogle Scholar
  18. Eckstein Y (1979) Heat flow and hydrologic cycle: examples from Israel. In: Cermak V, Rybach L (eds) Terrestrial heat flow in Central Europe. Springer, Heidelberg, pp 88–97CrossRefGoogle Scholar
  19. Eckstein Y, Simmons G (1978) Measurements and interpretation of terrestrial heat flow in Israel. Geothermics 6:117–142CrossRefGoogle Scholar
  20. El-Isa Z, Mechie J, Prodehl C, Makris J, Rihm R (1987a) A crustal structure study of Jordan derived from seismic refraction data. Tectonophysics 138:235–253CrossRefGoogle Scholar
  21. El-Isa Z, Mechie J, Prodehl C (1987b) Shear velocity structure of Jordan from explosion seismic data. Geophys J R Astron Soc 90:265–281CrossRefGoogle Scholar
  22. Förster HJ, Oberhänsli R, Sobolev SV, Förster A, Stromeyer D (2004) Lithosphere composition and thermal regime across the Dead Sea Transform in Israel and Jordan. Eos Trans AGU 85(17), Jt Assem Suppl, Abstract T11A-05Google Scholar
  23. Förster AH, Förster HJ, Masarweh R, Masri A, Tarawneh K, DESERT Group (2007) The terrestrial heat flow of the Arabian shield in Jordan. Int J Earth Sci 30:271–284. doi: 10.1016/j.jseaes.2006.09.002 Google Scholar
  24. Garfunkel Z (1981) Internal structure of the Dead Sea leaky transform (rift) in relation to plate kinematics. Tectonophysics 80:81–108CrossRefGoogle Scholar
  25. Garfunkel Z (1988) The pre-Quaternary geology of Israel. In: Yom-Tov Y, Ternov E (eds) The zoogeography of Israel. W. Junk, Dordrecht, pp 7–34Google Scholar
  26. Garfunkel Z (2014) Overview of geological features of the Dead Sea Transform. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) The Dead Sea Transform. Springer, Dordrecht, pp 109–150Google Scholar
  27. Garfunkel Z, Ben-Avraham Z (1996) The structure of the Dead Sea basin. Tectonophysics 266:155–176CrossRefGoogle Scholar
  28. Ginzburg A, Ben-Avraham Z (1997) A seismic refraction study of the north basin of the Dead Sea, Israel. Geophys Res Lett 24:2063–2066CrossRefGoogle Scholar
  29. Garfunkel Z, Zak I, Freund R (1981) Active faulting in the Dead Sea rift. Tectonophysics 80:1–26CrossRefGoogle Scholar
  30. Ginzburg A, Makris J, Fuchs K, Prodehl C, Kaminski W, Amitai U (1979a) A seismic study of the crust and upper mantle of the Jordan-Dead Sea rift and their transition toward the Mediterranean Sea. J Geophys Res 84:1569–1582CrossRefGoogle Scholar
  31. Ginzburg A, Makris J, Fuchs K, Perathoner B, Prodehl C (1979b) Detailed structure of the crust and upper mantle along the Jordan-Dead Sea rift. J Geophys Res 84:5605–5612CrossRefGoogle Scholar
  32. Gleason GC, Tullis J (1995) A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247:1–23. doi: 10.1016/0040-1951(95)00011-B CrossRefGoogle Scholar
  33. Götze HJ, El-Kelani R, Schmidt S, Rybakov M, Förster HJ, Ebbing J, DESERT Group (2006) Integrated 3-D density modelling and segmentation of the Dead Sea Transform. Int J Earth Sci 289–302. doi: 10.1007/s00531-006-0095-5 Google Scholar
  34. Götze HJ, Meyer U, Choi S (2010a) Helicopter gravity survey in the Holy Land. Eos Trans AGU 91(12):109. doi: 10.1029/2010EO120002
  35. Götze HJ, Meyer U, Choi S, Bartov Y, Ben-Avraham Z, Jasser D, Abu Ayyash K, El-Kelani R (2010b) Helicopter-borne gravity survey in the Dead Sea area. Eos Trans AGU Electronic supplement 91(12):109, 2010. doi: 10.1029/2010EO120002
  36. Grünthal G, Hakimhashemi A, Schelle H, Bosse C, Wahlström R (2009) Study of the long-term temporal behavior of the seismicity of the Dead Sea fault zone and its implication for time-dependent seismic hazard assessments. Scientific technical report STR 09/09, GFZ German Research Centre for Geosciences, PotsdamGoogle Scholar
