Advertisement

Power Grids, Smart Grids and Complex Networks

  • Antonio Scala
  • Guido Caldarelli
  • Alessandro Chessa
  • Alfonso Damiano
  • Mario Mureddu
  • Sakshi Pahwa
  • Caterina Scoglio
  • Walter Quattrociocchi
Conference paper
Part of the NATO Science for Peace and Security Series C: Environmental Security book series (NAPSC)

Abstract

We present some possible Complex Networks approaches to study and understand Power Grids and to improve them into Smart Grids . We first sketch the general properties of the Electric System with an attention to the effects of Distributed Generation. We then analyse the effects of renewable power sources on Voltage Controllability. Afterwords, we study the impact of electric line overloads on the nature of Blackouts. Finally, we discuss the possibility of implementing Self Healing capabilities into Power Grids through the use of Routing Protocols.

Keywords

Smart Grid Power Flow Power Grid Renewable Source Electric Power System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

AS, GC and WQ thank US grant HDTRA1-11-1-0048, CNR-PNR National Project “Crisis-Lab” and EU FET project MULTIPLEX nr.317532. SP and CS acknowledge the support of the US Department of Energy grant EE-0003812: “Resourceful Kansas”. The contents of the paper do not necessarily reflect the position or the policy of funding parties.

References

  1. 1.
    Arenas A, Diaz-Guilera A, Kurths J, Moreno Y, Zhou C (2008) Synchronization in complex networks. Phys Rep 469:93–153CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S (2010) Catastrophic cascade of failures in interdependent networks. Nature 464:1025–1028CrossRefADSGoogle Scholar
  3. 3.
    Liu Y-Y, Slotine J-J, Barabasi A-L (2011) Controllability of complex networks. Nature 473:167–173. http://dx.doi.org/10.1038/nature10011 Google Scholar
  4. 4.
    Dorogovtsev SN, Goltsev AV, Mendes JFF (2008) Critical phenomena in complex networks. Rev Mod Phys 80:1275–1335CrossRefADSGoogle Scholar
  5. 5.
    Costa LF et al (2011) Analyzing and modeling real-world phenomena with complex networks: a survey of applications. Adv Phys 60:329–412CrossRefADSGoogle Scholar
  6. 6.
    Perra N, Gonçalves B, Pastor-Satorras R, Vespignani A (2012) Activity driven modeling of time varying networks. Sci Rep 2. http://dx.doi.org/10.1038/srep00469
  7. 7.
    Barrat A, Barthelemy M, Vespignani A (2008) Dynamical processes on complex networks Cambridge University Press, Cambridge/New YorkGoogle Scholar
  8. 8.
    Alvarez-Hamelin JI, Fleury E, Vespignani A, Ziviani A (2012) Complex dynamic networks: tools and methods. Comput Netw 56:967–969CrossRefGoogle Scholar
  9. 9.
    Casteigts A, Flocchini P, Quattrociocchi W, Santoro N (2012) Time-varying graphs and dynamic networks. Int J Parallel Emergent Distrib Syst IJPEDS 27:387–408CrossRefGoogle Scholar
  10. 10.
    2003 Homeland Security Presidential Directive HSPD-7 (2003). http://georgewbush-whitehouse.archives.gov/news/releases/2003/12/20031217-5.html
  11. 11.
    EU COM (2006) 786 EU directive on European Programme for Critical Infrastructure Protection, Brussels, 12.12.2006. http://eur-lex.europa.eu/LexUriServ/site/en/com/2006/com2006_0786en01.pdf
  12. 12.
    Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding and analyzing critical infrastructure interdependencies. IEEE Control Syst Mag 21:11–25CrossRefGoogle Scholar
  13. 13.
    Baghaie M, Moeller S, Krishnamachari B (2010) Energy routing on the future grid: a stochastic network optimization approach. In: International conference on power system technology (POWERCON), Hangzhou, 2010, pp 1–8Google Scholar
  14. 14.
    Stagg G, El-Abiad A (1968) Computer methods in power system analysis. McGraw-Hill Education, New YorkGoogle Scholar
  15. 15.
    Filatrella G, Nielsen AH, Pedersen NF (2008) Analysis of a power grid using a Kuramoto-like model. Eur Phys J B – Condens Matter Complex Syst 61:485–491Google Scholar
  16. 16.
    Fioriti V, Ruzzante S, Castorini E, Marchei E, Rosato V (2009) Stability of a distributed generation network using the Kuramoto models. In: Setola R, Geretshuber S (eds) Critical information infrastructure security. Springer, Berlin/Heidelberg, pp 14–23CrossRefGoogle Scholar
  17. 17.
    Dörfler F, Bullo F (2012) Synchronization and transient stability in power networks and nonuniform Kuramoto oscillators. SIAM J Control Optim 50(3):1616–1642. doi: 10.1137/110851584, http://epubs.siam.org/doi/abs/10.1137/110851584
