Poincaré in Göttingen

Chapter
Part of the The Western Ontario Series in Philosophy of Science book series (WONS, volume 79)

Abstract

In this paper we discuss the relation between Henri Poincaré and the Göttingen mathematician David Hilbert , in particular, in connection with Poincaré’s visit to Göttingen in 1909.

Notes

Acknowledgments

I would like to thank again the Archives Henri Poincaré , the Mathematical Institute of the University of Göttingen, and William B. Ewald for the permission to reprint material of which they hold the copyright. I also thank Hassan Tahiri, the editor of Kahle 2011, for the suggestion to include here the scans of Hilbert ’s original texts. Finally, I’m indebted to Jesse Alama, Gerhard Heinzmann, Ferdinand Verhulst, and Wilfried Sieg for comments on earlier versions of this paper.

The author was partially supported by the ESF research project Dialogical Foundations of Semantics within the ESF Eurocores program LogICCC (funded by the Portuguese Science Foundation, FCT LogICCC/0001/2007) and the FCT-projects Hilbert ’s Legacy in the Philosophy of Mathematics, PTDC/FIL-FCI/109991/2009 and The Notion of Mathematical Proof , PTDC/MHC-FIL/5363/2012.

References

  1. Barner, K. 1997. Paul Wolfskehl and the Wolfskehl Prize. Notices of the American Mathematical Society 44: 1294–1303.Google Scholar
  2. Barrow-Green, J. 2011. An American goes to Europe: Three letters from Oswald Veblen to George Birkhoff in 1913/1914. The Mathematical Intelligencer 33(4): 37–47.CrossRefGoogle Scholar
  3. Blumenthal, O. 1935. Lebensgeschichte. In Gesammelte Abhandlungen, vol. III, ed. David Hilbert, 388–429. Berlin: Springer.Google Scholar
  4. Cantor, G. 1991. Briefe, ed. H. Meschkowski and W. Nilson. Berlin: Springer.CrossRefGoogle Scholar
  5. Courant, R. 1981. Reminiscences from Hilbert’s Göttingen. The Mathematical Intelligencer 3(4): 154–164. Edited transcript of a talk given at Yale University on January 13, 1964.CrossRefGoogle Scholar
  6. Décaillot, A.M. 2011. Cantor und die Franzosen, Mathematik im Kontext. Berlin: Springer.CrossRefGoogle Scholar
  7. Ebbinghaus, H.D. 2007. Ernst Zermelo. Berlin: Springer.Google Scholar
  8. Ewald, W.B. (ed.). 1996. From Kant to Hilbert, vol. 2. Oxford: Oxford University Press.Google Scholar
  9. Gray, J. 1991. Did Poincaré say ‘set theory is a disease’? Mathematical Intelligencer 13: 19–22.CrossRefGoogle Scholar
  10. Gray, J. 2013. Henri Poincaré. Princeton: Princeton University Press.Google Scholar
  11. Hilbert, D. 1905a. Logische Principien des mathematischen Denkens. Vorlesung Sommersemester 1905, Ausarbeitung von Ernst Hellinger (Bibliothek des Mathematischen Instituts der Universität Göttingen).Google Scholar
  12. Hilbert, D. 1905b. Über die Grundlagen der Logik und der Arithmetik. In Verhandlungen des Dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904, ed. A. Krazer, 174–185. Leipzig: Teubner.Google Scholar
  13. Hilbert, D. 1910. Elemente und Prinzipienfragen der Mathematik. Vorlesung Sommersemester 1910, Ausarbeitung von Richard Courant (Bibliothek des Mathematischen Instituts der Universität Göttingen).Google Scholar
  14. Hilbert, D. 1912. Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. Leipzig: Teubner.Google Scholar
  15. Hilbert, D. 1915. Probleme und Prinzipien der Mathematik. Handschriftliche Notizen zur Vorlesung im Wintersemester 1914/15, (Niedersächsische Staats- und Universitätsbibliothek Göttingen, Cod. Ms. D. Hilbert 559).Google Scholar
  16. Hilbert, D. 1935. Gesammelte Abhandlungen, Analysis, Grundlagen der Mathematik, Physik, Verschiedenes, Lebensgeschichte, vol. III. Berlin: Springer. 2nd ed. 1970.Google Scholar
  17. Hilbert, D., and P. Bernays. 1939. Grundlagen der Mathematik II, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, vol. 50. Berlin: Springer. 2nd ed. 1970.Google Scholar
