Advertisement

Segmentation of Forest to Tree Objects

  • Barbara KochEmail author
  • Teja Kattenborn
  • Christoph Straub
  • Jari Vauhkonen
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 27)

Abstract

This chapter reviews the use of airborne LiDAR data for the segmentation of forest to tree objects. The benefit obtained by LiDAR data is typically related to the use of the third dimension, i.e. the height data. Forest and stand objects may be segmented based on physical criteria, for example height and density information, while a further delineation to different timber types would require leaf-off data or an additional data source such as spectral images. Most forest applications of the LiDAR data are based on using digital surface models, but especially tree-level segmentation may benefit from a combination of raster and point data, and can be performed solely on point data. Finally, there are several established techniques for tree shape reconstruction based on the segmented point data.

Keywords

Point Cloud Tree Crown LiDAR Data Seed Point Digital Surface Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Barr AH (1981) Superquadrics and angle preserving transformations. IEEE Comput Graph Appl 1:11–23CrossRefGoogle Scholar
  2. Blaschke T (2010) Object based image analysis for remote sensing. ISPRS J Photogramm Remote Sens 65:2–16CrossRefGoogle Scholar
  3. Chen Y, Dougherty ER (1994) Gray-scale morphological texture classification. Opt Eng 33:2713–2722CrossRefGoogle Scholar
  4. Chevalier L, Jaillet F, Baskurt A (2003) Segmentation and superquadric modeling of 3D objects. In: Proceedings of the European conference on computer vision, J WSCG03 11(1), 2003. ISSN 1213–6972Google Scholar
  5. Cici A, Kevin T, Nicholas JT, Sarah S, Jörg K (2008) Extraction of vegetation for topographic mapping from full-waveform airborne laser scanning data. In: Proceedings of the SilviLaser 2008, Edinburgh, U.K., 17–19 September, pp 343–353Google Scholar
  6. Dees M, Straub Ch, Koch B, Weinacker H (2006) Combining airborne laser scanning and GIS data to estimate timber volume of forest stands based on yield models. Project report, University of Freiburg, Freiburg, GermanyGoogle Scholar
  7. Deng Y, Manjunath BS (2001) Unsupervised segmentation of color-texture regions in images and video. IEEE Trans Pattern Anal Mach Intell 23:800–810CrossRefGoogle Scholar
  8. Diedershagen O, Koch B, Weinacker H (2004) Automatic segmentation and characterisation of forest stand parameters using Airborne LIDAR data multispectral and FOGIS data. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI:208–212Google Scholar
  9. Doo-Ahn K, Woo-Kyun L, Hyun-Kook C (2008) Estimation of effective plant area index using LiDAR data in forest of South Korea. In: Proceedings of the SilviLaser 2008, Edinburgh, U.K., 17–19 September, pp. 237–246Google Scholar
  10. Dougherty ER (1992) An introduction to morphological image processing. SPIE Optical Engineering Press, Center for Imaging Science, Rochester Institute of Technology, RochesterGoogle Scholar
  11. Edelsbrunner H, Mücke EP (1994) Three-dimensional alpha shapes. ACM Trans Graph 13:43–72CrossRefGoogle Scholar
  12. Ene L, Næsset E, Gobakken T (2012) Single tree detection in heterogeneous boreal forests using airborne laser scanning and area based stem number estimates. Int J Remote Sens 33:5171–5193CrossRefGoogle Scholar
  13. Eysn L, Hollaus M, Schadauer K, Pfeifer N (2012) Forest delineation based on airborne LiDAR data. Remote Sens 4:762–783CrossRefGoogle Scholar
  14. Friedländer H (2002) Die Anwendung von flugzeuggetragenen Laserscannerdaten zur Ansprache dreidimensionaler Strukturelemente von Waldbeständen, Ph.D. dissertation, University of Freiburg, Freiburg, Germany, 64 pGoogle Scholar
  15. Gonzalez R, Woods RE (2008) Digital image processing, 3rd edn. Prentice Hall, Englewood Cliffs, 954 p. ISBN 9780131687288Google Scholar
  16. Gupta S, Weinacker H, Koch B (2010) Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne fullwave Lidar data. Remote Sens 2010:968–989CrossRefGoogle Scholar
  17. Heinzel J, Weinacker H, Koch B (2011) Prior-knowledge-based single-tree extraction. Int J Remote Sens 32:4999–5020CrossRefGoogle Scholar
  18. Heipke C (2001) Digital photogrammetric workstations – a review of the state-of-the-art for topographic application. GIM Int 15(4):35–37Google Scholar
