Advertisement

Toward Improved Estimation of the Dynamic Topography and Ocean Circulation in the High Latitude and Arctic Ocean: The Importance of GOCE

  • J. A. Johannessen
  • R. P. Raj
  • J. E. Ø. Nilsen
  • T. Pripp
  • P. Knudsen
  • F. Counillon
  • D. Stammer
  • L. Bertino
  • O. B. Andersen
  • N. Serra
  • N. Koldunov
Chapter
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)

Abstract

The Arctic plays a fundamental role in the climate system and shows significant sensitivity to anthropogenic climate forcing and the ongoing climate change. Accelerated changes in the Arctic are already observed, including elevated air and ocean temperatures, declines of the summer sea ice extent and sea ice thickness influencing the albedo and CO2 exchange, melting of the Greenland Ice Sheet and increased thawing of surrounding permafrost regions. In turn, the hydrological cycle in the high latitude and Arctic is expected to undergo changes although to date it is challenging to accurately quantify this. Moreover, changes in the temperature and salinity of surface waters in the Arctic Ocean and Nordic Seas may also influence the flow of dense water through the Denmark Strait, which are found to be a precursor for changes in the Atlantic meridional overturning circulation with a lead time of around 10 years (Hawkins and Sutton in Geophys Res Lett 35:L11603, 2008). Evidently changes in the Arctic and surrounding seas have far reaching influences on regional and global environment and climate variability, thus emphasizing the need for advanced quantitative understanding of the ocean circulation and transport variability in the high latitude and Arctic Ocean. In this respect, this study combines in situ hydrographical data, surface drifter data and direct current meter measurements, with coupled sea ice–ocean models, radar altimeter data and the latest GOCE-based geoid in order to estimate and assess the quality, usefulness and validity of the new GOCE-derived mean dynamic topography for studies of the ocean circulation and transport estimates in the Nordic Seas and Arctic Ocean.