  18. 18.
    Dobson I, Carreras BA, Lynch VE, Newman DE (2001) System sciences, 2001. In: Proceedings of the 34th annual Hawaii international conference on an initial model fo complex dynamics in electric power system blackouts, pp 710–718. doi: 10.1109/HICSS.2001.926274
  19. 19.
    Wood AJ, Wollenberg BF (1984) Power generation, operation and control. Wiley, New YorkGoogle Scholar
  20. 20.
    Carreras BA, Lynch VE, Dobson I, Newman DE (2002) Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos: Interdiscip J Nonlinear Sci 12:985–994CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Sachtjen ML, Carreras BA, Lynch VE (2000) Disturbances in a power transmission system. Phys Rev E 61:4877–4882CrossRefADSGoogle Scholar
  22. 22.
    Youssef M, Scoglio C, Pahwa S (2011) Robustness measure for power grids with respect to cascading failures. In: Proceedings of the 2011 international workshop on modeling, analysis, and control of complex networks, CNET ’11, San Francisco. ITCP, pp 45–49Google Scholar
  23. 23.
    Stott B, Jardim J, Alsac O (2009) Dc power flow revisited. IEEE Trans Power Syst 24:1290–1300CrossRefGoogle Scholar
  24. 24.
    Scala A, Mureddu M, Chessa A, Caldarelli G, Damiano A (2013) Distributed generation and resilience in power grids. In: Hammerli BM, Kalstad Svendsen N, Lopez J (eds) Critical information infrastructures security. Lecture notes in computer science, vol 7722. Springer, Berlin/Heidelberg, pp 71–79. doi: 10.1007/978-3-642-41485-5_7, ISBN:978-3-642-41484-8, http://dx.doi.org/10.1007/978-3-642-41485-5_7
  25. 25.
    Grainger J, Stevenson W (1994) Power system analysis. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Azzalini A (2005) The skew-normal distribution and related multivariate families. Scand J Stat 32:159–188CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Brin S, Page L (1998) The anatomy of a large-scale hypertextual web search engine. Comput Netw ISDN Syst 30:107–117CrossRefGoogle Scholar
  28. 28.
    Chung F, Zhao W Pagerank and random walks on graphs. http://www.math.ucsd.edu/~fan/wp/lov.pdf
  29. 29.
    NERC North America Electric Reability Corporation (2006). http://www.nerc.com/
  30. 30.
    ENTSO-E European Network of Transmission System Operators for Electricity (2008). https://www.entsoe.eu/
  31. 31.
    Report 1010701 (2005) Mitigating cascading outages on power systems: recent research approaches and emerging methods. Technical report, EPRIGoogle Scholar
  32. 32.
    Blackout in the United States and Canada, April 2004 (2004). https://reports.energy.gov/
  33. 33.
    Pahwa S, Hodges A, Scoglio CM, Wood S (2010) Topological analysis of the power grid and mitigation strategies against cascading failures. In: Proceedings of the 4th international IEEE systems conference, San Diego, pp 272–276Google Scholar
  34. 34.
    Quattrociocchi W, Caldarelli G, Scala A (2014) Self-healing networks: redundancy and structure. PLoS ONE 9(2):e87986. doi:10.1371/journal.pone.0087986. Public Library of Science. http://dx.doi.org/10.1371%2Fjournal.pone.0087986
  35. 35.
    Caldarelli G (2007) Scale-free networks Oxford University Press, OxfordGoogle Scholar
  36. 36.
    Watts DJ, Strogatz SH (1998) Collective dynamics of /‘small-world/’ networks. Nature 393:440–442. http://dx.doi.org/10.1038/30918 Google Scholar
  37. 37.
    Barabási A-L, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    Wilson DB (1996) Generating random spanning trees more quickly than the cover time. In: Proceedings of the 28th annual ACM symposium on the theory of computing, Philadephia. ACM, pp 296–303Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Antonio Scala
    • 1
  • Guido Caldarelli
    • 2
  • Alessandro Chessa
    • 2
  • Alfonso Damiano
    • 3
  • Mario Mureddu
    • 4
  • Sakshi Pahwa
    • 5
  • Caterina Scoglio
    • 5
  • Walter Quattrociocchi
    • 6
  1. 1.ISC-CNR Physics DepartmentUniv. La SapienzaRomaItaly
  2. 2.IMT Alti Studi LuccaLuccaItaly
  3. 3.Dipartimento di Ingegneria Elettrica ed ElettronicaUniv. di CagliariCagliariItaly
  4. 4.Linkalab, Complex Systems Computational LaboratoryCagliariItaly
  5. 5.Department of Electrical and Computer Engineering, College of EngineeringKansas State UniversityManhattanUSA
  6. 6.London Institute of Mathematical SciencesLondonUK

Personalised recommendations