  19. Höfle B, Hollaus M (2010) Urban vegetation detection using high density full-waveform airborne lidar data – combination of object-based image and point cloud analysis. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVIII-7B:281–286Google Scholar
  20. Holmgren J, Wallerman J (2006) Estimation of tree size distribution by combining vertical and horizontal distribution of LIDAR measurements with extraction of individual trees. In: Proceedings of the workshop on 3D remote sensing in forestry, 14–15 Feb 2006. University of Natural Resources and Applied Life Science, Vienna, pp. 168–173Google Scholar
  21. Holmgren J, Barth A, Larsson H, Olsson H (2012) Prediction of stem attributes by combining airborne laser scanning and measurements from harvesters. Silva Fenn 46:227–239CrossRefGoogle Scholar
  22. Hyyppä J, Inkinen M (1999) Detecting and estimating attributes for single trees using laser scanner. Photogramm J Finland 16:27–42Google Scholar
  23. Hyyppä J, Kelle O, Lehikoinen M, Inkinen M (2001a) A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners. IEEE Trans Geosci Remote Sens 39:969–975CrossRefGoogle Scholar
  24. Hyyppä J, Schardt M, Haggren H, Koch B (2001b) HIGH-SCAN: the first European-Wide attempt to derive single tree information from Laserscanner data. Photogramm J Finland 17:58–69Google Scholar
  25. Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366CrossRefGoogle Scholar
  26. Hyyppä J, Yu X, Hyyppä H, Vastaranta M, Holopainen M, Kukko A, Kaartinen H, Jaakkola A, Vaaja M, Koskinen J, Alho P (2012) Advances in forest inventory using airborne laser scanning. Remote Sens 4:1190–1207CrossRefGoogle Scholar
  27. Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323CrossRefGoogle Scholar
  28. Jaklic A, Leonardis A, Solina F (2000) Segmentaion and recovery of superquadrics. Kluwer Academic Publisher, Dordrecht, 266 p. ISBN 0-7923-6601-8CrossRefGoogle Scholar
  29. Kaartinen H, Hyyppä J, Yu X, Vastaranta M, Hyyppä H, Kukko A, Holopainen M, Heipke C, Hirschmugl M, Morsdorf F, Næsset E, Pitkänen J, Popescu S, Solberg S, Wolf BM, Wu J-C (2012) An international comparison of individual tree detection and extraction using airborne laser scanning. Remote Sens 4:950–974CrossRefGoogle Scholar
  30. Koch B, Heyder U, Weinacker H (2006) Detection of individual tree crowns in airborne LIDAR data. Photogramm Eng Remote Sens 72:357–363CrossRefGoogle Scholar
  31. Koch B, Straub C, Dees M, Wang Y, Weinacker H (2009) Airborne laser data for stand delineation and information extraction. Int J Remote Sens 30:935–936CrossRefGoogle Scholar
  32. Koivuniemi J, Korhonen KT (2006) Inventory by compartments. In: Kangas A, Maltamo M (eds) Forest inventory – methodology and applications, vol 10, Managing forest ecosystems. Springer, Dordrecht, pp 271–278CrossRefGoogle Scholar
  33. Korpela I, Hovi A, Morsdorf F (2012) Understory trees in airborne LiDAR data – selective mapping due to transmission losses and echo-triggering mechanisms. Remote Sens Environ 119:92–104CrossRefGoogle Scholar
  34. Lähivaara T, Seppänen A, Kaipio JP, Vauhkonen J, Korhonen L, Tokola T, Maltamo M (2014) Bayesian approach to tree detection based on airborne laser scanning data. IEEE Trans Geosci Remote Sens. doi: 10.1109/TGRS.2013.2264548 Google Scholar
  35. Leppänen VJ, Tokola T, Maltamo M, Mehtätalo L, Pusa T, Mustonen J (2008) Automatic delineation of forest stands from LIDAR data. In: Proceedings of the GEOBIA 2008 – Pixels, objects, intelligence GEOgraphic object based image analysis for the 21st Century, Calgary, Alberta, Canada, 5–8 Aug 2008, 6 pGoogle Scholar
  36. Li W, Guo Q, Jakubowski M, Kelly M (2012) A new method for segmenting individual trees from the lidar point cloud. Photogramm Eng Remote Sens 78:75–84CrossRefGoogle Scholar
  37. Lloyd CD, Atkinson PM (2002) Deriving DSMs from LiDAR data with kriging. Int J Remote Sens 23:2519–2524CrossRefGoogle Scholar
  38. Mao J, Jain AK (1996) A self-organizing network for hyperellipsoidal clustering. IEEE Trans Neural Net 7:16–29CrossRefGoogle Scholar
  39. Means JE, Acker SA, Fitt BJ, Renslow M, Emerson L, Hendrix CJ (2000) Predicting forest stand characteristics with airborne laser scanning LIDAR. Photogramm Eng Remote Sens 66:1367–1371Google Scholar
