Nematode-Trapping Fungi pp 263-311

Part of the Fungal Diversity Research Series book series (FDRS, volume 23) | Cite as

Molecular Mechanism of Nematophagous Fungi Infection of Nematodes

  • Jinkui Yang
  • Lianming Liang
  • Chenggang Zou
  • Ke-Qin Zhang
Chapter

Abstract

Nematophagous fungi are an important group of soil microorganisms that can suppress the populations of plant-parasitic nematodes. At present, the detailed molecular pathogenic mechanisms against nematodes by nematophagous fungi have not yet been fully elucidated. However, increasing evidence show that extracellular hydrolytic enzymes including proteases, collagenase, and chitinase may be involved in nematode-cuticle penetration and host-cell digestion. Recently, the crystal structures of proteases (Ver112 and PL646) and chitinase CrChi1 from nematophagous fungi were resolved, which can help us to identify the active site residues and to elucidate the catalytic mechanism of these enzymes involved in infection against hosts. The expression and regulation of protease PrC from Clonostachys rosea by different environmental conditions has also been reported. The genome of Arthrobotrys oligospora has been sequenced, and a model of nematode trap formation in A. oligospora suggested; thus the genome data may serve as a roadmap for further investigations into the interaction between nematode-trapping fungi and their host nematodes, providing broad foundations for research on the biocontrol of pathogenic nematodes. In this chapter, we describe the characterization of extracellular enzymes from nematophagous fungi, the expression and regulation of serine protease prC in Clonostachys rosea, and the genome and proteomic analyses of the nematode-trapping fungus Arthrobotrys oligospora.

Keywords

Arthrobotrys oligospora Chitinase Crystal structure Expression Extracellular enzyme Genome Nematophagous fungi Proteome Regulation Serine protease Trap formation Virulence factor 

References

  1. Åhman, J., Johanson, T., Olsson, M., Punt, P. J., van den Hondel, C. A., & Tunlid, A. (2002). Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Applied and Environmental Microbiology, 68, 3408–3415.PubMedCentralPubMedGoogle Scholar
  2. Ahrén, D., Tholander, M., Fekete, C., Rajashekar, B., Friman, E., Johansson, T., & Tunlid, A. (2005). Comparison of gene expression in trap cells and vegetative hyphae of the nematophagous fungus Monacrosporium haptotylum. Microbiology, 151, 789–803.PubMedGoogle Scholar
  3. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.PubMedCentralPubMedGoogle Scholar
  4. Bidochka, M. J., & Khachatourians, G. G. (1987). Purification and properties of an extracellular protease produced by the entomopathogenic fungus Beauveria bassiana. Applied and Environmental Microbiology, 53, 1679–1684.PubMedCentralPubMedGoogle Scholar
  5. Bird, A. F., & Self, P. G. (1995). Chitin in Meloidogyne javanica. Fundamental and Applied Nematology, 18, 235–239.Google Scholar
  6. Blaxter, M. L., & Robertson, W. M. (1998). The cuticle. In R. N. Perry & D. J. Wright (Eds.), The physiology and biochemistry of free-living and plant-parasitic nematodes (pp. 25–48). Wallingford: CABI Publishing.Google Scholar
  7. Bonants, P. J. M., Fitters, P. F. L., Thijs, H., den Belder, E., Waalwijk, C., & Henfling, J. W. D. M. (1995). A basic serine protease from Paecilomyces lilacinus with biological activity against Meloidogyne hapla eggs. Microbiology, 141, 775–784.PubMedGoogle Scholar
  8. Bordallo, J. J., Lopez-Llorca, L. V., Jansson, H. B., Salinas, J., Persmark, L., & Asensio, L. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. New Phytologist, 154, 491–499.Google Scholar
  9. Bortone, K., Monzingo, A. F., Ernst, S., & Robertus, J. D. (2002). The structure of an allosamidin complex with the Coccidiodes immitis defines a role for second acid residue in substrate assisted mechanism. Journal of Molecular Biology, 320, 293–302.PubMedGoogle Scholar
  10. Bose, S., Dutko, J. A., & Zitomer, R. S. (2005). Genetic factors that regulate the attenuation of the general stress response of yeast. Genetics, 169, 1215–1226.PubMedCentralPubMedGoogle Scholar
  11. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.PubMedGoogle Scholar
  12. Braga, F. R., Araújo, J. V., Soares, F. E. F., Geniêr, H. L. A., & Queiroz, J. H. (2012). An extracellular serine protease of an isolate of Duddingtonia flagrans nematophagous fungus. Biocontrol Science and Technology, 22, 1131–1142.Google Scholar
