Advertisement

Physically Consistent Responses of the Global Atmospheric Hydrological Cycle in Models and Observations

  • Richard P. Allan
  • Chunlei Liu
  • Matthias Zahn
  • David A. Lavers
  • Evgenios Koukouvagias
  • Alejandro Bodas-Salcedo
Part of the Space Sciences Series of ISSI book series (SSSI, volume 46)

Abstract

Robust and physically understandable responses of the global atmospheric water cycle to a warming climate are presented. By considering interannual responses to changes in surface temperature (T), observations and AMIP5 simulations agree on an increase in column integrated water vapor at the rate 7 %/K (in line with the Clausius–Clapeyron equation) and of precipitation at the rate 2–3 %/K (in line with energetic constraints).Using simple and complex climate models, we demonstrate that radiative forcing by greenhouse gases is currently suppressing global precipitation (P) at ~−0.15 %/decade. Along with natural variability, this can explain why observed trends in global P over the period 1988−2008 are close to zero. Regional responses in the global water cycle are strongly constrained by changes in moisture fluxes. Model simulations show an increased moisture flux into the tropical wet region at 900 hPa and an enhanced outflow (of smaller magnitude) at around 600 hPa with warming. Moisture transport explains an increase in P in the wet tropical regions and small or negative changes in the dry regions of the subtropics in CMIP5 simulations of a warming climate. For AMIP5 simulations and satellite observations, the heaviest 5-day rainfall totals increase in intensity at ~15 %/K over the ocean with reductions at all percentiles over land. The climate change response in CMIP5 simulations shows consistent increases in P over ocean and land for the highest intensities, close to the Clausius−Clapeyron scaling of 7 %/K, while P declines for the lowest percentiles, indicating that interannual variability over land may not be a good proxy for climate change. The local changes in precipitation and its extremes are highly dependent upon small shifts in the large-scale atmospheric circulation and regional feedbacks.

Keywords

Precipitation Water Climate models Satellite data Global change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler RF, Gu G, Wang JJ, Huffman GJ, Curtis S, Bolvin D (2008) Relationships between global precipitation and surface temperature on interannual and longer timescales (1979–2006). J Geophys Res 113:D22104. doi: 10.1029/2008JD010536 CrossRefGoogle Scholar
  2. Allan RP (2006) Variability in clear-sky longwave radiative cooling of the atmosphere. J Geophys Res 111:D22105. doi: 10.1029/2006JD007304 CrossRefGoogle Scholar
  3. Allan RP (2012) Regime dependent changes in global precipitation. Clim Dyn 39:827–840. doi: 10.1007/s00382-011-1134-x CrossRefGoogle Scholar
  4. Allan RP, Soden BJ, John VO, Ingram WI, Good P (2010) Current changes in tropical precipitation. Environ Res Lett 5:025205. doi: 10.1088/1748-9326/5/2/025205 CrossRefGoogle Scholar
  5. Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232CrossRefGoogle Scholar
  6. Andrews T, Forster PM (2010) The transient response of global-mean precipitation to increasing carbon dioxide levels. Environ Res Lett 5:025212. doi: 10.1088/1748-9326/5/2/025212 CrossRefGoogle Scholar
  7. Andrews T, Forster PM, Boucher O, Bellouin N, Jones A (2010) Precipitation, radiative forcing and global temperature change. Geophys Res Lett 37:L14701. doi: 10.1029/2010GL043991 CrossRefGoogle Scholar
  8. Arora VK, Scinocca JF, Boer GJ, Christian JR, Denman KL, Flato GM, Kharin VV, Lee WG, Merryfield WJ (2011) Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys Res Lett 38:L05805. doi: 10.1029/2010GL046270 CrossRefGoogle Scholar
