Advertisement

Full-Waveform Airborne Laser Scanning Systems and Their Possibilities in Forest Applications

  • Markus HollausEmail author
  • Werner Mücke
  • Andreas Roncat
  • Norbert Pfeifer
  • Christian Briese
Chapter
Part of the Managing Forest Ecosystems book series (MAFE, volume 27)

Abstract

Full-waveform (FWF) airborne laser scanning (ALS) systems became available for operational data acquisition around the year 2004. These systems typically digitize the analogue backscattered echo of the emitted laser pulse with a high frequency. FWF digitization has the advantage of not limiting the number of echoes that are recorded for each individual emitted laser pulse. Studies utilizing FWF data have shown that more echoes are provided from reflections in the vegetation in comparison to discrete echo systems. To obtain geophysical metrics based on ALS data that are independent of a mission’s flying height, acquisition time or sensor characteristics, the FWF amplitude values can be calibrated, which is an important requirement before using them in further classification tasks. Beyond that, waveform digitization provides an additional observable which can be exploited in forestry, namely the width of the backscattered pulse (i.e. echo width). An early application of FWF ALS was to improve ground and shrub echo identification below the forest canopy for the improvement of terrain modelling, which can be achieved using the discriminative capability of the amplitude and echo width in classification algorithms. Further studies indicate that accuracies can be increased for classification (e.g. species) and biophysical parameter extraction (e.g. diameter at breast height) for single-tree- and area-based methods by exploiting the FWF observables amplitude and echo width.

Keywords

Point Cloud Digital Terrain Model Airborne Laser Scanning Airborne Laser Scanning Data High Point Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Markus Hollaus has been supported by the project NEWFOR, financed by the European Territorial Cooperation “Alpine Space”. Andreas Roncat has been supported by a Karl Neumaier PhD scholarship.

The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology is based on an international cooperation of the Ludwig Boltzmann Gesellschaft (Austria), the University of Vienna (Austria), the Vienna University of Technology (Austria), the Austrian Central Institute for Meteorology and Geodynamics, the office of the provincial government of Lower Austria, Airborne Technologies GmbH (Austria), RGZM (Roman-Germanic Central Museum Mainz, Germany), RA (Swedish National Heritage Board), VISTA (Visual and Spatial Technology Centre, University of Birmingham, UK) and NIKU (Norwegian Institute for Cultural Heritage Research).