  13. Caracuel, Z., Roncero, M. I., Espeso, E. A., Gonzalez-Verdejo, C. I., Garcia-Maceira, F. I., Di Pietro, A. (2003). The pH signalling transcription factor PacC controls virulence in the plant pathogen Fusarium oxysporum. Molecular Microbiology, 48, 765–779.PubMedGoogle Scholar
  14. Chang, A., Scheer, M., Grote, A., Schomburg, I., & Schomburg, D. (2009). BRENDA, AMENDA and FRENDA the enzyme information system: New content and tools in 2009. Nucleic Acids Research, 37, D588–D592.PubMedCentralPubMedGoogle Scholar
  15. Chen, L. L., Liu, L. J., Shi, M., Song, X. Y., Zheng, C. Y., Chen, X. L., & Zhang, Y. Z. (2009). Characterization and gene cloning of a novel serine protease with nematicidal activity from Trichoderma pseudokoningii SMF2. FEMS Microbiology Letters, 299, 135–142.PubMedGoogle Scholar
  16. Cox, G. N., Kusch, M., & Edgar, R. S. (1981). Cuticle of Caenorhabditis elegans: Its isolation and partial characterization. Journal of Cell Biology, 90, 7–17.PubMedGoogle Scholar
  17. Davis, D., Edwards, J. E., Jr Mitchell, A. P., & Ibrahim, A. S. (2000). Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infection and Immunity, 68, 5953–5959.PubMedCentralPubMedGoogle Scholar
  18. Dijksterhuis, J., Veenhuis, M., Harder, W., & Nordbring-Hertz, B. (1994). Nematophagous fungi: Physiological aspects and structurefunction relationships. Advances in Microbial Physiology, 36, 111–143.PubMedGoogle Scholar
  19. Dong, L. Q., Yang, J. K., & Zhang, K. Q. (2007). Cloning and phylogenetic analysis of the chitinase gene from the facultative pathogen Paecilomyces lilacinus. Journal of Applied Microbiology, 103, 2476–2488.PubMedGoogle Scholar
  20. Eshel, D., Miyara, I., Ailing, T., Dinoor, A., & Prusky, D. (2002). pH regulates endoglucanase expression and virulence of Alternaria alternata in persimmon fruit. Molecular Plant-microbe Interactions 15, 774–779.PubMedGoogle Scholar
  21. Esteves, I., Peteira, B., Atkins, S. D., Magan, N., & Kerry, B. (2009). Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 113, 867–876.PubMedGoogle Scholar
  22. Fang, W., Leng, B., Xiao, Y., Jin, K., Ma, J., Fan, Y., Feng, J., Yang, X., Zhang, Y., & Pei, Y. (2005). Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Applied and Environmental Microbiology, 71, 363–370.PubMedCentralPubMedGoogle Scholar
  23. Fekete, C., Tholander, M., Rajashekar, B., Ahrén, D., Friman, E., Johansson, T., & Tunlid, A. (2008). Paralysis of nematodes: Shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans. Environmental Microbiology, 10, 364–375.PubMedGoogle Scholar
  24. Fernández-Acero, F. J., Jorge, I., Calvo, E., Vallejo, I., Carbú, M., Camafeita, E., Garrido, C., López, J. A., Jorrin, J., & Cantoral, J. M. (2007). Proteomic analysis of phytopathogenic fungus Botrytis cinerea as a potential tool for identifying pathogenicity factors, therapeutic targets and for basic research. Archives of Microbiology, 187, 207–215.PubMedGoogle Scholar
  25. Fusetti, F., von Moeller, H., Houston, D., Rozeboom, H. J., Dijkstra, B. W., Boot, R. G., Aerts, J. M., & van Aalten, D. M. F. (2002). Structure of human chitotriosidase. Implications for specific inhibitor design and function of mammalian chitinase-like lectins. Journal of Biological Chemistry, 277, 25537–25544.PubMedGoogle Scholar
  26. Galagan, J. E., Calvo, S. E., Borkovich, K. A., Selker, E. U., Read, N. D., Jaffe, D., FitzHugh, W., Ma, L. J., Smirnov, S., Purcell, S., Rehman, B., Elkins, T., Engels, R., Wang, S., Nielsen, C. B., Butler, J., Endrizzi, M., Qui, D., Ianakiev, P., Bell-Pedersen, D., Nelson, M. A., Werner-Washburne, M., Selitrennikoff, C. P., Kinsey, J. A., Braun, E. L., Zelter, A., Schulte, U., Kothe, G. O., Jedd, G., Mewes, W., Staben, C., Marcotte, E., Greenberg, D., Roy, A., Foley, K., Naylor, J., Stange-Thomann, N., Barrett, R., Gnerre, S., Kamal, M., Kamvysselis, M., Mauceli, E., Bielke, C., Rudd, S., Frishman, D., Krystofova, S., Rasmussen, C., Metzenberg, R. L., Perkins, D. D., Kroken, S., Cogoni, C., Macino, G., Catcheside, D., Li, W., Pratt, R. J., Osmani, S. A., DeSouza, C. P., Glass, L., Orbach, M. J., Berglund, J. A., Voelker, R., Yarden, O., Plamann, M., Seiler, S., Dunlap, J., Radford, A., Aramayo, R., Natvig, D. O., Alex, L. A., Mannhaupt, G., Ebbole, D. J., Freitag, M., Paulsen, I., Sachs, M. S., Lander, E. S., Nusbaum, C., & Birren, B. (2003). The genome sequence of the filamentous fungus Neurospora crassa. Nature, 422, 859–868.PubMedGoogle Scholar
