Consciousness and Neuronal Microtubules: The Penrose-Hameroff Quantum Model in Retrospect

  • Eugenio Frixione
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 6)


The microtubule-based model of consciousness, proposed simultaneously in the mid-1990s by the British physicist Roger Penrose and the American anesthesiologist Stuart Hameroff, is probably the best known, least understood, and most controversial among the various hypotheses that aim to account for such puzzling faculty in terms of quantum physics. In this theory microtubules —i.e., long fibrous structures that form an intracellular framework supporting the shape of every neuron— are able to integrate information in a non-computable way through transient conformational changes of the tubulin protein molecules that constitute them. Switching between two alternative states tubulin dimers allegedly may, apart from providing a huge capability for standard binary computation, reach a third quantum superposition state with its own specific wave function. As the number of tubulin dimers in the quantum superposition state gradually increases, coherence in this state is believed to build up and spread intracellularly and transcellularly through the population of microtubules across relatively wide regions of the brain. It is postulated that this process goes on up to a point when a spontaneous abrupt reduction of quantum coherence takes place, a collapse that amounts to an instant of awareness calculated to occur every 20–30 ms. The subjective impression of a continuous stream of consciousness would thus be the result of a succession of such self-reduction events. The biological and physical components of this model are briefly outlined here in terms intended to be accessible to both quantum physicists and neuroscientists, as background for a summary of the basic premises and the development of the theory from its beginning. The main criticisms and responses in the ensuing debate are then presented, followed by a few concluding comments after a brief review of historical precedents of the main notion of information handling by tiny biological fibers, going back to the early eighteenth century.


Conscious Experience Quantum Coherence Superposition State Electric Impulse Quantum Superposition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author wishes to dedicate this essay to the memory of Professor C.U.M. Smith who, in addition to a wide erudition on the history of the neurosciences, cultivated a particular interest on the present frontiers of this discipline, like the subject that runs through the pages of this volume. I am also indebted to Professors Patrizia Calaminici, Bogdan Mielnik, and José Luis Díaz for their critical comments from their different perspectives on preliminary versions of this paper. Residual errors in the text are, of course, the author’s sole responsibility. Special thanks are given to Lourdes Ruiz-Zamarripa for her excellent help in retrieving a good deal of bibliography. Recognition is also due to the Center of Consciousness Studies, the Rockefeller University Press, Siglo XXI Editores, and the Universidad Nacional Autónoma de México, for kind permissions to reproduce here previously published figures.


  1. Bandyopadhyay A (2011) Direct experimental evidence for quantum states in microtubules and topological invariance. Abstracts: toward a science of consciousness, 2011. Stockholm, p. 131, abs. 191.
  2. Bell JS (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, Cambridge, UKGoogle Scholar