  18. Kahle, R. 2006. David Hilbert über Paradoxien. Volume 06-17 of Pré-publicações do Departamento de Matemática, Universidade de Coimbra. http://www.mat.uc.pt/preprints/ps/p0617.pdf.
  19. Kahle, R. 2011. Hilbert and Poincaré and the paradoxes. In Poincaré’s philosophy of mathematics: Intuition, experience, creativity, Cadernos de Filosofia das Ciências, vol. 11, ed. H. Tahiri, 79–93. Lisboa: Centro de Filosofia das Ciências da Universidade de Lisboa.Google Scholar
  20. Klein, F. 1927. Vorlesungen über die Entwicklung der Mathematik im 19. Jahrhundert. Springer, 1926 and 1927. 2 vols.; reprinted in one volume, Springer, 1979.Google Scholar
  21. Klein, F. 1979. Development of Mathematics in the Nineteenth Century, vol. IX of Lie Groups. Brookline: Math Sci Press. Transl. of Klein (1927) by M. Ackerman.Google Scholar
  22. Kreutz, H. 1902. Versammlung der Astronomischen Gesellschaft in Göttingen. Astronomische Nachrichten 159: 323–328.CrossRefGoogle Scholar
  23. Linsky, B. 2011. The evolution of Principia Mathematica. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  24. Mancosu, P. 1999. Between Russell and Hilbert: Behmann on the foundations of mathematics. The Bulletin of Symbolic Logic 5(3): 303–330.CrossRefGoogle Scholar
  25. Poincaré, H. 1902. Les fondements de la géométrie. Bulletin des sciences mathématiques 26: 249–272.Google Scholar
  26. Poincaré, H. 1905. Les mathématiques et la logique. Revue de métaphysique et de morale 13: 815–835.Google Scholar
  27. Poincaré, H. 1906a. Les mathématiques et la logique. Revue de métaphysique et de morale 14: 17–34.Google Scholar
  28. Poincaré, H. 1906b. Les mathématiques et la logique. Revue de métaphysique et de morale 14: 294–317.Google Scholar
  29. Poincaré, H. 1908. Science et méthode. Paris: Flammarion.Google Scholar
  30. Poincaré, H. 1910. Sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik. Leipzig: Teubner.Google Scholar
  31. Poincaré, H. 1912. Rapport sur le Prix Bolyai. Acta Mathematica 35: 1–28.CrossRefGoogle Scholar
  32. Poincaré, H. 1986. La correspondance d’Henri Poincaré avec des mathématiciens de A à H. Cahiers du séminaire d'histoire des mathématiques 7: 59–219.Google Scholar
  33. Poincaré, H. 1989. La correspondance d’Henri Poincaré avec des mathématiciens de J à Z. Cahiers du séminaire d’histoire des mathématiques 10: 83–229.Google Scholar
  34. Rados, G. 1906. Rapport sur le prix Bolyai. Bulletin des sciences mathématiques (II) 30: 103–128.Google Scholar
  35. Reid, C. 1970. Hilbert. Berlin: Springer. Reprinted together with Reid 1976 in Reid 1986.CrossRefGoogle Scholar
  36. Reid, C. 1976. Courant in Göttingen and New York. New York: Springer. Reprinted together with Reid 1970 in Reid 1986; the page numbers refer to the reprint.Google Scholar
  37. Reid, C. 1986. Hilbert–Courant. New York: Springer. Joint reprint of Reid 1970 and Reid 1976.Google Scholar
  38. Sieg, W. 1999. Hilbert‘s programs: 1917–1922. The Bulletin of Symbolic Logic 5(1): 1–44.CrossRefGoogle Scholar
  39. Szénássy, B. Contributions to the history of the Bolyai-prize. http://www.math.bme.hu/akademia/contrib.html. Accessed 20 Feb 2014.
  40. Verhulst, F. 2012. Henri Poincaré. New York: Springer.CrossRefGoogle Scholar
  41. Whitehead, A.N. and B. Russell. 1913. Principia Mathematica. Cambridge: Cambridge University Press, 1910–13. 3 vols.; 1st ed.Google Scholar
  42. Whitehead, A.N. and B. Russell. 1927. Principia Mathematica. Cambridge: Cambridge University Press, 1925–27. 3 vols.; 2nd edition of Whitehead and Russell 1913.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.CENTRIA and DM, FCT, Department of MathematicsUniversidade Nova de LisboaCaparicaPortugal

Personalised recommendations