  27. Gan, Z. W., Yang, J. K., Tao, N., Liang, L. M., Mi, Q. L., Li, J., & Zhang, K. Q. (2007a). Cloning of the gene Lecanicillium psalliotae chitinase Lpchi1 and identification of its potential role in the biocontrol of root-knot nematode Meloidogyne incognita. Applied Microbiology and Biotechnology, 76, 1309–1317.Google Scholar
  28. Gan, Z. W., Yang, J. K., Tao, N., Yu, Z. F., & Zhang, K. Q. (2007b). Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn. Gliocladium roseum). Journal of Microbiology, 45, 422–430.Google Scholar
  29. Gan, Z. W., Yang, J. K., Tao, N., Lou, Z. Y., Mi, Q. L., Meng, Z. H., & Zhang, K. Q. (2009). Crystallization and preliminary crystallographic analysis of a chitinase from Clonostachys rosea. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 65, 386–388.PubMedCentralGoogle Scholar
  30. Gao, Q., Jin, K., Ying, S. H., Zhang, Y., Xiao, G., Shang, Y., Duan, Z., Hu, X., Xie, X. Q., Zhou, G., Peng, G., Luo, Z., Huang, W., Wang, B., Fang, W., Wang, S., Zhong, Y., Ma, L. J., St Leger, R. J., Zhao, G. P., Pei, Y., Feng, M. G., Xia, Y. X., & Wang, C. S. (2011). Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genetics, 7, e100126.Google Scholar
  31. Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., Botstein, D., & Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.PubMedCentralPubMedGoogle Scholar
  32. Gordon, D., Desmarais, C., & Green, P. (2001). Automated finishing with autofinish. Genome Research, 11, 614–625.PubMedCentralPubMedGoogle Scholar
  33. Haas, B. J., Salzberg, S. L., Zhu, W., Pertea, M., Allen, J. E., Orvis, J., White, O., Buell, C. R., & Wortman, J. R. (2008). Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biology, 9, R7.PubMedCentralPubMedGoogle Scholar
  34. Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 293, 781–788.PubMedCentralPubMedGoogle Scholar
  35. Hollis, T., Monzingo, A. F., Bortone, K., Ernst, S., Cox, R., & Robertus, J. D. (2000). The X-ray structure of a chitinase from the pathogenic fungus Coccidioides immitis. Protein Science, 9, 544–551.PubMedCentralPubMedGoogle Scholar
  36. Houston, D. R., Eggleston, I., Synstad, B., Eijsink, V. G., & van Aalten, D. M. F. (2002). The cyclic dipeptide C1-4[cyclo-(L-Arg-D-Pro)] inhibits family 18 chitinases by structural mimicry of a reaction intermediate. Biochemical Journal, 368, 23–27.PubMedCentralPubMedGoogle Scholar
  37. Hurtado-Guerrero, R., & van Aalten, D. M. F. (2007). Structure of Saccharomyces cerevisiae chitinase 1 and screening-based discovery of potent inhibitors. Chemistry & Biology, 14, 589–599.Google Scholar
  38. Jackson, C. W., Heale, J. B., & Hall, R. A. (1985). Traits associated with virulence to the aphid Macrosiphoniella sanbornii in eighteen isolates of Verticillium lecanii. Annals of Applied Biology, 106, 39–48.Google Scholar
  39. Jensen, L. J., Kuhn, M., Stark, M., Chaffron, S., Creevey, C., Muller, J., Doerks, T., Julien, P., Roth, A., Simonovic, M., Bork, P., & von Mering, C. (2009). STRING 8-a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Research, 37, D412–D416.PubMedCentralPubMedGoogle Scholar
  40. Joshi, L., St Leger, R. J., & Bidochka, M. J. (1995). Cloning of a cuticle-degrading protease from the entomopathogenic fungus, Beauveria bassiana. FEMS Microbiology Letters, 125, 211–217.PubMedGoogle Scholar
  41. Kanda, S., Aimi, T., Kano, S., Ishihara, S., Kitamoto, Y., & Morinaga, T. (2008). Ambient pH signaling regulates expression of the serine protease gene (spr1) in pine wilt nematode-trapping fungus, Monacrosporium megalosporum. Microbiological Research, 163, 63–72.PubMedGoogle Scholar
  42. Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., & Hattori, M. (2004). The KEGG resources for deciphering the genome. Nucleic Acids Research, 32, D277–D280.PubMedCentralPubMedGoogle Scholar
  43. Khan, A., Williams, K. L., Molloy, M. P., & Nevalainen, H. (2003). Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expression and Purification, 32, 210–220.PubMedGoogle Scholar
  44. Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31, 346–352.Google Scholar
  45. Korf, I. (2004). Gene finding in novel genomes. BMC Bioinformatics, 5, 59.PubMedCentralPubMedGoogle Scholar
  46. Larriba, E., Martín-Nieto, J., & Lopez-Llorca, L. V. (2012). Gene cloning, molecular modeling, and phylogenetics of serine protease P32 and serine carboxypeptidase SCP1 from nematophagous fungi Pochonia rubescens and Pochonia chlamydosporia. Canadian Journal of Microbiology, 58, 815–827.PubMedGoogle Scholar