  9. Back LE, Bretherton CS (2006) Geographic variability in the export of moist static energy and vertical motion profiles in the tropical Pacific. Geophys Res Lett 33:L17810. doi: 10.1029/2006GL026672 CrossRefGoogle Scholar
  10. Bala G, Caldeira K, Nemani R (2010) Fast versus slow response in climate change: implications for the global hydrological cycle. Clim Dyn 35:423–434. doi: 10.1007/s00382-009-0583-y CrossRefGoogle Scholar
  11. Bengtsson L, Hodges KI, Koumoutsaris S, Zahn M, Keenlyside N (2011) The changing atmospheric water cycle in Polar Regions in a warmer climate. Tellus A 63:907–920. doi: 10.1111/j.1600-0870.2011.00534.x CrossRefGoogle Scholar
  12. Cao L, Bala G, Caldeira K (2012) Climate response to changes in atmospheric carbon dioxide and solar irradiance on the time scale of days to weeks. Environ Res Lett 7:034015. doi: 10.1088/1748-9326/7/3/034015 CrossRefGoogle Scholar
  13. Chou C, Neelin JD, abd J-Y Tu CAC (2009) Evaluating the ”rich get richer” mechanism in tropical precipitation change under global warming. J Clim 22:1982–2005CrossRefGoogle Scholar
  14. Chung ES, Soden BJ (2010) Radiative signature of increasing atmospheric carbon dioxide in HIRS satellite observations. Geophys Res Lett 37:L07707. doi: 10.1029/2010GL042698 CrossRefGoogle Scholar
  15. Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an earth-system model—HadGEM2. Geosci Model Dev Discuss 4:997–1062. doi: 10.5194/gmdd-4-997-2011 CrossRefGoogle Scholar
  16. Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Hólm EV, Isaksen L, Kållberg P, Köhler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thépaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J Roy Meteorol Soc 137:553–597. doi: 10.1002/qj.828 CrossRefGoogle Scholar
  17. Dettinger MD, Ralph FM, Das T, Neiman PJ, Cayan DR (2011) Atmospheric rivers, floods and the water resources of California. Water 3:445–478. doi: 10.3390/w3020445 CrossRefGoogle Scholar
  18. Gent PR, Danabasoglu G, Donner LJ, Holland MM, Hunke EC, Jayne SR, Lawrence DM, Neale RB, Rasch PJ, Vertenstein M, Worley PH, Yang ZL, Zhang M (2011) The community climate system model version 4. J Clim 24:4973–4991. doi: 10.1175/2011JCLI4083.1 CrossRefGoogle Scholar
  19. Gu G, Adler RF (2012) Interdecadal variability/long-term changes in global precipitation patterns during the past three decades: global warming and/or pacific decadal variability? Clim Dyn. doi: 10.1007/s00382-012-1443-8 CrossRefGoogle Scholar
  20. Gu G, Adler RF, Huffman GJ, Curtis S (2007) Tropical rainfall variability on interannual-to-interdecadal and longer time scales derived from the GPCP monthly product. J Clim 20:4033–4046CrossRefGoogle Scholar
  21. Haerter JO, Berg P, Hagemann S (2010) Heavy rain intensity distributions on varying time scales and at different temperatures. J Geophys Res 115:D17102CrossRefGoogle Scholar
  22. Hansen J, Johnson D, Lacis A, Lebedeff S, Lee P, Rind D, Russell G (1981) Climate impact of increasing atmospheric carbon dioxide. Science 213:957–966. doi: 10.1126/science.213.4511.957 CrossRefGoogle Scholar
  23. Hansen J, Sato M, Ruedy R, Kharecha P, Lacis A, Miller R, Nazarenko L, Lo K, Schmidt GA, Russell G, Aleinov I, Bauer S, Baum E, Cairns B, Canuto V, Chandler M, Cheng Y, Cohen A, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Jonas J, Kelley M, Kiang NY, Koch D, Labow G, Lerner J, Menon S, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Schmunk R, Shindell D, Stone P, Sun S, Streets D, Tausnev N, Thresher D, Unger N, Yao M, Zhang S (2007) Climate simulations for 1880-2003 with GISS modelE. Clim Dyn 29:661–696. doi: 10.1007/s00382-007-0255-8 CrossRefGoogle Scholar
  24. Hansen J, Sato M, Kharecha P, von Schuckmann K (2011) Earth’s energy imbalance and implications. Atmos Chem Phys 11:13421–13449. doi: 10.5194/acp-11-13421-2011 CrossRefGoogle Scholar
  25. Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37:407–418. doi: 10.1007/s00382-010-0810-6 CrossRefGoogle Scholar