  37. Hirth G (2002) Laboratory constraints on the rheology of the upper mantle. Rev Mineral Geochem 51(1):97–120. doi: 10.2138/gsrmg.51.1.97 CrossRefGoogle Scholar
  38. Hirth G, Kohlstedt D (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In: Eiler J (ed) Inside the subduction factory, Geophysical monograph series, 138. AGU, Washington, DC, pp 83–105CrossRefGoogle Scholar
  39. Hofstetter A et al (2014) Instrumental data on the seismic activity along the Dead Sea Transform. In: Garfunkel Z, Ben-Avraham Z, Kagan E (eds) The Dead Sea Transform. Springer, Dordrecht, pp 263–278Google Scholar
  40. Hofstetter A, Thio HK, Shamir G (2003) Source mechanism of the 22/11/1995 Gulf of Aqaba earthquake and its aftershock sequence. J Seismol 7:99–114CrossRefGoogle Scholar
  41. Katayama I, Karato SI (2008) Low-temperature, high-stress deformation of olivine under water-saturated conditions. Phys Earth Planet Inter 168:125–133CrossRefGoogle Scholar
  42. Ken-Tor R, Agnon A, Enzel Y, Stein M, Marco S, Negendank JFW (2001) High-resolution geological record of historic earthquakes in the Dead Sea basin. J Geophys Res 106:2221–2234CrossRefGoogle Scholar
  43. Kind R, Kosarev GL, Petersen NV (1995) Receiver functions at the stations of the German Regional Seismic Network (GRSN). Geophys J Int 121:191–202CrossRefGoogle Scholar
  44. Klinger Y, Avouac J, Dorbath L, Karaki NA, Tisnerat N (2000a) Seismic behavior of the Dead Sea fault along Araba valley, Jordan. Geophys J Int 142:769–782CrossRefGoogle Scholar
  45. Klinger Y, Avouac J, Karaki NA, Dorbath L, Bourles D, Reyss JL (2000b) Slip rate on the Dead Sea Transform fault in northern Araba valley (Jordan). Geophys J Int 142:755–768CrossRefGoogle Scholar
  46. Koulakov I, Sobolev SV (2006) Moho depth and three-dimensional P and S structure of the crust and uppermost mantle in the Eastern Mediterranean and Middle East derived from tomographic inversion of local ISC data. Geophys J Int 218–235. doi: 10.1111/j.1365-246X.2005.02791 Google Scholar
  47. Koulakov I, Sobolev SV, Weber M, Oreshin S, Wylegalla K, Hofstetter R (2006) Teleseismic tomography reveals no signature of the Dead Sea Transform in the upper mantle structure, Earth Planet. Sci Lett 252:189–200. doi: 10.1016/j.epsl.2006.09.039 Google Scholar
  48. Laske G, Weber M, DESERT Group (2008) Lithosphere structure across the Dead Sea Transform as constrained by Rayleigh waves observed during the DESERT experiment. Geophys J Int 173:593–610. doi: 10.1111/j.1365- 246X.2008.03749.xCrossRefGoogle Scholar
  49. Le Beon M, Klinger Y, Amrat AQ, Agnon A, Dorbath L, Baer G, Ruegg JC, Charade O, Mayyas O (2008) Slip rate and locking-depth from GPS profiles across the southern Dead Sea Transform. J Geophys Res 113:B11403. doi: 10.1029/2007JB005280 CrossRefGoogle Scholar
  50. Mahmoud S, Reilinger R, McClusky S, Vernant P, Tealeb A (2005) GPS evidence for northward motion of the Sinai Block: implications for E. Mediterranean tectonics. Earth Planet Sci Lett 238:217–224CrossRefGoogle Scholar
  51. Makris J, Ben-Avraham Z, Behle A, Ginzburg A, Giese P, Steinmetz L, Whitmarsch RB, Eleftheriou S (1983) Seismic refraction profiles between Cyprus and Israel and their interpretation. Geophys J R Astron Soc 75:575–591CrossRefGoogle Scholar
  52. Mechie J, Abu-Ayyash K, Ben-Avraham Z, El-Kelani R, Mohsen A, Rümpker G, Saul S, Weber M (2005) Crustal shear velocity structure across the Dead Sea Transform from two-dimensional modelling of DESERT project explosion seismic data. Geophys J Int 160:910–924. doi: 10.1111/j.1365-246X.2005.02526 CrossRefGoogle Scholar