  47. Li, T. F., Zhang, K. Q., & Liu, X. Z. (2000). Taxonomy of nematophagous fungi (Chinese). Beijing: Science Press.Google Scholar
  48. Li, J., Yang, J. K., Huang, X. W., & Zhang, K. Q. (2006). Purification and characterization of an extracellular serine protease from Clonostachys rosea and its potential as a pathogenic factor. Process Biochemistry, 41, 925–929.Google Scholar
  49. Li, J., Yu, L., Yang, J. K., Dong, L. Q., Tian, B. Y., Yu, Z. F., Liang, L. M., Zhang, Y., Wang, X., & Zhang, K. Q. (2010). New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evolutionary Biology, 10, 68.PubMedCentralPubMedGoogle Scholar
  50. Liang, L. M., Meng, Z. H., Ye, F. P., Yang, J. K., Liu, S. Q., Sun, Y., Guo, Y., Mi, Q. L., Huang, X. W., Zou, C. G., Rao, Z. H., Lou, Z. Y., & Zhang, K. Q. (2010). The crystal structures of two cuticle-degrading proteases from nematophagous fungi and their contribution to infection against nematodes. FASEB Journal, 24, 1391–1400.PubMedGoogle Scholar
  51. Liang, L. M., Liu, S. Q., Yang, J. K., Meng, Z. H., Lei, L. P., & Zhang, K. Q. (2011a). Comparison of homology models and crystal structures of cuticle-degrading proteases from nematophagous fungi: Structural basis of nematicidal activity. FASEB Journal, 25, 1894–1902.Google Scholar
  52. Liang, L. M., Yang, J. K., Li, J., Mo, Y. Y., Li, L., Zhao, X. Y., & Zhang, K. Q. (2011b). Cloning and homology modeling of a serine protease gene (PrC) from the nematophagous fungus Clonostachys rosea. Annals of Microbiology, 61, 511–516.Google Scholar
  53. Limon, M. C., Pintor-Toro, J. A., & Benitez, T. (1999). Increased anti-fungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology, 89, 254–261.PubMedGoogle Scholar
  54. Liu, S. Q., Tao, Y., Meng, Z. H., Fu, Y. X., & Zhang, K. Q. (2011). The effect of calciums on the molecular motions of proteinase K. Journal of Molecular Modeling, 17, 289–300.PubMedGoogle Scholar
  55. Lorito, M. S., Woo, L., Garcia, I., Colucci, G., Harman, G. E., Pintor-Toro, J. A., Filippone, E., Muccifora, S., Lawrence, C. B., Zoina, A., Tuzun, S., & Scala, F. (1998). Genes from mycoparasitic fungi as a source for improving plant resistance to fungi pathogens. Proceedings of the National academy of Sciences of the United States of America, 95, 7860–7865.PubMedCentralPubMedGoogle Scholar
  56. Lopez-Llorca, L. V. (1990). Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.Google Scholar
  57. Lopez-Llorca, L. V., & Robertson, W. M. (1992). Immumocytochemical locolization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 16, 261–267.Google Scholar
  58. Lýsek, H., & Krajcí, D. (1987). Penetration of ovicidal fungus Verticillium chlamydosporium through the Ascaris lumbricoides egg-shells. Folia Parasitologica, 34, 57–60.PubMedGoogle Scholar
  59. Maclennan, J. D., Mandl, I., & Howes, E. L. (1953). Bacterial digestion of collagen. Journal of Clinical Investigation, 32, 1317–1322.PubMedCentralPubMedGoogle Scholar
  60. Majoros, W. H., Pertea, M., & Salzberg, S. L. (2004). TigrScan and GlimmerHMM: Two open source ab initio eukaryotic gene-finders. Bioinformatics, 20, 2878–2879.PubMedGoogle Scholar
  61. Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Bemben, L. A., Berka, J., Braverman, M. S., Chen, Y. J., Chen, Z., Dewell, S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helgesen, S., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L., Jarvie, T. P., Jirage, K. B., Kim, J. B., Knight, J. R., Lanza, J. R., Leamon, J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani, V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., Nobile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J., Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A., Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu, P., Begley, R. F., & Rothberg, J. M. (2005). Genome sequencing in microfabricated high-density picolitre reactors. Nature, 437, 376–380.PubMedCentralPubMedGoogle Scholar
  62. Mi, Q. L., Yang, J. K., Ye, F. P., Gan, Z. W., Wu, C. W., Niu, X. M., Zou, C. G., & Zhang, K. Q. (2010). Cloning and overexpression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infection against nematodes. Process Biochemistry, 45, 810–814.Google Scholar
  63. Mileweski, S., O’Donnell, R. W., & Gooday, G. W. (1992). Chemical modification studies of the active center of Candida albicans chitinase and its inhibition by allosamidin. Journal of General Microbiology, 138, 2545–5501.Google Scholar
