Advertisement

Is There a Link Between Quantum Mechanics and Consciousness?

  • Barry K. Ward
Chapter
Part of the History, Philosophy and Theory of the Life Sciences book series (HPTL, volume 6)

Abstract

This essay examines the link (if any) between quantum mechanics and consciousness and the problem of interpretation. The ‘measurement problem’ that arises from the ‘Copenhagen Interpretation’ is discussed and alternative interpretations such as Everett’s ‘Parallel Worlds’, Bohm’s ‘Hidden Variables’ and the ‘Heisenberg-Dirac Propensity’ interpretations are examined. The role of consciousness in the ‘Parallel Worlds’ theory is examined in greater detail together with quantum theories of mind due to Stapp, Eccles, Hodgson and Penrose. The affect of ‘Interactive Decoherence’ on proposed theories of quantum dependant brain function is also discussed.

Keywords

Wave Function Quantum Mechanic Quantum State Quantum Theory Human Consciousness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Albert DZ, Loewer B (1988) Interpreting the many worlds interpretation. Synthese 77:195–213CrossRefGoogle Scholar
  2. Albert DZ, Loewer B (1989) Two no-collapse interpretations of quantum mechanics. Noûs 12:121–138Google Scholar
  3. Barrow JD, Tipler FJ (1986) The anthropic cosmological principle. Oxford University Press, New YorkGoogle Scholar
  4. Beck F (1996) Can quantum processes control synaptic emission? Int J Neural Syst 7:343–353CrossRefGoogle Scholar
  5. Bell JS (1987) Speakable and unspeakable in quantum mechanics. Cambridge University Press, CambridgeGoogle Scholar
  6. Bohm D (1952) A suggested interpretation of the quantum theory in terms of “hidden” variables. ‘I’ and ‘II’. Phys Rev 85:166–179; 180–193CrossRefGoogle Scholar
  7. Bohm D (1990) A new theory of the relationship of mind and matter. Philos Psychol 3:271–286CrossRefGoogle Scholar
  8. Bohr N (1913a) On the constitution of atoms and molecules, part I. Philos Mag 26:1–24CrossRefGoogle Scholar
  9. Bohr N (1913b) On the constitution of atoms and molecules, part II. Systems containing only a single nucleus. Philos Mag 26:476–502CrossRefGoogle Scholar
  10. Bohr N (1913c) On the constitution of atoms and molecules, part III. Systems containing several nuclei. Philos Mag 26:857–875CrossRefGoogle Scholar
  11. Bohr N (1928) The Copenhagen interpretation. Nature 121:580CrossRefGoogle Scholar
  12. Bohr N (1935) Quantum mechanics and physical reality. Nature 136:1025–1026CrossRefGoogle Scholar
  13. Boltzmann L (1884) Über die Eigenschaften Monocyklischer und andere damit verwandter Systeme. Crelles J 98: in WA III, paper 73. 68–94, (WAIII is Boltzmann L (1909) Wissenschaftliche Abhandlungen, vol I, II, and III, Hasenöhrl F (ed), Leipzig: Barth; reissued New York: Chelsea, 1969)Google Scholar
  14. Bowie GL (1982) Lucas’ number is finally up. J Philos Logic 11:279–285CrossRefGoogle Scholar
  15. Chalmers DJ (1995) Facing up to the problem of consciousness. J Conscious Stud 2:200–219Google Scholar
  16. Cochran A (1971) Relationships between quantum physics and biology. Found Phys 1:235–250CrossRefGoogle Scholar
  17. Davidson CJ, Germer LH (1927) Diffraction of electrons by a crystal of nickel. Phys Rev 30:705–715CrossRefGoogle Scholar
  18. Davies P (2004) Does quantum mechanics play a non-trivial role in life? BioSystems 78:69–79CrossRefGoogle Scholar
  19. de Broglie L (1924) A tentative theory of light quanta. Philos Mag 47:446CrossRefGoogle Scholar