  26. Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19:5686–5699CrossRefGoogle Scholar
  27. Hourdin F, Grandpeix JY, Rio C, Bony S, Jam A, Cheruy F, Rochetin N, Fairhead L, Idelkadi A, Musat I, Dufresne JL, Lahellec A, Lefebvre MP, Roehrig R (2012) LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection. Clim Dyn. doi: 10.1007/s00382-012-1343-y CrossRefGoogle Scholar
  28. Huffman GJ, Adler RF, Bolvin DT, Gu G (2009) Improving the global precipitation record: GPCP version 2.1. Geophys Res Lett 36:L17808. doi: 10.1029/2009GL040000 CrossRefGoogle Scholar
  29. Ingram W (2010) A very simple model for the water vapour feedback on climate change. Q J R Meteorol Soc 136:30–40. doi: 10.1002/qj.546 CrossRefGoogle Scholar
  30. John VO, Allan RP, Soden BJ (2009) How robust are observed and simulated precipitation responses to tropical warming. Geophys Res Lett 36:L14702. doi: 10.1029/2009GL038276 CrossRefGoogle Scholar
  31. Lambert FH, Webb MJ (2008) Dependency of global mean precipitation on surface temperature. Geophys Res Lett 35:L16706. doi: 10.1029/2008GL034838 CrossRefGoogle Scholar
  32. Lavers DA, Allan RP, Wood EF, Villarini G, Brayshaw DJ, Wade AJ (2011) Winter floods in Britain are connected to atmospheric rivers. Geophys Res Lett 38:L23803. doi: 10.1029/2011GL049783 CrossRefGoogle Scholar
  33. Lenderink G, Mok HY, Lee TC, van Oldenborgh GJ (2011) Scaling and trends of hourly precipitation extremes in two different climate zones—Hong Kong and The Netherlands. Hydrol Earth Syst Sci 15:3033–3041. doi: 10.5194/hess-15-3033-2011 CrossRefGoogle Scholar
  34. Liu C, Allan RP (2012) Multisatellite observed responses of precipitation and its extremes to interannual climate variability. J Geophys Res 117:D03101. doi: 10.1029/2011JD016568 CrossRefGoogle Scholar
  35. Liu C, Allan RP, Huffman GJ (2012) Co-variation of temperature and precipitation in CMIP5 models and satellite observations. Geophys Res Lett 39:L13803. doi: 10.1029/2012GL052093 CrossRefGoogle Scholar
  36. Loeb NG, Lyman JM, Johnson GC, Allan RP, Doelling DR, Wong T, Soden BJ, Stephens GL (2012) Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nat Geosci 5:110–113. doi: 10.1038/ngeo1375 CrossRefGoogle Scholar
  37. Lu J, Cai M (2009) Stabilization of the atmospheric boundary layer and the muted global hydrological cycle response to global warming. J Hydrometeorol 10:347–352. doi: 10.1175/2008JHM1058.1 CrossRefGoogle Scholar
  38. Manabe S, Wetherald RT (1967) Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24:241–259CrossRefGoogle Scholar
  39. Manabe S, Wetherald RT (1975) The effects of doubling the CO2 concentration on the climate of a general circulation model. J Atmos Sci 32:3–15CrossRefGoogle Scholar
  40. Manabe S, Wetherald RT (1980) On the distribution of climate change resulting from an increase in CO2 content in the atmosphere. J Atmos Sci 37:99–118CrossRefGoogle Scholar
  41. Martin G (2012) Quantifying and reducing uncertainty in the large-scale responses of the water cycle. Surv Geophys (accepted) doi: 10.1007/s10712-012-9203-1 CrossRefGoogle Scholar
  42. McInerney D, Moyer E (2012) Direct and disequilibrium effects on precipitation in transient climates. Atmos Chem Phys Discuss 12:19649–19681. doi: 10.5194/acpd-12-19649-2012 CrossRefGoogle Scholar
  43. Meehl G, Stocker T, Collins W, Friedlingstein P, Gaye A, Gregory J, Kitoh A, Knutti R, Murphy J, Noda A, Raper S, Watterson I, Weaver A, Zhao ZC (2007) Global climate projections. Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, pp 747–845Google Scholar
  44. Merrifield MA (2011) A shift in western tropical Pacific Sea level trends during the 1990s. J Clim 24:4126–4138 doi: 10.1175/2011JCLI3932.1 CrossRefGoogle Scholar
  45. Min S, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381CrossRefGoogle Scholar
  46. Ming Y, Ramaswamy V, Persad G (2010) Two opposing effects of absorbing aerosols on global-mean precipitation. Geophys Res Lett 37:L13701CrossRefGoogle Scholar