  64. Mo, M. H., Chen, W. M., Su, H. Y., Zhang, K. Q., Duan, C. Q., & He, D. M. (2006). Heavy metal tolerance of nematode-trapping fungi in lead-polluted soils. Applied Soil Ecology, 31, 11–19.Google Scholar
  65. Monfort, E., Lopez-Llorca, L. V., & Jansson, H.-B. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.Google Scholar
  66. Nordbring-Hertz, B. (2004). Morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora-an extensive plasticity of infection structures. Mycologist, 18, 125–133.Google Scholar
  67. Nordbring-Hertz, B., Neumeister, H., Sjollema, K., & Veenhuis, M. (1995). A conidial trap - forming mutant of Arthrobotrys oligospora. Mycological Research, 99, 1395–1398.Google Scholar
  68. Nordbring-Hertz, B., Jansson, H. B., & Tunlid, A. (2006). Nematophagous fungi. Encyclopedia of Life Sciences. doi:10.1002/9780470015902.a0000374.pub3. (John Wiley & Sons, Ltd: Chichester).Google Scholar
  69. Olsson, S., & Persson, Y. (1994). Transfer of phosphorus from Rhizoctonia solani to the mycoparasite Arthrobotrys oligospora. Mycological Research, 98, 1065–1068.Google Scholar
  70. Orikoshi, H., Nakayama, S., Miyamoto, K., Hanato, C., Yasuda, M., Inamori, Y., & Tsujibo, H. (2005). Roles of four chitinases (chia, chib, chic, and chid) in the chitin degradation system of marine bacterium Alteromonas sp. strain O-7. Applied and Environmental Microbiology, 71, 1811–1815.PubMedCentralPubMedGoogle Scholar
  71. Overbeek, R., Fonstein, M., D’Souza, M., Pusch, G. D., & Maltsev, N. (1999). The use of gene clusters to infer functional coupling. Proceedings of the National academy of Sciences of the United States of America, 96, 2896–2901.PubMedCentralPubMedGoogle Scholar
  72. Papanikolau, Y., Tavlas, G., Vorgias, C. E., & Petratos, K. (2003). De novo purification scheme and crystallization conditions yield highresolution structures of chitinase A and its complex with the inhibitor allosamidin. Acta Crystallographica Section D: Biological Crystallography, 59, 400–403.Google Scholar
  73. Peñalva, M. A., Tilburn, J., Bignell, E., & Arst, H. N. Jr. (2008). Ambient pH gene regulation in fungi: Making connections. Trends in Microbiology, 16, 291–300.PubMedGoogle Scholar
  74. Perry, R. N., & Trett, M. W. (1986). Ultrastructure of the egg shell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie, 9, 399–403.Google Scholar
  75. Persmark, L., & Nordbring-Hertz, B. (1997). Conidial trap formation of nematode-trapping fungi in soil and soil extracts. FEMS Microbiology Ecology, 22, 313–323.Google Scholar
  76. Pfister, D. H., & Liftik, M. E. (1995). Two Arthrobotrys anamorphs from Orbilia auricolor. Mycologia, 87, 684–688.Google Scholar
  77. Phillips, D. C. (1967). The hen-egg-white lysozyme molecule. Proceedings of the National academy of Sciences of the United States of America, 57, 484–495.Google Scholar
  78. Quackenbush, J., Cho, J., Lee, D., Liang, F., Holt, I., Karamycheva, S., Parvizi, B., Pertea, G., Sultana, R., & White, J. (2001). The TIGR Gene Indices: Analysis of gene transcript sequences in highly sampled eukaryotic species. Nucleic Acids Research, 29, 159–164.PubMedCentralPubMedGoogle Scholar
  79. Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: Protein domains identifier. Nucleic Acids Research, 33, W116–W120.PubMedCentralPubMedGoogle Scholar
  80. Rao, F. V., Andersen, O. A., Vora, K. A., Demartino, J. A., & van Aalten, D. M. (2005a). Methylxanthine drugs are chitinase inhibitors: Investigation of inhibition and binding modes. Chemistry & Biology, 12, 973–980.Google Scholar
  81. Rao, F. V., Houston, D. R., Boot, R. G., Aerts, J. M., Hodkinson, M., Adams, D. J., Shiomi, K., Omura, S., & van Aalten, D. M. (2005b). Specificity and affinity of natural product cyclopentapeptide inhibitors against A. fumigatus, human, and bacterial chitinases. Chemistry & Biology, 12, 65–76.Google Scholar
  82. Rollins, J. A., & Dickman, M. B. (2001). pH signaling in Sclerotinia sclerotiorum: Identification of a pacC/RIM1 homolog. Applied and Environmental Microbiology, 67, 75–81.PubMedCentralPubMedGoogle Scholar
  83. Rost, B. (1999). Twilight zone of protein sequence alignments. Protein Engineering, 12, 85–94.PubMedGoogle Scholar
  84. Schenck, S., Chase, T. J., Rosenzweig, W. D., & Pramer, D. (1980). Collagenase production by nematode-trapping fungi. Applied and Environmental Microbiology, 40, 567–570.PubMedCentralPubMedGoogle Scholar
  85. Schmidt, A. R., Dörfelt, H., & Perrichot, V. (2007). Carnivorous fungi from Cretaceous Amber. Science, 318, 1743.PubMedGoogle Scholar