Keywords

Oceanography in the Arctic Ocean and surrounding seas Mean dynamic topography Surface current GOCE satellite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMAP (1998) AMAP assessment report: Arctic pollution issues. Arctic Monitoring and Assessment Programme (AMAP), Oslo, Norway, 859 ppGoogle Scholar
  2. Andersen OB, Knudsen P (2009) The DNSC08 mean sea surface and mean dynamic topography. J Geophys Res 114:C11. doi: 10.1029/2008JC005179 CrossRefGoogle Scholar
  3. Berx B, Hansen B, Østerhus S, Larsen KM, Sherwin T, Jochumsen K (2013) Combining in situ measurements and altimetry to estimate volume, heat and salt transport variability through the Faroe Shetland Channel. Ocean Sci 9. doi: 10.5194/os-9-639-2013 CrossRefGoogle Scholar
  4. Bingham RJ, Knudsen P, Andersen O, Pail R (2011) An initial estimate of the North Atlantic steady-state geostrophic circulation from GOCE. Geophys Res Lett 38:L01606. doi: 10.1029/2010GL045633 CrossRefGoogle Scholar
  5. Bleck Rainer (2002) An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates. Ocean Model 4(1):55–88CrossRefGoogle Scholar
  6. Bruinsma SL, Marty JC, Balmino G, Biancale R, Förste C, Abrikosov O and Neumayer H (2010) GOCE gravity field recovery by means of the direct numerical method, presented at the ESA Living Planet Symposium, 27th June–2nd July 2010, Bergen, Norway; See also: earth.esa.int/GOCEGoogle Scholar
  7. Bruinsma SL, Förste C, Abrikosov O, Marty J-C, Rio M-H, Mulet S, Bonvalot S (2013) The new ESA satellite-only gravity field model via the direct approach. Geophy Res Lett 40:1–6. doi: 10.1002/grl.50716 CrossRefGoogle Scholar
  8. Cazenave et al (2009) Sea level budget over 2003–2008: a re-evaluation from GRACE space gravimetry, satellite altimetry and Argo. Global Planet Change 65(1–2):83–88CrossRefGoogle Scholar
  9. Cheng YO, Andersen and Knudsen P (2013) Evaluation of gridded and along-track altimetric data in the Arctic Ocean for climate research, submitted to Marine GeodesyGoogle Scholar
  10. Förste C, Bruinsma S, Shako R, Marty JC, Flechtner F, Abrikosov O, Dahle C, Lemoine, JM, Neumayer KH, Biancale R, Barthelmes F, König R, Balmino G (2011) EIGEN-6—A new combined global gravity field model including GOCE data from the collaboration of GFZPotsdam and GRGS-Toulouse; Geophysical Research Abstracts, vol. 13, EGU2011-3242-2, EGU General AssemblyGoogle Scholar
  11. Fu L–L, Cheng B, Qiu B (2001) 25-day period large-scale oscillations in the Argentine Basin revealed by the TOPEX/POSEIDON altimeter. J Phys Oceanogr 31:506–517CrossRefGoogle Scholar
  12. Furevik T, Nilsen JEØ (2005) Large-scale atmospheric circulation variability and its impacts on the Nordic Seas ocean climate—a review. In: The Nordic Seas: an integrated perspective. AGU Geophysical Monograph Series, vol 158. pp 105–136CrossRefGoogle Scholar
  13. Gill AE, Niiler PP (1973) The theory of seasonal variability in the ocean. Deep Sea Res 20:141–177Google Scholar
  14. Haines K, Johannessen JA, Knudsen P, Lea D, Rio MH, Bertino L, Davidson F, Hernandez F (2011) An ocean modelling and assimilation guide to using GOCE geoid products. Ocean Sci 7(1):151–164CrossRefGoogle Scholar
  15. Hansen B, Hatun H, Kristiansen R, Olsen SM, Østerhus S (2010) Stability and forcing of the Iceland-Faroe inflow of water, heat, and salt to the Arctic. Ocean Sci 6:1013–1026CrossRefGoogle Scholar
  16. Hawkins E, Sutton R (2008) Geophys Res Lett 35:L11603. doi: 10.1029/2008GL034059 CrossRefGoogle Scholar
  17. Helland-Hansen B, Nansen F (1909) The Norwegian Sea: its physical oceanography based upon the Norwegian Researches 1900–1904, Report on Norwegian Fishery and Marine Investigation, vol. II. The Royal Department of Trade, Navigation and Industries, Mallingske, Kristiania, pp 390Google Scholar
  18. Henry O, Prandi P, Llovel W, Cazenave A, Jevrejeva S, Stammer D, Meyssignac B, Koldunov N (2012) Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: contribution of the steric and mass components. J Geophys Res 117(C6):C06 023. doi: 10.1029/2011JC007706 CrossRefGoogle Scholar