  20. Dennett DC (1991) Consciousness explained. Little Brown, BostonGoogle Scholar
  21. Deutsch D (1985) Quantum theory, the Church-Turing principle and the universal quantum computer. Proc R Soc (Lond) A 400:97–117CrossRefGoogle Scholar
  22. DeWitt B (1970) Quantum mechanics and reality. Phys Today 23:30–35CrossRefGoogle Scholar
  23. Dreyfus HL (1972) What computers can’t do. MIT Press, Cambridge, MAGoogle Scholar
  24. Eccles JC (1986) Do mental events cause neural events analogously to the probability fields of quantum mechanics? Proc R Soc (Lond) B 227:411–422CrossRefGoogle Scholar
  25. Eccles CJ (1990) A unitary hypothesis of mind-brain interaction in the cerebral cortex. Proc R Soc (Lond) B 240:433–451CrossRefGoogle Scholar
  26. Eccles JC (1994) How the self controls its brain. Springer, Berlin/Heidelberg/New YorkCrossRefGoogle Scholar
  27. Einstein A (1905) On a heuristic viewpoint concerning the production and transformation of light. Ann Phys 17:132–148CrossRefGoogle Scholar
  28. Einstein A (1906) On the theory of light production and light absorption. Annalen der Physik (ser 4) 20:199–206CrossRefGoogle Scholar
  29. Everett H (1957) Relative states’ formulation of quantum mechanics. Rev Mod Phys 29:454–462CrossRefGoogle Scholar
  30. Feferman S (2006) Are there absolutely unsolvable problems? Gödel’s dichotomy. Philos Math 14:134–152CrossRefGoogle Scholar
  31. Feyerabend P (1968) On a recent critique of complementarity: part I. Philos Sci 35:309–331CrossRefGoogle Scholar
  32. Feyerabend P (1969) On a recent critique of complementarity: part II. Philos Sci 36:82–105CrossRefGoogle Scholar
  33. Freeman WJ, Vitiello G (2006) Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics. Phys Life Rev 3:93–118CrossRefGoogle Scholar
  34. Godel K (1931) Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Mathematik und Physik 38:173–198CrossRefGoogle Scholar
  35. Godel K (1951) Some basic theorems on the foundations of mathematics and their implications. In: Feferman S (ed), 1995. Collected works, Kurt Gödel, vol III. Oxford University Press, Oxford, pp 304–323Google Scholar
  36. Hagan S, Hameroff SR, Tuszynski JA (2002) Quantum computation in brain microtubules: decoherence and biological feasibility. Phys Rev E 65(061901):1–11Google Scholar
  37. Hameroff SR (1994) Quantum coherence in microtubules: a neural basis for emergent consciousness. J Conscious Stud 1:91–118Google Scholar
  38. Hawking S (1997) Objections of an Unashamed Reductionist. In: Penrose R (Author), Hawking S, Cartwright N, Shimony A (Contributors), Longair M (ed) The large, the small and the human mind. Cambridge University Press, CambridgeGoogle Scholar
  39. Heisenberg W (1925) Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik 33:879–893. (English translation in: van der Waerden BL (ed) (1968) Sources of quantum mechanics (English title: “Quantum-Theoretical Re-interpretation of Kinematic and Mechanical Relations”). Dover, New YorkGoogle Scholar
  40. Heisenberg W (1926) Quantenmechanik. Naturwissenschaften 14:989–995CrossRefGoogle Scholar
  41. Heisenberg W (1958) Physics and philosophy. Harper and Row, New YorkGoogle Scholar
  42. Hepp K (1999) Toward the demolition of a computational quantum brain. In: Blanchard P, Jadczyk A (eds) Quantum future. Springer, Berlin, pp 92–104Google Scholar