  86. Schultz, R. M., & Liebman, M. N. (1997). Structure-function relationship in protein families. In T. M. Devlin (Ed.), Textbook of biochemistry with clinical correlations (4th ed., pp. 1–2). New York: Wiley-Liss.Google Scholar
  87. Schüttelkopf, A. W., Andersen, O. A., Rao, F. V., Allwood, M., Lloyd, C., Eggleston, I. M., & van Aalten, D. M. (2006). Screening-based discovery and structural dissection of a novel family 18 chitinase inhibitor. Journal of Biological Chemistry, 281, 27278–27285.PubMedGoogle Scholar
  88. Segers, R., Butt, T. M., Kerry, B. R., & Peberdy, J. F. (1994). The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 140, 2715–2723.PubMedGoogle Scholar
  89. Seidl, V., Huemer, B., Seiboth, B., & Kubicek, C. P. (2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS Journal, 272, 5923–5939.PubMedGoogle Scholar
  90. Siddiqui, Z. A., & Mahmood, I. (1996). Biological control of plant parasitic nematodes by fungi: A review. Bioresource Technology, 58, 229–239.Google Scholar
  91. Siezen, R. J., & Leunissen, J. A. M. (1997). Subtilases: The superfamily of subtilisin like serine protease. Protein Science, 6, 501–523.PubMedCentralPubMedGoogle Scholar
  92. Slater, G. S. C., & Birney, E. (2005). Automated generation of heuristics for biological sequence comparison. BMC Bioinformatics, 6, 31.PubMedCentralPubMedGoogle Scholar
  93. Soares, F. E., Braga, F. R., Araújo, J. V., dos Santos Lima, W., Mozer, L. R., & Queiróz, J. H. (2012). In vitro activity of a serine protease from Monacrosporium thaumasium fungus against first-stage larvae of Angiostrongylus vasorum. Parasitology Research, 110, 2423–2427.PubMedGoogle Scholar
  94. Stanke, M., & Waack, S. (2003). Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics, 19, ii215–ii225.PubMedGoogle Scholar
  95. St Leger, R. J., & Wang, C. (2011). Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Applied Microbiology and Biotechnology, 85, 901–907.Google Scholar
  96. St Leger, R. J., Charnley, A. K., & Cooper, R. M. (1986). Cuticle-degrading enzymes of entomopathogenic fungi: Synthesis in culture on cuticle. Journal of Invertebrate Pathology, 48, 85–95.Google Scholar
  97. St Leger, R. J., Frank, D. C., Roberts, D. W., & Staples, R. C. (1992). Molecular cloning and regulatory analysis of the cuticle-degrading protease structural gene from the entomopathogenic fungus Metarhizium anisopliae. European Journal of Biochemistry, 204, 991–1001.PubMedGoogle Scholar
  98. St Leger, R. J., Staples, R. C., & Roberts, D. W. (1993). Entomopathogenic isolates of Metarhizium anisopliae, Beauvaria bassiana, and Aspergillus flavus produce multiple extracellular chitinase isozymes. Journal of Invertebrate Pathology, 61, 81–84.Google Scholar
  99. St Leger, R. J., Nelson, J. O., & Screen, S. E. (1999). The entomopathogenic fungus Metarhizium anisopliae alters ambient pH, allowing extracellular protease production and activity. Microbiology, 145, 2691–2699.PubMedGoogle Scholar
  100. Sutton, J. C., Li, D. W., Peng, G., Yu, H., Zhang, P., & Valdebenito-Sanhueza, R. M. (1997). Gliocladium roseum a versatile adversary of a Botrytis cinerea in crops. Plant Disease, 81, 316–328.Google Scholar
  101. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.PubMedGoogle Scholar
  102. Tao, Y., Rao, Z. H., & Liu, S. Q. (2010). Insight derived from molecular dynamics simulation into substrate-induced changes in protein motions of proteinase K. Journal of Biomolecular Structure and Dynamics, 28, 143–157.PubMedGoogle Scholar
  103. Tatusov, R. L., Fedorova, N. D., Jackson, J. D., Jacobs, A. R., Kiryutin, B., Koonin, E. V., Krylov, D. M., Mazumder, R., Mekhedov, S. L., Nikolskaya, A. N., Rao, B. S., Smirnov, S., Sverdlov, A. V., Vasudevan, S., Wolf, Y. I., Yin, J. J., & Natale, D. A. (2003). The COG database: An updated version includes eukaryotes. BMC Bioinformatics, 4, 41.PubMedCentralPubMedGoogle Scholar
  104. Ter-Hovhannisyan, V., Lomsadze, A., Chernoff, Y. O., & Borodovsky, M. (2008). Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Research, 18, 1979–1990.PubMedCentralPubMedGoogle Scholar
  105. Terwisscha van Scheltinga, A. C., Armand, S., Kalk, K. H., Isogai, A., Henrissat, B., & Dijkstra, B. W. (1995). Stereochemistry of chitin hydrolysis by a plant chitinase/lysozyme and X-ray structure of a complex with allosamidin: Evidence for substract assisted catalysis. Biochemistry, 34, 15619–15623.PubMedGoogle Scholar
  106. Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., & Jansson, H. B. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35, 67–78.PubMedGoogle Scholar