  47. Mitchell J, Wilson CA, Cunnington WM (1987) On CO2 climate sensitivity and model dependence of results. Q J Roy Meteorol Soc 113:293–322CrossRefGoogle Scholar
  48. Morice CP, Kennedy JJ, Rayner NA, Jones PD (2012) Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J Geophys Res 117:D08101. doi: 10.1029/2011JD017187 CrossRefGoogle Scholar
  49. O’Gorman PA (2012) Sensitivity of tropical precipitation extremes to climate change. Nat Geosci 5:697–700 doi: 10.1038/ngeo1568 CrossRefGoogle Scholar
  50. O’Gorman PA, Schneider T (2009) The physical basis for increases in precipitation extremes in simulations of 21st-century climate change. Proc Nat Acad Sci 106:14773–14777CrossRefGoogle Scholar
  51. O’Gorman PA, Allan RP, Byrne MP, Previdi M (2012) Energetic constraints on precipitation under climate change. Surv Geophys 33:585–608. doi: 10.1007/s10712-011-9159-6 CrossRefGoogle Scholar
  52. Peterson TC, Stott PA, Herring S (2012) Explaining extreme events of 2011 from a climate perspective. Bull Am Meteorol Soc 93:1041–1067. doi: 10.1175/BAMS-D-12-00021.1 CrossRefGoogle Scholar
  53. Power SB, Delage F, Colman R, Moise A (2011) Consensus on twenty-first-century rainfall projections in climate models more widespread than previously thought. J Clim 25:3792–3809CrossRefGoogle Scholar
  54. Prata F (2008) The climatological record of clear-sky longwave radiation at the earth’s surface: evidence for water vapour feedback? Int J Remote Sens 29:5247–5263. doi: 10.1080/01431160802036508 CrossRefGoogle Scholar
  55. Raddatz TJ, Reick CH, Knorr W, Kattge J, Roeckner E, Schnur R, Schnitzler KG, Wetzel P, Jungclaus J (2007) Will the tropical land biosphere dominate the climate-carbon cycle feedback during the twenty-first century? Clim Dyn 29:565–574. doi: 10.1007/s00382-007-0247-8 CrossRefGoogle Scholar
  56. Ramanathan V (1981) The role of ocean–atmosphere interactions in the CO2 climate problem. J Atmos Sci 38:918–930CrossRefGoogle Scholar
  57. Richter I, Xie SP (2008) The muted precipitation increase in global warming simulations: a surface evaporation perspective. J Geophys Res 113:D24118. doi: 10.1029/2008JD010561 CrossRefGoogle Scholar
  58. Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM 5. Part I: model description. Technical report 349, 140 pp, Max-Plank institüte für Meteorologie, HamburgGoogle Scholar
  59. Simmons AJ, Willett KM, Jones PD, Thorne PW, Dee DP (2010) Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: inferences from reanalyses and monthly gridded observational data sets. J Geophys Res 115:D01110. doi: 10.1029/2009JD012442 CrossRefGoogle Scholar
  60. Soden BJ, Jackson DL, Ramaswamy V, Schwarzkopf MD, Huang X (2005) The radiative signature of upper tropospheric moistening. Science 310:841–844CrossRefGoogle Scholar
  61. Sohn BJ, Yeh SW, Schmetz J, Song HJ (2012) Observational evidences of Walker circulation change over the last 30years contrasting with GCM results. Clim Dyn 1–12. doi: 10.1007/s00382-012-1484-z CrossRefGoogle Scholar
  62. Stackhouse PW Jr, Gupta SK, Cox SJ, Zhang T, Mikovitz JC, Hinkelman LM (2011) 24.5-year srb data set released. GEWEX News 21:10–12Google Scholar
  63. Stephens GL, Ellis TD (2008) Controls of global-mean precipitation increases in global warming GCM experiments. J Clim 21:6141–6155CrossRefGoogle Scholar
  64. Sugiyama M, Shiogama H, Emori S (2010) Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models. Proc Natl Acad Sci 107:571–575CrossRefGoogle Scholar
  65. Taylor KE, Stouffer RJ, Meehl GA (2011) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93:485–498. doi: 10.1175/BAMS-D-11-00094.1 CrossRefGoogle Scholar
  66. Trenberth KE (2011) Changes in precipitation with climate change. Clim Res 47:123–138CrossRefGoogle Scholar