  19. Johannessen JA, Balmino G, Le Provost C, Rummel R, Sabadini R, Sünkel H, Tscherning CC, Visser P, Woodworth P, Hughes CW, LeGrand P, Sneeuw N, Perosanz F, Aguirre-Martinez M, Rebhan H, Drinkwater M (2003) The European gravity field and steady-state ocean circulation explorer satellite mission: impact in Geophysics. Surv Geophy 24:339–386CrossRefGoogle Scholar
  20. Knudsen P, Bingham R, Andersen O, Rio Marie-Helene (2011) A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model. J Geodesy. doi: 10.1007/s00190-011-0485-8 CrossRefGoogle Scholar
  21. Koldunov NV, Serra N, Kohl A, Stammer D, Henry O, Prandi P, Cazenave A, Knudsen P, Andersen OB, Gao Y, Johannessen JA (2013) Arctic Ocean Sea Surface Height variability during the last 40 years, to be submitted to JGR Google Scholar
  22. Koop R, Gruber T, Rummel R (2007) The status of the GOCE highlevel processing facility (HPF). In: Proceedings of the 3rd GOCE User Workshop, pp 199–204, European Space Research Institute, European Space Agency, Frascati, ItalyGoogle Scholar
  23. Kwok R, Morison J (2011) Dynamic topography of the ice-covered Arctic Ocean from ICESat. Geophys Res Lett 38(2):L02 501. doi: 10.1029/2010GL046063 CrossRefGoogle Scholar
  24. Maximenko N, Niiler P, Rio M-H, Melnichenko O, Centurioni L, Chambers D, Zlotnicki V, Galperin B (2009) Mean dynamic topography of the ocean derived from satellite and drifting buoy data using three different techniques. J Atmos Ocean Tech 26(9):1910–1919CrossRefGoogle Scholar
  25. Mcphee MG (2013) Intensification of geostrophic currents in the Canada Basin, Arctic Ocean. J Climate 26. doi: 10.1175/JCLI-D-12-00289.1 CrossRefGoogle Scholar
  26. Morison J, Kwok R, Peralta-Ferriz C, Alkire M, Rigor I, Andersen R, Steele M (2012) Changing Arctic Ocean freshwater pathways. Nature 481(7379):66–70. doi: 10.1038/nature10705 CrossRefGoogle Scholar
  27. Mork KA, Skagseth Ø (2005) Annual sea surface height variability in the Nordic Seas, in The Nordic Seas: An Integrated Perspective, Geophys Monogr Ser, vol. 158, edited by H. Drange et al. pp. 51–64, AGU, Washington, DCGoogle Scholar
  28. Mork KA, Skagseth Ø (2010) A quantitative description of the Norwegian Atlantic current by combining altimetry and hydrography. Ocean Sci 6:901–911. doi: 10.5194/os-6-901-2010 CrossRefGoogle Scholar
  29. Nilsen JEØ, Hatun H, Mork KA and Valdimarsson H (2008) The NISE Data Set. Technical Report 08-01, Faroese Fisheries Laboratory, Box 3051, Torshavn, Faroe IslandsGoogle Scholar
  30. Nilsen JEØ, Falck E (2006) Variation of mixed layer properties in the Norwegian Sea for the period 1948–1999. Prog Oceanogr 70:58–90. doi: 10.1016/j.pocean.2006.03.014 CrossRefGoogle Scholar
  31. Nilsen JEØ, Nilsen F (2007) The Atlantic water flow along the Vøring plateau: detecting frontal structures in oceanic station time series. Deep Sea Res Part 1 54(3):297–319. doi: 10.1016/j.dSV.2006.12.012 CrossRefGoogle Scholar
  32. Nøst OA, Isachsen PE (2003) The large-scale time-mean ocean circulation in the Nordic seas and Arctic Ocean estimated from simplified dynamics. J Mar Res 61:175–210CrossRefGoogle Scholar
  33. Orvik KA, Skagseth Ø (2003) Monitoring the Norwegian Atlantic slope current using a single moored current meter. Cont Shelf Res 23:159–176CrossRefGoogle Scholar
  34. Orvik KA, Skagseth Ø (2005) Heat flux variations in the eastern Norwegian Atlantic current toward the Arctic from moored instruments, 1995–2005. Geophys Res Lett 32:L14610. doi: 10.1029/2005GL023487 CrossRefGoogle Scholar
  35. Orvik KA, Skagseth Ø, Mork M (2001) Atlantic inflow to the Nordic Seas: current structure and volume fluxes from moored current meters, VM-ADCP and SeaSoar-CTD observations, 1995–1999. Deep-Sea Res I:48. doi: 10.1016/S0967-0637(00)00038-8 CrossRefGoogle Scholar
  36. Østerhus S, Turrrell WR, Jónsson S, Hansen B (2005) Measured volume, heat, and salt fluxes from the Atlantic to the Arctic Mediterranean. Geophys Res Lett 32:L07603. doi: 10.1029/2004GL022188 CrossRefGoogle Scholar
  37. Pail R, Bruinsma S, Migliaccio F, Foerste C, Goiginger H, Schuh W-D, Hoeck E, Reguzzoni M, Brockmann JM, Abrikosov O, Veicherts M, Fecher T, Mayrhofer R, Krasbutter I, Sanso F, Tscherning CC (2011) First GOCE gravity field models derived by three different approaches. J Geodesy 85(11):819–843CrossRefGoogle Scholar