  107. Tilburn, J., Sarkar, S., Widdick, D. A., Espeso, E. A., Orejas, M., Mungroo, J., Peñalva, M. A., & Arst, H. N. Jr. (1995). The Aspergillus PacC zinc finger transcription factor mediates regulation of both acidand alkaline-expressed genes by ambient pH. EMBO Journal, 14, 779–790.PubMedCentralPubMedGoogle Scholar
  108. Tosi, S., Annovazzi, L., Tosi, I., Iadrola, P., & Caretta, G. (2001). Collagenase production in an antarctic strain of Arthrobotrys tortor Jarowaja. Mycopathologia, 153, 157–162.Google Scholar
  109. Tunlid, A., & Jansson, S. (1991). Proteases and their involvement in the infection and immobilization of nematodes by the nematophagous fungus Arthrobotrys oligospora. Applied and Environmental Microbiology, 57, 2868–2872.PubMedCentralPubMedGoogle Scholar
  110. Tunlid, A., Rosen, S., Ek, B., & Rask, L. (1994). Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys oligospora. Microbiology, 140, 1687–1695.PubMedGoogle Scholar
  111. van Aalten, D. M., Komander, D., Synstad, B., Gåseidnes, S., Peter, M. G., & Eijsink, V. G. (2001). Structural insights into the catalytic mechanism of a family 18 exo-chitinase. Proceedings of the National academy of Sciences of the United States of America, 98, 8979–8984.PubMedCentralPubMedGoogle Scholar
  112. Wang, B., Wu, W. P., & Liu, X. Z. (2007). Purification and characterization of a neutral serine protease with nematicidal activity from Hirsutella rhossiliensis. Mycopathologia, 163, 169–176.PubMedGoogle Scholar
  113. Wang, M., Yang, J. K., & Zhang, K. Q. (2006a). Characterization of an extracellular protease and its cDNA from the nematode-trapping fungus Monacrosporium microscaphoides. Canadian Journal of Microbiology, 52, 130–139.Google Scholar
  114. Wang, R. B., Yang, J. K., Lin, C., & Zhang, K. Q. (2006b). Purification and characterization of an extracellular serine protease from the nematode-trapping fungus Dactylella shizishanna. Letters in Applied Microbiology, 42, 589–594.Google Scholar
  115. Wang, B., Liu, X., Wu, W. P., Liu, X., & Li, S. (2009). Purification, characterization, and gene cloning of an alkaline serine protease from a highly virulent strain of the nematode-endoparasitic fungus Hirsutella rhossiliensis. Microbiological Research, 164, 665–673.PubMedGoogle Scholar
  116. Ward, E., Kerry, B. R., Manzanilla-López, R. H., Mutua, G., Devonshire, J., Kimenju, J., & Hirsch, P. R. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PLoS One, 7, e35657.PubMedCentralPubMedGoogle Scholar
  117. Watanabe, T., Kobori, K., Miyashita, K., Fujii, T., Sakai, H., Uchida, M., & Tanaka, H. (1993). Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL212 as essential residues for chitinase activity. Journal of Biological Chemistry, 268, 18567–18572.PubMedGoogle Scholar
  118. Wharton, D. A. (1980). Nematode egg-shells. Parasitology, 81, 447–463.PubMedGoogle Scholar
  119. Winnenburg, R., Baldwin, T. K., Urban, M., Rawlings, C., Köhler, J., & Hammond-Kosack, K. E. (2006). PHI-base: A new database for pathogen host interactions. Nucleic Acids Research, 34, D459–D464.PubMedCentralPubMedGoogle Scholar
  120. Xue, A. G. (2003). Biological control of pathogens causing root rot complex in field pea using Clonostachys rosea strain ACM941. Phytopathology, 93, 329–335.PubMedGoogle Scholar
  121. Yakoby, N., Kobiler, I., Dinoor, A., & Prusky, D. (2000). pH regulation of pectate lyase secretion modulates the attack of Colletotrichum gloeosporioides on avocado fruits. Applied and Environmental Microbiology, 66, 1026–1030.PubMedCentralPubMedGoogle Scholar
  122. Yang, J. K., Huang, X. W., Tian, B. Y., Wang, M., Niu, Q. H., & Zhang, K. Q. (2005a). Isolation and characterization of a serine protease from the nematophagous fungus, Lecanicillium psalliotae, displaying nematicidal activity. Biotechnology Letters, 27, 1123–1128.Google Scholar
  123. Yang, J. K., Huang, X. W., Tian, B. Y., Sun, H., Duan, J. X., Wu, W. P., & Zhang, K. Q. (2005b). Characterization of an extracellular serine protease gene from the nematophagous fungus Lecanicillium psalliotae. Biotechnology Letters, 27, 1329–1334.Google Scholar
  124. Yang, J. K., Tian, B. Y., Liang, L. M., & Zhang, K. Q. (2007a). Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 75, 21–31.Google Scholar
  125. Yang, J. K., Li, J., Liang, L. M., Tian, B. Y., Zhang, Y., Chen, C. M., & Zhang, K. Q. (2007b). Cloning and characterization of an extracellular serine protease from the nematode-trapping fungus Arthrobotrys conoides. Archives of Microbiology, 188, 167–174.Google Scholar