  67. Trenberth KE, Fasullo JT, Mackaro J (2011) Atmospheric moisture transports from ocean to land and global energy flows in reanalyses. J Clim 24:4907–4924. doi: 10.1175/2011JCLI4171.1 CrossRefGoogle Scholar
  68. Turner AG, Slingo JM (2009) Uncertainties in future projections of extreme precipitation in the indian monsoon region. Atmos Sci Lett 10:152–158CrossRefGoogle Scholar
  69. Vecchi GA, Soden BJ, Wittenberg AT, Held IM, Leetmaa A, Harrison MJ (2006) Weakening of tropical pacific atmospheric circulation due to anthropogenic forcing. Nature 441:73–76CrossRefGoogle Scholar
  70. Volodin EM, Dianskii NA, Gusev AV (2010) Simulating present-day climate with the INMCM4.0 coupled model of the atmospheric and oceanic general circulations. Izvestiya Atmos Ocean Phys 46:414–431. doi: 10.1134/S000143381004002X CrossRefGoogle Scholar
  71. Voldoire A, Sanchez-Gomez E, Salas y Mélia D, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M, Deshayes J, Douville H, Fernandez E, Madec G, Maisonnave E, Moine M-P, Planton S, Saint-Martin D, Szopa S, Tyteca S, Alkama R, Belamari S, Braun A, Coquart L, Chauvin F (2012) The CNRM-CM5.1 global climate model: description and basic evaluation. Clim Dyn. doi: 10.1007/s00382-011-1259-y CrossRefGoogle Scholar
  72. Watanabe M, Suzuki T, O’ishi R, Komuro Y, Watanabe S, Emori S, Takemura T, Chikira M, Ogura T, Sekiguchi M, Takata K, Yamazaki D, Yokohata T, Nozawa T, Hasumi H, Tatebe H, Kimoto M (2010) Improved climate simulation by MIROC5: mean states, variability, and climate sensitivity. J Clim 23:6312–6335. doi: 10.1175/2010JCLI3679.1 CrossRefGoogle Scholar
  73. Wentz FJ, Schabel M (2000) Precise climate monitoring using complementary satellite data sets. Nature 403:414–416CrossRefGoogle Scholar
  74. Wentz FJ, Ricciardulli L, Hilburn K, Mears C (2007) How much more rain will global warming bring? Science 317:233–235CrossRefGoogle Scholar
  75. Willett KM, Jones PD, Gillett NP, Thorne PW (2008) Recent changes in surface humidity: Development of the HadCRUH dataset. J Clim 21(20):5364–5383CrossRefGoogle Scholar
  76. Wu P, Wood R, Ridley J, Lowe J (2010) Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys Res Lett 37:L12705. doi: 10.1029/2010GL043730 CrossRefGoogle Scholar
  77. Wu T et al. (2012) The 20th century global carbon cycle from the Beijing Climate Center Climate System Model (BCC CSM). J Clim (in press)Google Scholar
  78. Yukimoto S, Y A, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R, Yabu S, Obata A, Nakano H, Ose T, Kitoh A (2012) A new global climate model of meteorological research institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn (under preparation)Google Scholar
  79. Zahn M, Allan RP (2011) Changes in water vapor transports of the ascending branch of the tropical circulation. J Geophys Res 116:D18111. doi: 10.1029/2011JD016206 CrossRefGoogle Scholar
  80. Zahn M, Allan RP (2012) Climate Warming related strengthening of the tropical hydrological cycle. J Clim. doi: 10.1175/JCLI-D-12-00222.1 CrossRefGoogle Scholar
  81. Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI (2004) Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: refinements of the radiative transfer model and the input data. J Geophys Res 109:D19105. doi: 10.1029/2003JD004457 CrossRefGoogle Scholar
  82. Zhang ZS, Nisancioglu K, Bentsen M, Tjiputra J, Bethke I, Yan Q, Risebrobakken B, Andersson C, Jansen E (2012) Pre-industrial and mid-Pliocene simulations with NorESM-L. Geosci Model Dev Discuss 5:119–148. doi: 10.5194/gmdd-5-119-2012 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Richard P. Allan
    • 1
  • Chunlei Liu
    • 1
  • Matthias Zahn
    • 1
  • David A. Lavers
    • 1
  • Evgenios Koukouvagias
    • 1
  • Alejandro Bodas-Salcedo
    • 2
  1. 1.Department of Meteorology, National Centre for Atmospheric SciencesUniversity of ReadingReadingUK
  2. 2.Met Office Hadley CentreExeterUK

Personalised recommendations