  40. Morsdorf F, Meier E, Kotz B, Itten KI, Dobbertin M, Allgöwer B (2004) Lidar-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sens Environ 92:353–362CrossRefGoogle Scholar
  41. Mustonen J, Packalén P, Kangas A (2008) Automatic delineation of forest stands using a canopy height model and aerial photography. Scand J For Res 23:534–545CrossRefGoogle Scholar
  42. Næsset E, Bjerknes KO (2001) Estimating tree heights and number of stems in young forest stands using airborne laser scanner data. Remote Sens Environ 78:328–340CrossRefGoogle Scholar
  43. O’Rourke J (1994) Computational geometry in C. Cambridge University Press, CambridgeGoogle Scholar
  44. Packalén P, Maltamo M, Tokola T (2008) Detailed assessment using remote sensing techniques. Designing green landscapes. Springer, Dordrecht, pp 53–77CrossRefGoogle Scholar
  45. Pascual C, Garda-Abril A, Garcia-Montero LG, Martin-Femandez S, Cohen WB (2008) Object-based semi-automatic approach for forest structure characterization using lidar data in heterogeneous Pinus sylvestris stands. For Ecol Manag 255:3677–3685CrossRefGoogle Scholar
  46. Persson Å, Holmgren J, Söderman U (2002) Detecting and measuring individual trees using an airborne laser scanner. Photogramm Eng Remote Sens 68:925–932Google Scholar
  47. Pitkänen J, Maltamo M, Hyyppä J, Yu X (2004) Adaptive methods for individual tree detection on airborne laser based canopy height model. In: Proceedings of the ISPRS Working Group VIII/2: “Laser-scanners for forest and landscape assessment”. University of Freiburg, Germany, pp 187–191Google Scholar
  48. Pollock RJ (1996) The automatic recognition of individual trees in aerial images of forests based on a synthetic tree crown image model. PhD thesis, University of British Columbia, CanadaGoogle Scholar
  49. Popescu SC, Wynne RH, Nelson RH (2002) Estimating plot-level tree heights with lidar: local filtering with a canopy-height based variable window size. Comput Electr Agric 37:71–95CrossRefGoogle Scholar
  50. Popescu SC, Wynne RH, Nelson RF (2003) Measuring individual tree crown diameter with lidar and assessing its influence on estimating forest volume and biomass. Can J Remote Sens 29:564–577CrossRefGoogle Scholar
  51. Preparata FP, Shamos MI (1985) Computational geometry – an introduction. Springer, New York. ISBN 978-1-4612-7010-2CrossRefGoogle Scholar
  52. Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574CrossRefGoogle Scholar
  53. Rentsch M, Krismann A, Krzystek P (2011) Extraction of non-forest trees for biomass assessment based on airborne and terrestrial LiDAR data. Photogramm Image Anal 6952:121–132, Springer, Berlin/HeidelbergGoogle Scholar
  54. Rieger W, Eckmüllner O, Müllner H, Reiter T (1999) Laser-scanning from the derivation of forest stand parameters. ISPRS workshop: mapping forest structure and topography by airborne and spaceborne lasers, La Jolla, CAGoogle Scholar
  55. Rutzinger M, Höfle B, Pfeifer N (2008) Object detection in airborne laser scanning data – an integrative approach on object-based image and point cloud analysis. In: Blaschke T, Lang S, Hay G (eds) Object-based image analysis – spatial concepts for knowledge-driven remote sensing applications, Springer, Berlin, pp 645–662Google Scholar
  56. Rutzinger M, Pratihast AK, Oude Elberink S, Vosselman G (2010) Detection and modeling of 3D trees from mobile laser scanning data. In: Proceedings of the ISPRS TCV mid-term symposium, Newcastle upon Tyne, 6 pGoogle Scholar
  57. Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888–905CrossRefGoogle Scholar
  58. Soille P (1999) Morphological image analysis: principles and applications. Springer, New YorkCrossRefGoogle Scholar
  59. Soille P (2003) Morphological image analysis: principles and applications, 2nd edn. Springer, Berlin/New York, 316 ppGoogle Scholar
  60. Solberg S, Næsset E, Bollandsås OM (2006) Single tree segmentation using airborne laser scanner data in a heterogeneous spruce forest. Photogramm Eng Remote Sens 72:1369–1378CrossRefGoogle Scholar
  61. Steger C, Ulrich M, Wiedemann C (2008) Machine vision algorithms and applications. Wiley, Weinheim, pp 137–138Google Scholar
  62. Straub C, Weinacker H, Koch B (2008) A fully automated procedure for delination and classification of forest and non-forest vegetation based on full waveform laser scanner data. In: Proceedings of the XXI ISPRS congress Beijing, China, 3–8 July 2008. Int Arch Photogramm Remote Sens XXVII part B 8, WG VII711:1013–1020Google Scholar