References

  1. Adams T, Beets P, Parrish C (2012) Extracting more data from LiDAR in forested areas by analyzing waveform shape. Remote Sens 4(3):682–702CrossRefGoogle Scholar
  2. Ahokas E, Kaasalainen S, Hyyppä J, Suomalainen J (2006) Calibration of the Optech ALTM 3100 laser scanner intensity data using brightness targets. Int Arch Photogramm Remote Sens Spat Inf Sci 36(1):T03–11Google Scholar
  3. Alexander C, Tansey K, Kaduk J, Holland D, Tate NJ (2010) Backscatter coefficient as an attribute for the classification of full-waveform airborne laser scanning data in urban areas. ISPRS J Photogramm Remote Sens 65:423–432CrossRefGoogle Scholar
  4. Axelsson P (2000) DEM generation from laser scanner data using adaptive TIN models. Int Arch Photogramm Remote Sens 33(B4):110–117Google Scholar
  5. Beraldin JA, Blais F, Lohr U (2010) Laser scanning technology. In: Vosselman G, Maas H-G (eds) Airborne and terrestrial laser scanning. Boca Raton, London, New York, CRC press, Taylor and Francis Group, chap 1, pp 1–42Google Scholar
  6. Briese C, Pfeifer N, Dorninger P (2002) Applications of the robust interpolating for DTM determination. Int Arch Photogramm Remote Sens Spat Inf Sci 34(3A):55–61Google Scholar
  7. Briese C, Doneus M, Pfeifer N, Melzer T (2007) Verbesserte DGM-Erstellung mittels full-waveform airborne laserscanning. In: Proceedings of the 3-Ländertagung DGPF, SGPBF, OVG, Basel (in German)Google Scholar
  8. Briese C, Höfle B, Lehner H, Wagner W, Pfenningbauer M (2008) Calibration of full-waveform airborne laser scanning data for object classification. In: Proceedings of the SPIE: laser radar technology and applications XIII, OrlandoGoogle Scholar
  9. Briese C, Pfennigbauer M, Lehner H, Ullrich A, Wagner W, Pfeifer N (2012) Radiometric calibration of multi-wavelength airborne laser scanning data. ISPRS Ann Photogramm Remote Sensing and Spat Inf Sci 1(7):335–340CrossRefGoogle Scholar
  10. Chauve A, Vega C, Durrieu S, Bretar F, Allouis T, Pierrot-Deseilligny M, Puech W (2009) Advanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in an alpine coniferous forest. Int J Remote Sens 30:5211–5228CrossRefGoogle Scholar
  11. Doneus M, Briese C (2006) Digital terrain modelling for archaeological interpretation within forested areas using full-waveform laserscanning. In: Proceedings of the 7th international symposium on virtual reality, archaeology and cultural heritage VAST, Nicosia, Cyprus, pp 155–162Google Scholar
  12. Doneus M, Briese C, Fera M, Janner M (2008) Archaeological prospection of forested areas using full-waveform airborne laser scanning. J Archaeol Sci 35:882–893CrossRefGoogle Scholar
  13. Ducic V, Hollaus M, Ullrich A, Wagner W, Melzer T (2006) 3D vegetation mapping and classification using full-waveform laser scanning. In: Proceedings of the international workshop 3D remote sensing in forestry, Vienna, pp 211–217Google Scholar
  14. Heinzel J, Koch B (2011) Exploring full-waveform LiDAR parameters for tree species classification. Int J Appl Earth Obs Geoinf 13:152–160CrossRefGoogle Scholar
  15. Heinzel J, Koch B (2012) Investigating multiple data sources for tree species classification in temperate forest and use for single tree delineation. Int J Appl Earth Obs Geoinf 18:101–110CrossRefGoogle Scholar
  16. Höfle B, Pfeifer N (2007) Correction of laser scanning intensity data: data and model-driven approaches. ISPRS J Photogramm Remote Sens 62:415–433CrossRefGoogle Scholar
  17. Höfle B, Hollaus M, Lehner H, Pfeifer N, Wagner W (2008) Area-based parameterization of forest structure using full-waveform airborne laser scanning data. In: Proceedings of the SilviLaser 2008, Edinburgh, p 9Google Scholar
  18. Höfle B, Hollaus M, Hagenauer J (2012) Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne lidar data. ISPRS J Photogramm Remote Sens 67:134–147CrossRefGoogle Scholar
  19. Hollaus M (2006) Large scale applications of airborne laser scanning for a complex mountainous environment. PhD thesis, Vienna University of TechnologyGoogle Scholar
  20. Hollaus M, Mücke W, Höfle B, Dorigo W, Pfeifer N, Wagner W, Bauerhansl C, Regner B (2009a) Tree species classification based on full-waveform airborne laser scanning data. In: Proceedings of the SilviLaser 2009, College Station, Texas, USA, pp 54–62Google Scholar
  21. Hollaus M, Wagner W, Schadauer K, Maier B, Gabler K (2009b) Growing stock estimation for alpine forests in austria: a robust lidar-based approach. Can J For Res 39:1387–1400CrossRefGoogle Scholar