  53. Mechie J, Abu-Ayyash K, Ben-Avraham Z, El-Kelani R, Qabbani I, Weber M, DESIRE Group (2009) Crustal structure of the southern Dead Sea basin derived from project DESIRE wide-angle seismic data. Geophys J Int 178:457–478. doi: 10.1111/j.1365-246X.2009.04161 CrossRefGoogle Scholar
  54. Migowski C, Agnon A, Bookman R, Negendank JFW, Stein M (2004) Recurrence pattern of Holocene earthquakes along the Dead Sea Transform revealed by varve-counting and radiocarbon dating of lacustine sediments. Earth Planet Sci Lett 222:301–314CrossRefGoogle Scholar
  55. Mohsen A, Hofstetter R, Bock G, Kind R, Weber M, Wylegalla K, Rümpker G, DESERT Group (2005) A receiver function study across the Dead Sea Transform. Geophys J Int 160:948–960. doi: 10.1111/j.1365-246X.2005.02534 CrossRefGoogle Scholar
  56. Mohsen A, Kind R, Sobolev S, Weber M, DESERT Group (2006) Thickness of the lithosphere east of the Dead Sea Transform. Geophys J Int 167:845–852CrossRefGoogle Scholar
  57. Mohsen A, Asch G, Mechie J, Kind R, Weber M, Stiller M, Hofstetter R, Abu-Ayyash K, DESIRE Group (2011) Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis. Geophys J Int 184:463–476CrossRefGoogle Scholar
  58. Pasyanos M, Nyblade AA (2007) A top to bottom lithospheric study of Africa and Arabia. Tectonophysics 444:27–44. doi: 10.1016/j.tecto.2007.07.008 CrossRefGoogle Scholar
  59. Petrunin AG, Sobolev SV (2006) What controls thickness of sediments and lithospheric deformation at a pull-apart basin? Geology 34:389–392. doi: 10.1130/G22158.1 DOI: 10.1130/G22158.1#_blank CrossRefGoogle Scholar
  60. Petrunin AG, Sobolev SV (2008) Three-dimensional numerical models of the evolution of pull-apart basins. Phys Earth Planet Inter 171(1–4):387–399. doi: 10.1016/j.pepi.2008.08.017 DOI: 10.1016/j.pepi.2008.08.017#_blank CrossRefGoogle Scholar
  61. Petrunin AG, Meneses Rioseco E, Sobolev SV, Weber M (2012) Thermomechanical model reconciles contradictory geophysical observations for the Dead Sea Basin. Geochem Geophys Geosys 13(4). doi: 10.1029/2011GC003929
  62. Ranalli G (1995) Rheology of the earth, 2nd edn. Chapman & Hall, London, p 413Google Scholar
  63. Reilinger R, 25 co-authors (2006) GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interaction. J Geophys Res 111:B0541. doi: 10.1029/2005JB004051
  64. Rümpker G, Ryberg T, Bock G, DESERT Seismology Group (2003) Boundary-layer mantle flow under the Dead Sea Transform fault inferred from seismic anisotropy. Nature 425:497–501CrossRefGoogle Scholar
  65. Ryberg T, Rümpker G, Haberland C, Stromeyer D, Weber M (2005) Simultaneous inversion of shear waves splitting observations from seismic arrays. J Geophys Res 110:03301. doi: 10.1029/2004JB003303 CrossRefGoogle Scholar
  66. Salamon A, Hofstetter A, Garfunkel Z, Ron H (2003) Seismotectonics of the Sinai subplate – the eastern Mediterranean region. Geophys J Int 155:149–173. doi: 10.1046/j.1365-246X.2003.02017.x CrossRefGoogle Scholar
  67. Shalev E, Lyakhovsky V, Yechieli Y (2007) Is advective heat transport significant at the Dead Sea basin? Geofluids 7:292–300CrossRefGoogle Scholar
  68. Shamir G (2006) The active structure of the Dead Sea Depression. Geol Soc Am Spec Pap 401:15–32Google Scholar
  69. Sobolev SV, Petrunin A, Garfunkel Z, Babeyko AY, DESERT Group (2005) Thermo-mechanical model of the Dead Sea Transform. Earth Planet Sci Lett 238:78–95. doi: 10.1016/j.epsl.2005.06.058 CrossRefGoogle Scholar
