Gas Sensing and Thermal Transport Through Carbon-Nanotube-Based Nanodevices

  • Y. Pouillon
  • A. Pérez Paz
  • J. Mäklin
  • N. Halonen
  • Y. Leroy
  • D. Mowbray
  • J.M. García Lastra
  • G. Tóth
  • K. Kordás
  • Z. Kónya
  • Á. Kukovecz
  • A. Rubio
Part of the Challenges and Advances in Computational Chemistry and Physics book series (COCH, volume 16)


Designing nanoscale devices, such as gas sensors and thermal dissipators, is challenging at multiple levels. Exploring their properties through combined experimental and theoretical collaborations is a valuable approach that expands the understanding of their peculiarities and allows for the optimization of the design process. In order to select the most relevant functional molecules for carbon-based gas sensors, and provide the best sensitivity and selectivity possible, we study the electronic transport properties of functionalized carbon nanotubes (CNTs), both through experiments and theoretical calculations. The measurements are carried out both in argon and synthetic air, using CO, NO, and H2S as test cases, with carboxyl-functionalized CNTs. The calculations, performed in the framework of density functional theory, consider both metallic and semi-conducting prototype CNTs, with respective chiralities (6,6) and (7,0), exploring a broader range of functional molecules and gases. The behavior of individual carboxyl-functionalized CNTs deduced from the multiscale results consistently reflect what happens at a larger scale and provides useful insights regarding the experimental results. CNTs are excellent thermal conductors as well and show much promise as heat dissipators in microelectronics. However, in practice, thermal properties of CNTs are affected due to the unavoidable presence of defects and interface with the environment. We investigated these limitations using a multiscale approach. Using molecular dynamics simulations, here we investigate the heat flow across the interface of a (10,10) CNT with various substances, including air and water. We also analyzed computationally the impact of CNT defects on its thermal transport properties using first principles calculations.


Quantum transport processesChemical sensorsDFT atomic and molecular physicsThermal properties of nanotubesDFT condensed matterElectronic transport in nanotubes Electronic transport in nanocontacts 



We are grateful to Profs. S. Roth and V. Skakalova for very interesting discussions and helpful insights. The SGI/IZO-SGIker UPV/EHU (Arina cluster), supported by the Development and Innovation - Fondo Social Europeo, MCyT and Basque Government, is gratefully acknowledged for generous allocation of computational resources and high-quality user support, as well as the Red Española de Supercomputación. Y.P. and J.M.G.L. would like to thank the group of K. Thygesen for providing computational resources and assistance in running the transport code of ASE. We acknowledge financial support from the European Union through the FP7 project: “Thermal management with carbon nanotube architectures” (THEMA-CNT, contract number 228539), the European Research Council Advanced Grant DYNamo (ERC-2010-AdG - 267374) and European Commission projects CRONOS (Grant number 280879-2 CRONOS CP-FP7) and POCAONTAS (FP7-PEOPLE-2012-ITN.Project number 316633). We also received financial support from the Spanish Grants FIS2011-65702-C02-01 and PIB2010US-00652, as well as from the Ikerbasque foundation. Y.P. and A.R. acknowledge funding by the Spanish MEC (FIS2007-65702-C02-01), “Grupos Consolidados UPV/EHU del Gobierno Vasco” (IT-319-07 & IT578-13). Y.P. also acknowledges a contract funded by MICINN (PTA2008-0982-I) and ETORTEK-inanoGUNE (2009–2011).


  1. 1.
    Ao Z, Jiang Q, Li S (2012) Al-doped graphene for ultrasensitive gas detection. Momentum Press, Highland Park. doi:10.5643/9781606503140Google Scholar
  2. 2.
    Muñoz E, Lu J, Yakobson BI (2010) Nano Lett 10(5):1652. doi:10.1021/nl904206dGoogle Scholar
  3. 3.
    Qiu X (2011) Gas sensors: developments, efficacy and safety. Safety and risk in society series. Nova Science Pub IncorporatedGoogle Scholar
  4. 4.
    Fam D, Palaniappan A, Tok A, Liedberg B, Moochhala S (2011) Sens Actuators B Chem 157(1):1. doi:10.1016/j.snb.2011.03.040Google Scholar
  5. 5.
    Charlier JC (2002) Acc Chem Res 35(12):1063. doi:10.1021/ar010166k Scholar
  6. 6.
    Ayala P, Miyata Y, De Blauwe K, Shiozawa H, Feng Y, Yanagi K, Kramberger C, Silva SRP, Follath R, Kataura H, Pichler T (2009) Phys Rev B 80:205427. doi:10.1103/PhysRevB.80.205427 Scholar
  7. 7.
    Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) Carbon 48(3):575. doi:10.1016/j.carbon.2009.10.009Google Scholar
  8. 8.
    Yao Z, Postma HWC, Balents L, C. Dekker (1999) Nature 402(6759):273. doi:10.1038/46241Google Scholar
  9. 9.
    Hu L, Hecht DS, Grner G (2004) Nano Lett 4(12):2513. doi:10.1021/nl048435yGoogle Scholar
  10. 10.
    Lin X, Rümmeli MH, Gemming T, Pichler T, Valentin D, Ruani G, Taliani C (2007) Carbon 45(1):196. doi:10.1016/j.carbon.2006.06.022Google Scholar
  11. 11.
    Chen Z, Appenzeller J, Knoch J, Lin Y, Avouris P (2005) Nano Lett 5(7):1497. doi:10.1021/nl0508624Google Scholar
  12. 12.
    Simon I, Bârsan N, Bauer M, Weimar U (2001) Sens Actuators B Chem 73(1):1. doi:10.1016/S0925-4005(00)00639-0Google Scholar
  13. 13.
    Sinha N, Ma J, Yeow JT (2006) J Nanosci Nanotechnol 6(3):573. doi:10.1166/jnn.2006.121Google Scholar
  14. 14.
    Marulanda JM (ed) (2010) Carbon nanotubes. InTech, Rijeka. doi:10.5772/3451Google Scholar
  15. 15.
    Maeng S (2011) Single-walled carbon nanotube network gas sensor. InTech, Rijeka. doi:10.5772/17884Google Scholar
  16. 16.
    Mowbray DJ, Morgan C, Thygesen KS (2009) Phys Rev B 79:195431. doi:10.1103/PhysRevB.79.195431Google Scholar
  17. 17.
    Rouxinol FP, Gelamo RV, Moshkalev SA (2010) Gas sensors based on decorated carbon nanotubes. InTech, RijekaGoogle Scholar
  18. 18.
    García-Lastra JM, Mowbray DJ, Thygesen KS, Rubio A, Jacobsen KW (2010) Phys Rev B 81:245429. doi:10.1103/PhysRevB.81.245429Google Scholar
  19. 19.
    Mowbray DJ, García-Lastra JM, Thygesen KS, Rubio A, Jacobsen KW (2010) Phys Status Solidi (b) 247(11–12):2678. doi:10.1002/pssb.201000171Google Scholar
  20. 20.
    Pollack GL (1969) Rev Mod Phys 41:48Google Scholar
  21. 21.
    Green MS (1954) J Chem Phy 22(3):398Google Scholar
  22. 22.
    Kubo R, Yokota M, Nakajima S (1957) J Phy Soc Japan 12(11):1203. doi:10.1143/JPSJ.12.1203Google Scholar
  23. 23.
    Müller-Plathe F (1997) J Chem Phy 106(14):6082. doi:10.1063/1.473271Google Scholar
  24. 24.
    Kukovecz A, Molnár D, Kordás K, Gingl Z, Moilanen H, Mingesz R, Kónya Z, Mäklin J, Halonen N, Tóth G, Haspel H, Heszler P, Mohl M, Spi A, Roth S, Vajtai R, Ajayan PM, Pouillon Y, Rubio A, Kiricsi I (2010) Phys Status Solidi (c) 7(3–4):1217. doi:10.1002/pssc.200982973Google Scholar
  25. 25.
    Beecher P, Servati P, Rozhin A, Colli A, Scardaci V, Pisana S, Hasan T, Flewitt AJ, Robertson J, Hsieh GW, Li FM, Nathan A, Ferrari AC, Milne WI (2007) J Appl Phys 102:043710Google Scholar
  26. 26.
    Mustonen T, Mäklin J, Kordás K, Halonen N, Tóth G, Saukko S, Vähäkangas J, Jantunen H, Kar S, Ajayan PM, Vajtai R, Helisto P, Seppa H, Moilanen H (2008) Phys Rev B 77:125430Google Scholar
  27. 27.
    Gracia-Espino E, Sala G, Pino F, Halonen N, Luomahaara J, Mäklin J, Tóth G, Kordás K, Jantunen H, Terrones M, Helist P, Seppä H, Ajayan P, Vajtai R (2010) ACS Nano 4:3318Google Scholar
  28. 28.
    Mott N (1979) Electronic processes in non-crystalline materials, 2nd edGoogle Scholar
  29. 29.
    Skákalová V, Kaiser AB, Woo YS, Roth S (2006) Phys Rev 74:085403. doi:10.1103/PhysRevB.74.085403Google Scholar
  30. 30.
    García-Lastra JM, Thygesen KS, Strange M, Rubio A (2008) Phys Rev Lett 101:236806. doi:10.1103/PhysRevLett.101.236806Google Scholar
  31. 31.
    Bahn S, Jacobsen K (2002) Com Sci Eng 4(3):56. doi:10.1109/5992.998641Google Scholar
  32. 32.
    Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) J Phy Conden Matter 14(11):2745Google Scholar
  33. 33.
    Hall H (1975) Phys A Math Gen 8(2)Google Scholar
  34. 34.
    Wagner M (1991) Phys Rev B 44(12):6104. doi:10.1103/PhysRevB.44.6104Google Scholar
  35. 35.
    Thygesen K, Jacobsen K (2005) Chem Phys 319(1–3):111. doi:10.1016/j.chemphys.2005.05.032Google Scholar
  36. 36.
    Gonze X, Amadon B, Anglade PM, Beuken JM, Bottin F, Boulanger P, Bruneval F, Caliste D, Caracas R, Côté M, Deutsch T, Genovese L, Ghosez P, Giantomassi M, Goedecker S, Hamann D, Hermet P, Jollet F, Jomard G, Leroux S, Mancini M, Mazevet S, Oliveira M, Onida G, Pouillon Y, Rangel T, Rignanese GM, Sangalli D, Shaltaf R, Torrent M, Verstraete M, Zerah G, Zwanziger J (2009) Compu Phys Commun 180(12):2582. doi:10.1016/j.cpc.2009.07.007Google Scholar
  37. 37.
    Toher C, Filippetti A, Sanvito S, Burke K (2005) Phys Rev Lett 95:146402. doi:10.1103/PhysRevLett.95.146402Google Scholar
  38. 38.
    Indlekofer KM, Knoch J (2005) Appenzeller Phys Rev B 72:125308. doi:10.1103/PhysRevB.72.125308Google Scholar
  39. 39.
    Varga K, Pantelides ST (2007) Phys Rev Lett 98:076804. doi:10.1103/PhysRevLett.98.076804Google Scholar
  40. 40.
    Guo J, Datta S, Lundstrom M, Brink M, McEuen P, Javey A, Dai H, Kim H, McIntyre P (2002) Electron devices meeting. IEDM '02. international. pp. 711–714. doi:10.1109/IEDM.2002.1175937Google Scholar
  41. 41.
    Guo J, Datta S, Lundstrom M, Anantam MP (2004) Int J Multiscale Comput Eng 2(2):257. doi:10.1615/IntJMultCompEng.v2.i2.60Google Scholar
  42. 42.
    Koswatta SO, Lundstrom MS, Anantram MP, Nikonov DE (2005) Appl Phys Lett 87(25):253107. doi:10.1063/1.2146065Google Scholar
  43. 43.
    Shinkarev V, Glushenkov A, Kuvshinov D, Kuvshinov G (2010) Carbon 48(7)Google Scholar
  44. 44.
    Cariaso O, Walker Jr P (1975) Carbon 13(3):233Google Scholar
  45. 45.
    Yan R, Liang D, Tsen L, Tay J (2002) Environ Sci Technol 36(20):4460Google Scholar
  46. 46.
    Xiao Y, Wang S, Wu D, Yuan Q (2008) Separ Purif Technol 59(3):326Google Scholar
  47. 47.
    Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622Google Scholar
  48. 48.
    Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801Google Scholar
  49. 49.
    Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929Google Scholar
  50. 50.
    Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) J Phys Chem B 108:19717Google Scholar
  51. 51.
    Sayago I, Terradob E, Lafuente E, Horrillo M, Maser W, Benito A, Navarro R, Urriolabeitia E, Martinez M, Gutierrez J (2005) Synth Metals 148:15Google Scholar
  52. 52.
    Parikh K, Cattanach K, Rao R, Suh DS, Wu A, Manohar SK (2006) Sens Actuators B 113:55Google Scholar
  53. 53.
    Mäklin J, Mustonen T, Kordás K, Saukko S, Tóth G, Vähäkangas J (2007) Phys Stat Sol (b) 244:4298Google Scholar
  54. 54.
    Mäklin J, Mustonen T, Halonen N, Tóth G, Kordás K, Vähäkangas J, Moilanen H, Kukovecz A, Kónya Z, Haspel H, Gingl Z, Heszler P, Vajtai R, Ajayan PM (2008) Phys Stat Sol (b) 245(10):2335. doi:10.1002/pssb.200879580Google Scholar
  55. 55.
    Wongwiriyapan W, Honda SI, Konishi H, Mizuta T, Ikuno T, Ito T, Maekawa T, Suzuki K, Ishikawa H, Oura K, Katayama M (2005) Jpn J Appl Phys 44(L):482Google Scholar
  56. 56.
    Nguyen HQ, Huh JS (2006) Sens Actuators B 117:426Google Scholar
  57. 57.
    Lee JH, Kim J, Seo HW, Song JW, Lee ES, Won M, Han CS (2008) Sens Actuators B 129:628Google Scholar
  58. 58.
    Lucci M, Regoliosi P, Reale A, Carlo AD, Orlanducci S, Tamburri E, Terranova M, Lugli P, Natale CD, DAmico A, Paolesse R (2005) Sens Actuators B 181:111Google Scholar
  59. 59.
    Lucci M, Reale A, Carlo AD, Orlanducci S, Tamburri E, Terranova M, Davoli I, Natale CD, DAmico A, Paolesse R (2006) Sens Actuators B 118:226Google Scholar
  60. 60.
    van Wees BJ, van Houten H, Beenakker CWJ, Williamson JG, Kouwenhoven LP, van der Marel D, Foxon CT (1988) Phys Rev Lett 60:848. doi:10.1103/PhysRevLett.60.848Google Scholar
  61. 61.
    Salvador P, Paizs B, Duran M, Suhai S (2001) J Comput Chem 22(7):765. doi:10.1002/jcc.1042Google Scholar
  62. 62.
    62 Pérez Paz A, García-Lastra JM, Markussen T, Thygesen KS, Rubio A (2013) Carbon nanotubes as heat dissipaters in microelectronics. The European Physical Journal B, 86(5) 234: 1–14. DOI:10.1140/epjb/e2013-40113-5Google Scholar
  63. 63.
    Plimpton S (1995) Comp J Phys 117:1Google Scholar
  64. 64.
    Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) J Phys Condens Matter 14(4):783Google Scholar
  65. 65.
    Brenner DW (1990) Phys Rev B 42:9458. doi:10.1103/PhysRevB.42.9458Google Scholar
  66. 66.
    Stuart SJ, Tutein AB, Harrison JA (2000) J Chem Phy 112(14):6472. doi:10.1063/1.481208Google Scholar
  67. 67.
    Cervellera VR, Albertí M, Huarte-Larrañaga F (2008) Int J Quantum Chem 108(10):1714. doi:10.1002/qua.21590Google Scholar
  68. 68.
    Giannozzi P, Car R, Scoles G (2003) J Chem Phy 118(3):1003. doi:10.1063/1.1536636Google Scholar
  69. 69.
    Arora G, Sandler SI (2006) J Chem Phy 124(8):084702. doi:10.1063/1.2166373Google Scholar
  70. 70.
    Bojan MJ, Vernov AV, Steele WA (1992) Langmuir 8(3):901. doi:10.1021/la00039a027Google Scholar
  71. 71.
    Arab M, Picaud F, Devel M, Ramseyer C, Girardet C (2004) Phys Rev B 69:165401. doi:10.1103/PhysRevB.69.165401Google Scholar
  72. 72.
    Wu Y, Tepper HL, Voth GA (2006) J Chem Phy 124(2):024503. doi:10.1063/1.2136877Google Scholar
  73. 73.
    Hockney JWERW (1988) Particle-particle-particle-mesh (P3M) algorithms. Computer simulation using particles. CRC PressGoogle Scholar
  74. 74.
    Markussen T, Rurali R, Brandbyge M, Jauho AP (2006) Phys Rev B 74:245313Google Scholar
  75. 75.
    Mingo N (2006) Phys Rev B 74:125402. doi:10.1103/PhysRevB.74.125402Google Scholar
  76. 76.
    Berber S, Oshiyama A (2008) Phys Rev B 77:165405. doi:10.1103/PhysRevB.77.165405Google Scholar
  77. 77.
    Berber S, Oshiyama A (2006) Phy B Condens Matter 376–377:272Google Scholar
  78. 78.
    Krasheninnikov A, Lehtinen P, Foster A, Nieminen R (2006) Chemi Phy Lett 418(1–3):132Google Scholar
  79. 79.
    García-Lastra JM, Mowbray DJ, Thygesen KS, Rubio A, Jacobsen KW (2010) Phys Rev B 81:245429. doi:10.1103/PhysRevB.81.245429Google Scholar
  80. 80.
    Lu AJ, Pan BC (2004) Phys Rev Lett 92:105504. doi:10.1103/PhysRevLett.92.105504Google Scholar
  81. 81.
    Amorim RG, Fazzio A, Antonelli A, Novaes FD, Silvada AJR (2007) Nano Lett 7(8):2459Google Scholar
  82. 82.
    Kotakoski J, Krasheninnikov AV, Nordlund K (2006) Phys. Rev. B 74:245420. doi:10.1103/PhysRevB.74.245420Google Scholar
  83. 83.
    Mingo N, Stewart DA, Broido DA, Srivastava D (2008) Phys Rev B 77:033418Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Y. Pouillon
    • 1
  • A. Pérez Paz
    • 1
  • J. Mäklin
    • 2
  • N. Halonen
    • 2
  • Y. Leroy
    • 3
  • D. Mowbray
    • 1
  • J.M. García Lastra
    • 1
  • G. Tóth
    • 2
  • K. Kordás
    • 2
  • Z. Kónya
    • 4
  • Á. Kukovecz
    • 5
  • A. Rubio
    • 1
  1. 1.Nano-Bio Spectroscopy group and ETSF Scientific DevelopmentUniversidad del País Vasco, Centro de Física de Materiales CSIC-UPV/EHU-MPC and DIPCSan SebastiánSpain
  2. 2.Microelectronics and Materials Physics Laboratories, and EMPART Research Group of Infotech OuluUniversity of OuluOuluFinland
  3. 3.Laboratoire ICube-DESSP/MaCÉPVTélécom Physique StrasbourgIllkirch-GraffenstadenFrance
  4. 4.MTA-SZTE Reaction Kinetics and Surface Chemistry Research Group, Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary
  5. 5.MTA-SZTE “Lendulet” Porous Nanocomposites Research Group, Department of Applied and Environmental ChemistryUniversity of SzegedSzegedHungary

Personalised recommendations