  3. Bethe A (1900) Ueber die Neurofibrillen in den Ganglienzellen von Wirbelthieren und ihre Beziehungen zu Golginetzen. Archiv für Mikroskopische Anatomie 55:513–558CrossRefGoogle Scholar
  4. Boerhaave H (1742–1746) Dr. Boerhaave’s academical lectures on the theory of physic, being a genuine translation of his institutes and explanatory comment, collated and adjusted to each other, as they were dictated to his students at the University of Leyden (Institutiones medicae) (6 vols.). W. Innys, LondonGoogle Scholar
  5. Chalmers D (1995) Facing up to the problem of consciousness. J Conscious Stud 2:200–219Google Scholar
  6. Chang C, Hsieh Y-W, Lesch BJ, Bargmann CI, Chuang CF (2011) Microtubule-based localization of a synaptic calcium-signaling complex is required for left-right neuronal symmetry in C. elegans. Development 138:3509–3518CrossRefGoogle Scholar
  7. Cingolani LA, Goda Y (2008) Actin in action: the interplay between the actin cytoskeleton and synaptic efficacy. Nat Rev Neurosci 9:344–356CrossRefGoogle Scholar
  8. Craddock TJA, Tuszynski JA (2010) A critical assessment of the information processing capabilities of neuronal microtubules using coherent excitations. J Biol Phys 36:53–70CrossRefGoogle Scholar
  9. Craddock TJA, Beauchemin C, Tuszynski JA (2009) Information processing mechanisms in microtubules at physiological temperature: model predictions for experimental tests. BioSystems 97:28–34CrossRefGoogle Scholar
  10. Craddock TJA, Tuszynski JA, Priel A, Freedman H (2010) Microtubule ionic conduction and its implications for higher cognitive functions. J Integr Neurosci 9:103–122CrossRefGoogle Scholar
  11. Craddock TJA, Tuszynski JA, Hameroff S (2012) Cytoskeletal signaling: is memory encoded in microtubule lattices by CaMKII phosphorylation? PLoS Comput Biol 8:e1002421. doi: 10.1371/journal.pcbi.1002421 CrossRefGoogle Scholar
  12. Davis PCW (2004) Does quantum mechanics play a non-trivial role in life? BioSystems 78:69–79CrossRefGoogle Scholar
  13. Ebner M, Hameroff S (2011) Lateral information processing by spiking neurons: a theoretical model of the neural correlate of consciousness. Comput Intell Neurosci 2011:1–17CrossRefGoogle Scholar
  14. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mancal T, Cheng Y-C, Blankenship RE, Fleming GR (2007) Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–786CrossRefGoogle Scholar
  15. Faber J, Portugal R, Rosa LP (2006) Information processing in brain microtubules. BioSystems 83:1–9CrossRefGoogle Scholar
  16. Frampton M (2008) Embodiments of will – anatomical and physiological theories of voluntary animal motion from Greek antiquity to the Latin middle ages, 400 B.C. – A.D. 1300. VDM Verlag Dr. Müller, Chicago/SaabrückenGoogle Scholar
  17. Freud S (1882) Über den Bau der Nervenfasern und Nervenzellen beim Flusskrebs. Sitzungsberichte Akademie der wissenschaften Wien mathematisch-naturwissenschaftliche Klasse 85:9–46Google Scholar
  18. Frixione E (1983) Firm structural associations of migratory pigment granules with microtubules in crayfish retinula cells. J Cell Biol 96:1258–1265CrossRefGoogle Scholar
  19. Frixione E (2000) Recurring views on the structure and function of the cytoskeleton: a 300 year epic (Review). Cell Motil Cytoskeleton 46:73–94CrossRefGoogle Scholar
  20. Frixione E (2003) Sigmund Freud’s contribution to the history of the neuronal cytoskeleton. J Hist Neurosci 12:11–24Google Scholar
  21. Frixione E (2007) Un Modelo Cuántico de la Conciencia. In: Frixione E (ed) Conciencia – Nuevas Perspectivas en Torno a un Viejo Problema. Universidad Nacional Autónoma de México – Siglo XXI Editores, México, pp 81–89Google Scholar