  70. Steinitz G, Bartov Y (1991) The Miocene-Pliocene history of the Dead Sea segment of the rift in light of K-Ar ages of basalt. Isr J Earth Sci 40:199–208Google Scholar
  71. ten Brink US, Al-Zoubi AS, Flores CH, Rotstein Y, Qabbani I, Harder SH, Keller GR (2006) Seismic imaging of deep low-velocity zone beneath the Dead Sea basin and transform fault: implications for strain localization and crustal rigidity. Geophys Res Lett 33:L24314. doi: 10.1029/2006GL027890 CrossRefGoogle Scholar
  72. van Eck T, Hofstetter A (1989) Micro-earthquake activity in Dead Sea region. Geophys J Int 99:605–620CrossRefGoogle Scholar
  73. Vinnik LP (1977) Detection of waves converted from P to SV in the mantle. Phys Earth Planet Inter 15:39–45CrossRefGoogle Scholar
  74. Wdowinsky S, Bock Y, Baer G, Prawirodirdjo L, Bechor N, Naaman S, Knafo R, Forrai Y, Melzer Y (2004) GPS measurements of current crustal movements along the Dead Sea fault. J Geophys Res 109:B05403. doi: 10.1029/2003JB002640 Google Scholar
  75. Weber M, 68 coauthors (2009) Anatomy of the Dead Sea Transform from lithospheric to microscopic scale. Rev Geophys 47:RG2002. doi: 10.1029/2008RG000264
  76. Weber M, 68 coauthors (2010) Correction to “Anatomy of the Dead Sea Transform from lithospheric to microscopic scale”. Rev Geophys 48:RG1003Google Scholar
  77. Weber M, Alasonati-Tašárová A, Abu-Ayyash K, Ben-Avraham Z, Choi S, Darwish J, El-Kelani R, Garfunkel Z, Götze HJ, Grünthal G, Hofstetter A, Kesten D, Mechie J, Meyer U, Mohsen A, Paschke M, Petrunin A, Ryberg T, Sobolev SV, Stiller M, DESERT and DESIRE Groups (2009/2010) Results of geophysical studies across the Dead Sea Transform: the Arava/Araba valley and the Dead Sea Basin. Isr J Earth Sci 58:147–161. doi: 10.1560/IJES.58.3-4.147 CrossRefGoogle Scholar
  78. Wessel P, Smith WHF (1998) New, improved version of the Generic Mapping Tool released. EOS Trans Am Geophys Union 79:579CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael Weber
    • 1
    Email author
  • Khalil Abu-Ayyash
    • 2
  • Zvi Ben-Avraham
    • 3
    • 4
  • Sungchan Choi
    • 5
  • Jaser Darwish
    • 2
  • Radwan El-Kelani
    • 6
  • Zvi Garfunkel
    • 7
  • Hans-Jürgen Götze
    • 5
  • Abraham Hofstetter
    • 8
    • 9
  • Ivan Koulakov
    • 10
  • Gabi Laske
    • 11
  • James Mechie
    • 1
  • Uwe Meyer
    • 12
  • Ayman Mohsen
    • 1
  • Alexei Petrunin
    • 1
  • Ernesto Meneses Rioseco
    • 13
  • Trond Ryberg
    • 1
  • Georg Rümpker
    • 14
  • Stephan V. Sobolev
    • 1
  • DESERT & DESIRE Groups
    • 1
  1. 1.Deutsches GeoForschungsZentrum, GFZPotsdamGermany
  2. 2.Natural Resources AuthorityAmmanJordan
  3. 3.Department of Geophysical, Atmospheric and Planetary SciencesTel Aviv UniversityRamat Aviv, Tel AvivIsrael
  4. 4.Charney School of Marine SciencesUniversity of HaifaHaifaIsrael
  5. 5.Christian-Albrechts-Universitaet zu KielKielGermany
  6. 6.An-Najah National UniversityNablusPalestine
  7. 7.The Fredy and Nadine Herrmann Institute of Earth SciencesThe Hebrew University of JerusalemGivat RamIsrael
  8. 8.Geophysical Institute of IsraelLodIsrael
  9. 9.Ecole et Observatoire des Sciences de la TerreUniversity of StrasbourgStrasbourgFrance
  10. 10.Institute of Petroleum Geology and GeophysicsNovosibirskRussia
  11. 11.University of California, San DiegoLa JollaUSA
  12. 12.Bundesanstalt fuer Geowissenschaften und RohstoffeHannoverGermany
  13. 13.Leibniz-Institut fuer Angewandte GeophysikHannoverGermany
  14. 14.Goethe-UniversitaetFrankfurt am MainGermany

Personalised recommendations