  38. Panet I, Flury J, Biancale R, Gruber T, Johannessen JA, van den Broeke MR, van Dam P, Gegout T, Hughes CW, Ramillien G, Sasgen I, Seoane L, Thomas M (2012) Earth system mass transport mission (e.motion): a concept for future earth gravity field measurements from space. Surv Geophy. doi: 10.1007/s1072-012-9209-8 CrossRefGoogle Scholar
  39. Prandi P, Ablain M, Cazenave A, Picot N (2012) Sea level variability in the Arctic Ocean observed by satellite altimetry. Ocean Sci Discuss 9(4):2375–2401. doi: 10.5194/osd-9-2375-2012 CrossRefGoogle Scholar
  40. Rio MH, Guinehut S, Larnicol G (2011) New CNES-CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements. J Geophys Res 116:C07018. doi: 10.1029/2010JC006505 CrossRefGoogle Scholar
  41. Rossby T, Ozhigin V, Ivshin V, Bacon S (2009) An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin. Deep Sea Res Part 1 56:1955–1971. doi: 10.1016/j.dsr.2009.07.005 CrossRefGoogle Scholar
  42. Sakov P, Counillon F, Bertino L, Lisæter KA, Oke PR, Korablev A (2012) TOPAZ4: an ocean-sea ice data assimilation system for the North Atlantic and Arctic. Ocean Sci 8:633–656. doi: 10.5194/os-8-633-2012 CrossRefGoogle Scholar
  43. Sandø AB, Nilsen JEØ, Eldevik T, Bentsen M (2012) Mechanisms for variable North Atlantic–Nordic seas exchanges. J Geophys Res 117:C12006. doi: 10.1029/2012JC008177 CrossRefGoogle Scholar
  44. Serra NRH, Käse A, Stammer Köhl D, Quadfasel D (2010) On the low-frequency phase relation between the Denmark Strait and the Faroe-Bank Channel overflows. Tellus 62:530–550. doi: 10.1111/j.1600-0870.2010.00445.x CrossRefGoogle Scholar
  45. Shum CK, Hans-Peter Plag, Jens Schröter, Victor Zlotnicki, Peter Bender, Alexander Braun, Anny Cazenave, Don Chamber, Jianbin Duan, William Emery, Georgia Fotopoulos, Viktor Gouretski, Richard Gross, Thomas Gruber, Junyi Guo, Guoqi Han, Chris Hughes, Masayoshi Ishii, Steven Jayne, Johnny A. Johannesen, Per Knudsen, Chung-Yen Kuo, Eric Leuliette, Sydney Levitus, Nikolai Maximenko, Laury Miller, James Morison, Harunur Rashid, John Ries, Markus Rothacher, Reiner Rummel, Kazuo Shibuya, Michael Sideris, Y. Tony Song, Detlef Stammer, Maik Thomas, Josh Willis, Philip Woodworth (2010) Geodetic observations of the ocean surface topography, geoid, currents and changes in ocean mass and volume, Plenary Session Paper, OceanObs09, Venice Italy, 21–25 Sept. 2009, ESA Publicatiion WPP 306, doi:  10.5270/OceanObs09
  46. Siegismund F, Johannessen JA, Drange H, Mork KA, Korablev A (2007) Steric height variability in the Nordic Seas. J Geophys Res 112:C12010. doi: 10.1029/2007/JC004221 CrossRefGoogle Scholar
  47. Skagseth Ø, Furevik T, Ingvaldsen R, Loeng H, Mork KA, Orvik KA, Ozhigin V (2008) Volume and Heat Transports to the Arctic Ocean via the Norwegian and Barents Seas. In: Dickson (ed) Arctic-Subarctic Ocean Fluxes (ASOF): Defining the Role of the Northern Seas in Climate. Springer, Berlin, pp 45–64CrossRefGoogle Scholar
  48. Søiland H, Prater MD, Rossby T (2008) Rigid topographic control of currents in the Nordic Seas. Geophys Res Lett 35:L18607. doi: 10.1029/2008GL034846 CrossRefGoogle Scholar
  49. Stammer D (1997) Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations. J Geophys Res. doi:102,20,987-21,009Google Scholar
  50. Steele M, Ermold W (2007) Steric sea level change in the northern seas. J Climate 20. doi: 10.1175/JCLI4022.1 CrossRefGoogle Scholar
  51. Tomczak M, Godfrey JS (2003) Regional Oceanograhy: An Introduction, 2nd edn. Daya Publishing House, New DelhiGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. A. Johannessen
    • 1
  • R. P. Raj
    • 1
  • J. E. Ø. Nilsen
    • 1
  • T. Pripp
    • 1
  • P. Knudsen
    • 2
  • F. Counillon
    • 1
  • D. Stammer
    • 3
  • L. Bertino
    • 1
  • O. B. Andersen
    • 2
  • N. Serra
    • 3
  • N. Koldunov
    • 3
  1. 1.Nansen Environmental and Remote Sensing CenterBergenNorway
  2. 2.National Space InstituteTechnical University of DenmarkLyngbyDenmark
  3. 3.Center für Erdsystemforschung und Nachhaltigkeit (CEN)University of HamburgHamburgGermany

Personalised recommendations