  63. Tang S, Dong P, Buckles BP (2013) Three-dimensional surface reconstruction of tree canopy from lidar point clouds using a region-based level set method. Int J Remote Sens 34:1373–1385CrossRefGoogle Scholar
  64. Tiede D, Hoffmann C (2006) Process oriented object-based algorithms for single tree detection using laser scanning. In: Proceedings of the 3-D remote sensing in forestry, University of Natural Resources and Applied Life Sciences (BOKU), Vienna, Austria, pp 151–156Google Scholar
  65. Tiede D, Blaschke T, Heurich M (2004) Object-based semi-automatic mapping of forest stands with laser scanner and multispectral data. Int Arch Photogramm Remote Sens XXXVI(Part8/W2):328–333Google Scholar
  66. Vauhkonen J (2010a) Estimating crown base height for Scots pine by means of the 3-D geometry of airborne laser scanning data. Int J Remote Sens 31:1213–1226CrossRefGoogle Scholar
  67. Vauhkonen J (2010b) Estimating single-tree attributes by airborne laser scanning: methods based on computational geometry of the 3-D point data. Diss For 104, 44 pGoogle Scholar
  68. Vauhkonen J, Tokola T, Maltamo M, Packalén P (2008) Effects of pulse density on predicting characteristics of individual trees of Scandinavian commercial species using alpha shape metrics based on airborne laser scanning data. Can J Remote Sens 34:S441–S459CrossRefGoogle Scholar
  69. Vauhkonen J, Tokola T, Packalén P, Maltamo M (2009) Identification of Scandinavian commercial species of individual trees from airborne laser scanning data using alpha shape metrics. For Sci 55:37–47Google Scholar
  70. Vauhkonen J, Korpela I, Maltamo M, Tokola T (2010) Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sens Environ 114:1263–1276CrossRefGoogle Scholar
  71. Vauhkonen J, Ene L, Gupta S, Heinzel J, Holmgren J, Pitkänen J, Solberg S, Wang Y, Weinacker H, Hauglin KM, Lien V, Packalén P, Gobakken T, Koch B, Næsset E, Tokola T, Maltamo M (2012) Comparative testing of single-tree detection algorithms under different types of forest. Forestry 85:27–40CrossRefGoogle Scholar
  72. Vauhkonen J, Packalen P, Malinen J, Pitkänen J, Maltamo M (2014) Airborne laser scanning based decision support for wood procurement planning. Scand J For Res. doi: 10.1080/02827581.2013.813063 Google Scholar
  73. Vincent L, Soille P (1991) Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE PAMI 13:583–598CrossRefGoogle Scholar
  74. Wang Z, Boesch R, Ginzler C (2007) Color and LiDAR data fusion. Int Arch Photogramm Remote Sens Spat Inf Sci [CD] 36, 1/W51:4Google Scholar
  75. Wang Z, Boesch R, Ginzler C (2008a) Integration of high resolution aerial images and airborne LiDAR data for forest delineation. ISPRS XXI congress Beijing, China, 3–8 July 2008, Int Arch Photogramm Remote Sens XXVII part B 8, WG VII711:1203–1208Google Scholar
  76. Wang Y, Weinacker H, Koch B (2008b) A Lidar point cloud based procedure for vertical canopy structure analysis and 3D single tree modelling in forest. Sensors 2008:3938–3950CrossRefGoogle Scholar
  77. Weinacker H, Koch B, Heyder U, Weinacker R (2004a) Development of filtering, segmentation and modelling modules for LIDAR and multispectral data as a fundamental of an automatic forest inventory system. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI:90–95Google Scholar
  78. Weinacker H, Koch B, Weinacker R (2004b) TREESVIS – a software system for simultaneous 3D-real-time visualization of DTM, DSM, laser row data, multi-spectral data, simple tree and building models. Int Arch Photogramm Remote Sens Spat Inf Sci XXXVI:90–95Google Scholar
  79. Wu Z, Heikkinen V, Hauta-Kasari M, Parkkinen J, Tokola T (2013) Forest stand delineation using a hybrid segmentation approach based on airborne laser scanning data. Lect Notes Comput Sci 7944:95–106CrossRefGoogle Scholar
  80. Yao W, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Barbara Koch
    • 1
    Email author
  • Teja Kattenborn
    • 1
  • Christoph Straub
    • 2
  • Jari Vauhkonen
    • 3
  1. 1.Department of Remote Sensing and Landscape Information SystemsUniversity of FreiburgFreiburg im BreisgauGermany
  2. 2.Bayerische Landesanstalt für Wald- und ForstwirtschaftHans von Carl Carlowitz PlatzFreisingGermany
  3. 3.Department of Forest SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations