Advertisement

Terahertz Imaging System Based on Superconducting Heterodyne Integrated Receiver

  • R. V. Ozhegov
  • K. N. Gorshkov
  • Yu B. Vachtomin
  • K. V. Smirnov
  • M. I. Finkel
  • G. N. Goltsman
  • O. S. Kiselev
  • N. V. Kinev
  • L. V. Filippenko
  • V. P. Koshelets
Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.

Keywords

Temperature Resolution Intermediate Frequency Noise Temperature Conversion Gain Noise Equivalent Temperature Difference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sisov F (2010) THz radiation sensors. Opto Electron Rev 18:10–36CrossRefADSGoogle Scholar
  2. 2.
    Kodo Kawase, Yuichi Ogawa, Hiroaki Minamide, Hiromasa Ito (2005) Terahertz parametric sources and imaging applications. Semicond Sci Technol 20:258–265CrossRefADSGoogle Scholar
  3. 3.
    Zimdars D, White J, Stuck G et al (2007) Time domain terahertz imaging of threats in luggage and personnel. Int J High Speed Electron Syst 17(2):271–281CrossRefGoogle Scholar
  4. 4.
    Luukanen A, Gronberg L, Helisto P, Penttil JS, Seppa H, Sipola H, Dietlein CR, Grossman EN (2006) An array of antenna-coupled superconducting microbolometers for passive indoors real-time THz imaging. Proc SPIE 6212:270–27Google Scholar
  5. 5.
    Crowe TW, Mattauch RJ, Roser HP, Bishop WL, Peatman WCB, Liu X (1992) GaAs Schottky diodes for THz mixing applications. Proc IEEE 80:1827–1841CrossRefADSGoogle Scholar
  6. 6.
    Richards PL et al (1979) Quasiparticle heterodyne mixing in SIS tunnel junctions. Appl Phys Lett 34:345–347CrossRefADSGoogle Scholar
  7. 7.
    Gershenzon EM, Gol’tsman GN, Gogidze IG, Gousev YP, Elant’ev AI, Karasik BS, Semenov AD (1990) Millimeter and submillimeter range mixer based on electronic heating of superconducting films in the resistive state. Sov Phys Supercond 3:1582–1597Google Scholar
  8. 8.
    Josephson BD (1962) Possible new effects in superconducting tunneling. Phys Rev B 1:251zbMATHGoogle Scholar
  9. 9.
    Nagatsuma T, Enpuku K, Irie F, Yoshida K (1983) Flux‐flow type Josephson oscillator for millimeter and submillimeter wave region. J Appl Phys 54:3302. doi: 10.1063/1.332443 CrossRefADSGoogle Scholar
  10. 10.
    Qin J, Enpuku K, Yoshida K (1988) Flux‐flow‐type Josephson oscillator for millimeter and submillimeter wave region. IV. Thin‐film coupling. J Appl Phys 63:1130. doi: 10.1063/1.340019 CrossRefADSGoogle Scholar
  11. 11.
    de Lange G, Boersma D, Dercksen J, Dmitriev P, Ermakov AB, Filippenko LV, Golstein H, Hoogeveen RWM, de Jong L, Khudchenko AV, Kinev NV, Kiselev OS, van Kuik B, de Lange A, Rantwijk J, Sobolev AS, Mikhail Y, Torgashin EV, Yagoubov PA, Koshelets VP (2010) Development and characterization of the superconducting integrated receiver channel of the TELIS atmospheric sounder. Supercond Sci Technol 23:45–61Google Scholar
  12. 12.
    Koshelets VP, Dmitriev PN, Ermakov AB, Filippenko LV, Khudchenko AV, Kinev NV, Kiselev OS, Sobolev AS, Torgashin MY (2009) On-board Integrated submm spectrometer for atmosphere monitoring and radio astronomy. ISTC thematic workshop on perspective materials, devices and structures for space applications, Yerevan, Armenia, 26–28 MayGoogle Scholar
  13. 13.
    Esepkina NA, Korolkov DV, Pariyskiy YN (1973) Radiotelescopes and radiometers (in Russian)Google Scholar
  14. 14.
    Allan D (1966) Statistics of atomic frequency standards. Proc IEEE 54:221–230CrossRefGoogle Scholar
  15. 15.
    Ozhegov RV, Gorshkov KN, Gol’tsman GN, Kinev NV, Koshelets VP (2011) Stability of terahertz receiver based on superconducting integrated receiver. Supercond Sci Technol 24:035–038Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • R. V. Ozhegov
    • 1
    • 2
  • K. N. Gorshkov
    • 1
  • Yu B. Vachtomin
    • 1
    • 2
  • K. V. Smirnov
    • 1
    • 2
  • M. I. Finkel
    • 1
  • G. N. Goltsman
    • 1
    • 2
    • 3
  • O. S. Kiselev
    • 4
  • N. V. Kinev
    • 4
  • L. V. Filippenko
    • 4
  • V. P. Koshelets
    • 4
  1. 1.Moscow State Pedagogical UniversityMoscowRussia
  2. 2.CJSC “Superconducting nanotechnology”MoscowRussia
  3. 3.National Research University Higher School of EconomicsMoscowRussia
  4. 4.Kotel’nikov Institute of Radio Engineering and ElectronicsMoscowRussia

Personalised recommendations