  126. Yang, J. K., Liang, L. M., Zhang, Y., Li, J., Zhang, L., Ye, F. P., Gan, Z. W., & Zhang, K. Q. (2007c). Purification and cloning of a novel serine protease from the nematode-trapping fungus Dactylellina varietas and its potential roles in infection against nematodes. Applied Microbiology and Biotechnology, 75, 557–565.Google Scholar
  127. Yang, Y., Yang, E. C., An, Z. Q., & Liu, X. Z. (2007d). Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proceedings of the National academy of Sciences of the United States of America, 104, 8379–8384.Google Scholar
  128. Yang, J. K., Ye, F. P., Mi, Q. L., Tang, S. Q., Li, J., & Zhang, K. Q. (2008). Purification and cloning of an extracellular serine protease from the nematode-trapping fungus Monacrosporium cystosporium. Journal of Microbiology and Biotechnology, 18, 852–858.PubMedGoogle Scholar
  129. Yang, J. K., Gan, Z. W., Lou, Z. Y., Tao, N., Mi, Q. L., Liang, L. M., Sun, Y., Guo, Y., Huang, X. W., Zou, C. G., Rao, Z. H., Meng, Z. H., & Zhang, K. Q. (2010). Crystal structure and mutagenesis analysis of chitinase CrChi1 from the nematophagous fungus Clonostachys rosea in complex with the inhibitor caffeine. Microbiology, 156, 3566–3574.PubMedGoogle Scholar
  130. Yang, J. K., Wang, L., Ji, X. L., Feng, Y., Li, X. M., Zou, C. G., Xu, J. P., Ren, Y., Mi, Q. L., Wu, J. L., Liu, S. Q., Liu, Y., Huang, X. W., Wang, H. Y., Niu, X. M., Li, J., Liang, L. M., Luo, Y. L., Ji, K. F., Zhou, W., Yu, Z. F., Li, G. H., Liu, Y. J., Li, L., Qiao, M., Feng, L., & Zhang, K. Q. (2011a). Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathogens, 7, e1002179.Google Scholar
  131. Yang, J. K., Zhao, X. N., Liang, L. M., Xia, Z. Y., Lei, L. P., Niu, X. M., Zou, C. G., & Zhang, K. Q. (2011b). Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Applied Microbiology and Biotechnology, 89, 1895–1903.Google Scholar
  132. Yang, J. K., Liang, L. M., Li, J., & Zhang, K. Q. (2013). Nematicidal enzymes from microorganisms and their applications. Applied Microbiology and Biotechnology, 97, 7081–7095.PubMedGoogle Scholar
  133. Ye, F. P., Liang, L. M., Mi, Q. L., Yang, J. K., Lou, Z. Y., Sun, Y. N., Guo, Y., Meng, Z. H., & Zhang, K. Q. (2009). Preliminary crystallographic study of two cuticle-degrading proteases from the nematophagous fungi Lecanicillium psalliotae and Paecilomyces lilacinus. Acta Crystallographica Section F: Structural Biology and Crystallization Communications, 65, 271–274.PubMedCentralGoogle Scholar
  134. Yousef, G. M., Kopolovic, A. D., Elliott, M. B., & Diamandis, E. P. (2003). Genomic overview of serine proteases. Biochemical and Biophysical Research Communications, 305, 28–36.PubMedGoogle Scholar
  135. Zhang, Y. J., Liu, X. Z., & Wang, M. (2008). Cloning, expression, and characterization of two novel cuticle-degrading serine proteases from the entomopathogenic fungus Cordyceps sinensis. Research in Microbiology, 159, 462–469.PubMedGoogle Scholar
  136. Zhao, M. L., Mo, M. H., & Zhang, K. Q. (2004). Characterization of a neutral serine protease and its full-length cDNA from the nematode-trapping fungus Arthrobotrys oligospora. Mycologia, 96, 16–22.Google Scholar
  137. Zou, C. G., Tu, H. H., Liu, X. Y., Tao, N., & Zhang, K. Q. (2010a). PacC in the nematophagous fungus Clonostachys rosea controls virulence to nematodes. Environmental Microbiology, 12, 1868–1877.Google Scholar
  138. Zou, C. G., Tao, N., Liu, W. J., Yang, J. K., Huang, X. W., Liu, X. Y., Tu, H. H., Gan, Z. W., & Zhang, K. Q. (2010b). Regulation of subtilisin-like protease prC expression by nematode cuticle in the nematophagous fungus Clonostachys rosea. Environmental Microbiology, 12, 3243–3252.Google Scholar
  139. Zou, C. G., Xu, Y. F., Liu, W. J., Zhou, W., Tao, N., Tu, H. H., Huang, X. W., Yang, J. K., & Zhang, K. Q. (2010c). Expression of a serine protease gene prC is up-regulated by oxidative stress in the fungus Clonostachys rosea: Implications for fungal survival. PLoS One, 5, e13386.Google Scholar

Copyright information

© Mushroom Research Foundation 2014

Authors and Affiliations

  • Jinkui Yang
    • 1
  • Lianming Liang
    • 1
  • Chenggang Zou
    • 1
  • Ke-Qin Zhang
    • 1
  1. 1.Laboratory for Conservation and Utilization of Bio-Resources, and Key Laboratory of Microbial Diversity in Southwest ChinaMinistry of Education, Yunnan UniversityKunmingChina

Personalised recommendations