  22. Frixione E (2009) Cajal’s second great battle for the neuron doctrine: the nature and function of neurofibrils. Brain Res Rev 59:393–409CrossRefGoogle Scholar
  23. Frixione E, Hernández M (2011) Structural organization of cells – the cytoskeleton. In: Moo-Young M (ed) Comprehensive biotechnology, vol 1, 2nd edn. Elsevier, Amsterdam, pp 367–381CrossRefGoogle Scholar
  24. Fröhlich H (1968) Long-range coherence and energy storage in biological systems. Int J Quantum Chem 2:641–649CrossRefGoogle Scholar
  25. Galvani L (1791) De viribus electricitatis in motu musculari commentarius [Commentary on the Effect of Electricity on Muscular Motion]. De Bononiensi Scientiarum et Artium Instituto atque Academia Commentarii 7:363–418Google Scholar
  26. Grush R, Churchland PS (1995) Gaps in Penrose’s toilings. J Conscious Stud 2:10–29Google Scholar
  27. Hagan S, Hameroff SR, Tuszynski JA (2002) Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E 65:061901CrossRefGoogle Scholar
  28. Haikonen POA (2010) Quasi-quantum computing in the brain? Cognit Comput 2:63–67CrossRefGoogle Scholar
  29. Hameroff SR (1994) Quantum coherence in microtubules: a neural basis for emergent consciousness? J Conscious Stud 1:91–118Google Scholar
  30. Hameroff SR (1998a) “Funda-mentality”: is the conscious mind subtly linked to a basic level of the universe? Trends Cogn Sci 2:119–124CrossRefGoogle Scholar
  31. Hameroff S (1998b) Quantum computation in brain microtubules: the Penrose-Hameroff “Orch OR” model of consciousness. Philos Trans R Soc Lond 356:1869–1896CrossRefGoogle Scholar
  32. Hameroff S (2001) Consciousness, the brain, and spacetime geometry. Ann N Y Acad Sci 929:74–104CrossRefGoogle Scholar
  33. Hameroff SR (2004) A new theory of the origin of cancer: quantum coherent entanglement, centrioles, mitosis, and differentiation. BioSystems 77:119–136CrossRefGoogle Scholar
  34. Hameroff SR (2006) The entwined mysteries of anesthesia and consciousness – is there a common underlying mechanism? Anesthesiology 105:400–412CrossRefGoogle Scholar
  35. Hameroff SR (2007) The brain is both neurocomputer and quantum computer. Cognit Sci 31:1035–1045CrossRefGoogle Scholar
  36. Hameroff S (2010) The “conscious pilot” —dendritic synchrony moves through the brain to mediate consciousness. J Biol Phys 36:71–93CrossRefGoogle Scholar
  37. Hameroff S, Penrose R (1996) Conscious events as orchestrated space-time selections. J Conscious Stud 3:36–53Google Scholar
  38. Hameroff SR, Watt RC (1982) Information processing in microtubules. J Theor Biol 98:549–561CrossRefGoogle Scholar
  39. Hameroff SR, Smith SA, Watt RC (1986) Automaton model of dynamic organization in microtubules. Ann N Y Acad Sci 466:949–952CrossRefGoogle Scholar
  40. Hameroff SR, Nip A, Porter M, Tuszynski J (2002) Conduction pathways in microtubules, biological quantum computation, and consciousness. BioSystems 64:149–168CrossRefGoogle Scholar
  41. Hameroff SR, Craddock TJA, Tuszynski JA (2010) “Memory bytes” — molecular match for CaMKII phosphorylation encoding of microtubule lattices. J Integr Neurosci 9:253–267CrossRefGoogle Scholar
  42. Hejnowicz Z (1970) Propagated disturbances of transverse potential gradient in intracellular fibrils as the source of motive forces for longitudinal transport in cells. Protoplasma 71:343–364CrossRefGoogle Scholar
  43. Hepp K (1998) Toward the demolition of a computational quantum brain. In: Blanchard P, Jadczyk A (eds) Quantum future, vol 517, Lecture notes in physics. Springer, Berlin, pp 92–104Google Scholar
  44. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544Google Scholar
  45. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419CrossRefGoogle Scholar
  46. Hooft G, Susskind L, Witten E, Fukugita M, Randall L, Smolin L, Stachel J, Rovelli C, Ellis G, Weinberg S, Penrose R (2005) A theory of everything? Nature 433:257–259CrossRefGoogle Scholar
  47. Horgan J (1997) The end of science. Facing the limits of knowledge in the twilight of the scientific age. Broadway Books, New YorkGoogle Scholar
  48. Jaeken L (2007) A new list of functions of the cytoskeleton. Life 59:127–133Google Scholar
  49. Jibu M, Hagan S, Hameroff SR, Pribram KH, Yasue K (1994) Quantum optical coherence in cytoskeletal microtubules: implications for brain function. BioSystems 32:195–209CrossRefGoogle Scholar
  50. Kandel ER, Schwartz JH, Jessell TM (1995) Essentials of neural science and behavior. Appleton and Lange, StanfordGoogle Scholar
  51. Kendon VM, Nemoto K, Munro WJ (2010) Quantum analogue computing. Philos Trans R Soc Lond 368:3609–3620CrossRefGoogle Scholar
  52. Koch C, Hepp K (2006) Quantum mechanics in the brain. Nature 440:611–612CrossRefGoogle Scholar
  53. Kurzweil R (2005) The singularity is near – when humans transcend biology. Viking, New YorkGoogle Scholar
  54. Lazar JW (2010) Acceptance of the neuron theory by clinical neurologists of the late-nineteenth century. J Hist Neurosci 19:349–364CrossRefGoogle Scholar
  55. Libet B, Wright EW Jr, Feinstein B, Pearl DK (1979) Subjective referral of the timing for a conscious sensory experience. Brain 102:193–224CrossRefGoogle Scholar
  56. Litt A, Eliasmith C, Kroon FW, Weinstein S, Thagard P (2006) Is the brain a quantum computer? Cognit Sci 20:1–11Google Scholar
  57. Llinás R, Ribary U, Contreras D, Pedroarena C (1998) The neuronal basis of consciousness. Philos Trans R Soc Lond 353:1841–1849CrossRefGoogle Scholar
  58. London F, Bauer E (1939) La Théorie de l’Observation en Méchanique Quantique. Hermann, ParisGoogle Scholar
  59. McKemmish LK, Reimers JR, McKenzie RH, Mark AE, Hush NS (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys Rev E 80:021912CrossRefGoogle Scholar
  60. Merriam EB, Lumbard DC, Viesselmann C, Ballweg J, Stevenson M, Pietila L, Hu X, Dent EW (2011) Dynamic microtubules promote synaptic NMDA receptor-dependent spine enlargement. PLoS One 6:e27688. doi: 10.1371/journal.pone.0027688 CrossRefGoogle Scholar
  61. Mielnik B, Rosas-Ortiz O (2009) Quantum mechanical laws. In: Morán-López JL, Hess OP (eds) Fundamentals of physics, vol 1, Encyclopedia of life support systems (UNESCO). Eolss, Oxford, pp 255–326. Also available as eBook at
  62. Moravec H (1990) Mind children. The future of robot and human intelligence. Harvard University Press, Cambridge, MA/LondonGoogle Scholar
  63. Penrose R (1989) The emperor’s new mind. Concerning computers, minds, and the laws of physics. Oxford University Press, OxfordGoogle Scholar
  64. Penrose R (1994a) Shadows of the mind. A search for the missing science of consciousness. Oxford University Press, OxfordGoogle Scholar
  65. Penrose R (1994b) Mechanisms, microtubules and the mind. J Conscious Stud 1:241–249Google Scholar
  66. Penrose R (1996) On gravity’s role in quantum state reduction. Gen Relat Gravit 28:581–600Google Scholar
  67. Penrose R (2001) Consciousness, the brain, and spacetime geometry: an addendum. Some new developments on the Orch OR model of consciousness. Ann N Y Acad Sci 929:105–110CrossRefGoogle Scholar
  68. Penrose, Hameroff RS (1995) What ‘gaps’? Reply to Grush and Churchland. J Conscious Stud 2:98–111Google Scholar
  69. Penrose R, Hameroff S (2011) Consciousness in the universe: neuroscience, quantum space-time geometry and Orch OR theory.