  43. Hodgson D (1991 (hardcover) The mind matters. Consciousness and choice in a quantum world. Clarendon Press, OxfordGoogle Scholar
  44. Koch C, Hepp K (2006) Quantum mechanics and higher brain functions: lessons from quantum computation and neurobiology. Nature 440:611–612CrossRefGoogle Scholar
  45. Lewis D (1979) Lucas against mechanism II. Can J Philos 9:373–376Google Scholar
  46. Libet B, Wright EW Jr, Feinstein B, Pearl DK (1979) Subjective referral of the timing for a conscious sensory experience. Brain 102:192–224CrossRefGoogle Scholar
  47. Libet B, Wright EW, Feinstein B, Pearl DK (1992) Retroactive enhancement of a skin sensation by a delayed cortical stimulus in man: evidence for delay of a conscious sensory experience. Conscious Cogn 1:367–375CrossRefGoogle Scholar
  48. Lockwood M (1989) Mind, brain, and the quantum. The compound “I”. Blackwell, OxfordGoogle Scholar
  49. Lockwood M (1996) Many-minds interpretations of quantum mechanics. Br J Philos Sci 47:159–188CrossRefGoogle Scholar
  50. Maxwell N (1974) Can there be necessary connections between successive events? In: Swinburn R (ed) The justification of induction. Oxford University Press, London, pp 149–174. Am J Phys 40:1431–1435Google Scholar
  51. McKemmish LK, Reimers JR, McKenzie RH, Mark AE, Hush NS (2009) Penrose-Hameroff orchestrated objective-reduction proposal for human consciousness is not biologically feasible. Phys Rev E 80:021912–021916CrossRefGoogle Scholar
  52. Nagel T (1976) Brain bisection and the unity of consciousness. In: Glover J (ed) The philosophy of mind. Oxford University Press, OxfordGoogle Scholar
  53. Penrose R (1986) Gravity and state vector reduction. In: Penrose R, Isham CJ (eds) Quantum concepts in space and time. Oxford University Press, Oxford, pp 129–146Google Scholar
  54. Penrose R (1989) The emperor’s new mind. Oxford University Press, OxfordGoogle Scholar
  55. Penrose R (1994) Shadows of the mind. Oxford University Press, OxfordGoogle Scholar
  56. Penrose R (1996) On gravity’s role in quantum state reduction. Gen Relativ Gravity 28:581–600CrossRefGoogle Scholar
  57. Penrose R (1997) Response by Roger Penrose. In: Longair M (ed) The large, the small and the human mind. Cambridge University Press, CambridgeGoogle Scholar
  58. Pessa E, Vitiello G (2003) Quantum noise, entanglement and chaos in the quantum field theory of mind/brain states. Mind Matter 1:59–79Google Scholar
  59. Planck M (1901) Ueber das Gesetz der Energieverteilung im Normalspectrum. Annalen der Physik [series 4] 4:553–563 (see also 556–57)CrossRefGoogle Scholar
  60. Ricciardi LM, Umezawa H (1967) Brain and physics of many-body problems. Kybernetik 4:44–48CrossRefGoogle Scholar
  61. Satari MV, Tuszynski JA, Zakula RB (1993) Kinklike excitations as an energy – transfer mechanism in microtubules. Phys Rev E 48:589–597CrossRefGoogle Scholar
  62. Schröedinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070CrossRefGoogle Scholar
  63. Schröedinger E (1935) Die gegenwärtige Situation in der Quantenmechanik (The present situation in quantum mechanics). Naturwissenschaften 23:807–812; 823–828; 844–849CrossRefGoogle Scholar
  64. Scott A (1996) On quantum theories of the mind. J Conscious Stud 3:484–491Google Scholar
  65. Searle JR (1980) Minds, brains and programs. Behav Brain Sci 3:417–457CrossRefGoogle Scholar
  66. Searle JR (2007) What is language? Some preliminary remarks. In: Tsohatzdis S (ed) John Searle’s philosophy of language. Cambridge University Press, New YorkGoogle Scholar
  67. Smith CUM (2006) The ‘hard problem’ and the quantum physicists. Part 1: The first generation. Brain Cogn 61:181–188CrossRefGoogle Scholar
  68. Smith CUM (2009) The ‘hard problem’ and the quantum physicists. Part 2: Modern times. Brain Cogn 71:54–63CrossRefGoogle Scholar
  69. Squires E (1990) Conscious mind in the physical world. Adam Hilger, BristolGoogle Scholar
  70. Stapp HP (1993) A quantum theory of the mind-brain interface. In: Stapp HP (ed) Mind, matter, and quantum mechanics, 1st edn. Springer, Berlin, pp 145–172Google Scholar
  71. Stapp HP (2001) Quantum theory and the role of mind in nature. Found Phys 31:1465–1499CrossRefGoogle Scholar
  72. Stapp HP (2007) Mindful universe: quantum mechanics and participating observer. Springer, New YorkGoogle Scholar
  73. Stefan J (1879) Über die Beziehung zwischen der Wärmestrahlung und der Temperatur. In: Sitzungsberichte der mathematisch-naturwissenschaftlichen. Classe der kaiserlichen Akademie der Wissenschaften, Bd. 79 (Wien 1879), S: 391–428Google Scholar
  74. Stuart CIJ, Takahashi Y, Umezawa H (1978) On the stability and non-local properties of memory. J Theor Biol 71:605–618CrossRefGoogle Scholar
  75. Stuart CIJ, Takahashi Y, Umezawa H (1979) Mixed system brain dynamics: neural memory as a macroscopic ordered state. Found Phys 9:301–327CrossRefGoogle Scholar
  76. Tegmark M (2000a) Importance of quantum decoherence in brain processes. Phys Rev E 61:4194–4206CrossRefGoogle Scholar
  77. Tegmark M (2000b) Why the brain is probably not a quantum computer. Inform Sci 128:155–179CrossRefGoogle Scholar
  78. Vitiello G (1995) Dissipation and memory capacity in the quantum brain model. Int J Mod Phys B 9:973–989CrossRefGoogle Scholar
  79. Vitiello G (2001) My double unveiled. Benjamin, AmsterdamCrossRefGoogle Scholar
  80. Von Neumann J (1955) Mathematical foundations of quantum mechanics. Princeton University Press, Princeton (German original Die mathematischenGrundlagen der Quantenmechanik. Springer, Berlin, 1932)Google Scholar
  81. Wigner EP (1961) Remarks on the mind-body problem. In: Good IJ (ed) The scientist speculates: an anthology of partly baked ideas. Heinemann, London, pp 284–302Google Scholar
  82. Wigner EP (1962) Remarks on the mind body question. In: Good IJ (ed) The scientist speculates: an anthology of partly-baked ideas. Basic Books, New YorkGoogle Scholar
  83. Wigner EP (1967) Remarks on the mind-body question. In: Wigner EP (ed) Symmetries and reflections, scientific essays. Indiana University Press, Bloomington, pp 171–184Google Scholar
  84. Wigner EP (1977) Physics and its relation to human knowledge. Hellenike Anthropostike Heaireia, Athens, pp 283–294. Reprinted in Mehra J (ed) (1995) Wigner’s collected works, vol 6. Springer, Berlin, pp 584–593Google Scholar
  85. Young T (1804) The Bakerian lecture. Experiments and calculations relative to physical optics. Philos Trans R Soc (Lond) 94 (Part I):1–16Google Scholar
  86. Zeh HD (1970) On the interpretation of measurement in quantum theory. Found Phys 1:69–76CrossRefGoogle Scholar
  87. Zeh HD (1999) The arrow of time, 3rd edn. Springer, BerlinGoogle Scholar
  88. Zurek WH (1991) Decoherence and the transition from quantum to classical. Phys Today 44:36–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Macquarie Centre for Cognitive ScienceMacquarie UniversitySydneyAustralia

Personalised recommendations