  70. Pizzi R, Strini G, Fiorentini S, Pappalardo V, Pregnolato M (2010) Evidences of new biophysical properties of microtubules. In: Kwon SJ (ed) Artificial neural networks. Nova Science Publishers, New York, ch. 20Google Scholar
  71. Priel A, Ramos AJ, Tuszynski JA, Cantiello HF (2006) A biopolymer transistor: electrical amplification in microtubules. Biophys J 90:4639–4643CrossRefGoogle Scholar
  72. Ramón y Cajal S (1899–1904) Textura del sistema nervioso del hombre y de los vertebrados: Estudios sobre el plan estructural y composición histológica de los centros nerviosos, adicionados de consideraciones fisiológicas fundadas en los nuevos descubrimientos (2 vols.). Nicolás Moya, MadridGoogle Scholar
  73. Remak R (1843) Ueber den Inhalt der Nervenprimitivröhren. Archiv für Anatomie, Physiologie und wissenschaftliche Medizin, p 197Google Scholar
  74. Remak R (1844) Neurologische Erläuterungen. Arch für Anat Physiol wiss Med 1844:463–472Google Scholar
  75. Rosa LP, Faber J (2004) Quantum models of the mind: are they compatible with environmental decoherence? Phys Rev E 70:031902CrossRefGoogle Scholar
  76. Saha AA, Craddock TJA, Tuszynski JA (2012) An investigation of the plausibility of stochastic resonance in tubulin dimmers. BioSystems 107:81–87CrossRefGoogle Scholar
  77. Sataric MV, Sekulic D, Zivanov M (2010) Solitonic ionic currents along microtubules. J Comput Theor Nanosci 7:2281–2290CrossRefGoogle Scholar
  78. Schrödinger E (1944/1994) What is life? The physical aspect of the living cell. In: Adler MJ (ed) Great books of the western world, vol 56. Encyclopædia Britannica, Chicago, pp 461–504Google Scholar
  79. Schultze M (1870–1871) The general characters of the structures composing the nervous system. In: Stricker S (ed), Power H (transl) Manual of human and comparative histology. Sydenham Society, LondonGoogle Scholar
  80. Schwartz JM, Stapp HP, Beauregard M (2005) Quantum physics in neuroscience and psychology: a neurophysical model of mind-brain interaction. Philos Trans R Soc Lond 360:1309–1327CrossRefGoogle Scholar
  81. Shepherd GM (1991) Foundations of the neuron doctrine. Oxford University Press, New York/OxfordGoogle Scholar
  82. Smith CUM (2006) The ‘hard problem’ and the quantum physicists. Part 1: The first generation. Brain Cogn 61:181–188CrossRefGoogle Scholar
  83. Smith CUM (2009) The ‘hard problem’ and the quantum physicists. Part 2: Modern times. Brain Cogn 71:54–63CrossRefGoogle Scholar
  84. Smith CUM, Frixione E, Finger S, Clower W (2012) The animal spirit doctrine and the origins of neurophysiology. Oxford University Press, New YorkCrossRefGoogle Scholar
  85. Tegmark M (2000a) The importance of quantum decoherence in brain processes. Phys Rev E 61:4194–4206CrossRefGoogle Scholar
  86. Tegmark M (2000b) Why the brain is probably not a quantum computer. Inform Sci 128:155–179CrossRefGoogle Scholar
  87. Thagard P (2002) How molecules matter to mental computation. Philos Sci 69:429–446CrossRefGoogle Scholar
  88. van der Loos H (1967) The history of the neuron. In: Hydén H (ed) The neuron. Elsevier, Amsterdam, pp 1–47Google Scholar
  89. van Swieten G (1744) The commentaries upon the aphorisms of Dr. Hermann Boerhaave, the late learned professor of Physick in the University of Leyden, concerning the knowledge and cure of the several diseases incident to human bodies, Trans into English, vol I. John and Paul Knapton, LondonGoogle Scholar
  90. von Apáthy S (1897) Das leitende Element der Nervensystems und seine topographischen Beziehungen zu den Zellen. Mittheilungen aus der zoologische Station zu Neapel 12:495–748Google Scholar
  91. Ward BK (2014) Is there a link between quantum mechanics and consciousness? In: Smith CUM, Whitaker H (eds) Brain, mind, and consciousness in the history of neuroscience, philosophy and theory of the life sciences 6, Springer, New York, pp 273–302Google Scholar
  92. Wheeler J, Zurek W (1983) Quantum theory and measurement. Princeton University Press, PrincetonGoogle Scholar
  93. Wiener N (1948) Cybernetics or control and communication in the animal and the machine. Hermann, ParisGoogle Scholar
  94. Wigner EP (1962) Remarks on the mind-body question. In: Good IJ (ed) The scientist speculates: an anthology of partly-baked ideas. London: Heinemann, pp 284–302Google Scholar
  95. Woolf NJ (2006) Acetylcholine, cognition, and consciousness. J Mol Med 30:219–222Google Scholar
  96. Woolf NJ, Hameroff SR (2001) A quantum approach to visual consciousness. Trends Cogn Sci 5:472–478CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Methodology and Theory of Science, and Department of Cell BiologyCenter for Research and Advanced Studies IPN (Cinvestav)Mexico CityMexico

Personalised recommendations