  22. Hollaus M, Aubrecht C, Höfle B, Steinnocher K, Wagner W (2011) Roughness mapping on various vertical scales based on full-waveform airborne laser scanning data. Remote Sens 3:503–523CrossRefGoogle Scholar
  23. Holmgren J, Persson Å (2004) Identifying species of individual trees using airborne laser scanner. Remote Sens Environ 90:415–423CrossRefGoogle Scholar
  24. Hopkinson C, Chasmer L (2009) Testing LiDAR models of fractional cover across multiple forest ecozones. Remote Sens Environ 113:275–288CrossRefGoogle Scholar
  25. Hyyppä J, Hyyppä H, Leckie D, Gougeon F, Yu X, Maltamo M (2008) Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int J Remote Sens 29:1339–1366CrossRefGoogle Scholar
  26. Hyyppä J, Yu X, Hyyppä H, Vastaranta M, Holopainen M, Kukko A, Kaartinen H, Jaakkola A, Vaaja M, Koskinen J, Alho P (2012) Advances in forest inventory using airborne laser scanning. Remote Sens 4:1190–1207CrossRefGoogle Scholar
  27. Kaasalainen S, Hyyppä J, Litkey P, Hyyppä H, Ahokas E, Kukko A, Kaartinen H (2007) Radiometric calibration of ALS intensity. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W52):201–205Google Scholar
  28. Korpela I, Koskinen M, Vasander H, Holopainen M, Minkkinen K (2009) Airborne small-footprint discrete-return LiDAR data in the assessment of boreal mire surface patterns, vegetation, and habitats. For Ecol Manag 258:1549–1566CrossRefGoogle Scholar
  29. Kraus K, Pfeifer N (1998) Determination of terrain models in wooded areas with airborne laser scanner data. ISPRS J Photogramm Remote Sens 53:193–203CrossRefGoogle Scholar
  30. Kraus K, Briese C, Attwenger M, Pfeifer N (2004) Quality measures for digital terrain models. Int Arch Photogramm Remote Sens Spat Inf Sci 35(B2):113–118Google Scholar
  31. Kronseder K, Ballhorn U, Böhm V, Siegert F (2012) Above ground biomass estimation across forest types at different degradation levels in Central Kalimantan using LiDAR data. Int J Appl Earth Obs Geoinf 18:37–48CrossRefGoogle Scholar
  32. Lehner H, Briese C (2010) Radiometric calibration of full-waveform airborne laser scanning data based on natural surfaces. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7B):360–365Google Scholar
  33. Leica Geosystems (2013) www.leica-geosystems.com. Homepage of the company Leica Geosystems. Accessed Aug 2013
  34. Leiterer R, Morsdorf F, Schaepman M, Mücke W, Pfeifer N, Hollaus M (2012) Robust characterization of forest canopy structure types using full-waveform airborne laser scanning. In: Proceedings of the SilviLaser 2012, Vancouver, p 8Google Scholar
  35. Lin Y, Mills J (2009) Integration of full-waveform information into the airborne laser scanning data filtering process. Int Arch Photogramm Remote Sens Spat Inf Sci 38(3/W8):224–229Google Scholar
  36. Lindberg E, Olofsson K, Holmgren J, Olsson H (2012) Estimation of 3D vegetation structure from waveform and discrete return airborne laser scanning data. Remote Sens Environ 118:151–161CrossRefGoogle Scholar
  37. Liu Q, Li Z, Chen E, Pang Y, Li S, Tian X (2011) Feature analysis of lidar waveforms from forest canopies. Sci China Earth Sci 54:1206–1214CrossRefGoogle Scholar
  38. Luzum B, Starek J, Slatton K (2004) Normalizing ALSM intensities. Technical report Rep_2004-07-001, Geosensing Engineering and Mapping, Civil and Coastal Engineering Department, University of Florida, p 8Google Scholar
  39. MacLean GA, Krabill WB (1986) Gross-merchantable timber volume estimation using an airborne LiDAR system. Can Journal Remote Sens 12:7–18Google Scholar
  40. Mallet C, Bretar F (2009) Full-waveform topographic lidar: State-of-the-art. ISPRS J Photogramm Remote Sens 64:1–16CrossRefGoogle Scholar
  41. Mallet C, Lafarge F, Roux M, Soergel U, Bretar F, Heipke C (2010) A marked point process for modeling lidar waveforms. IEEE Trans Image Process 19:3204–3221PubMedCrossRefGoogle Scholar
  42. Mandlburger G, Briese C, Pfeifer N (2007) Progress in LiDAR sensor technology – chance and challenge for DTM generation and data administration. In: Proceedings of the 51st photogrammetric week, Stuttgart. Herbert Wichmann Verlag, pp 159–169Google Scholar
  43. Miura N, Jones SD (2010) Characterizing forest ecological structure using pulse types and heights of airborne laser scanning. Remote Sens Environ 114:1069–1076CrossRefGoogle Scholar
  44. Morsdorf F, Mårell A, Koetz B, Cassagne N, Pimont F, Rigolot E, Allgöwer B (2010) Discrimination of vegetation strata in a multi-layered mediterranean forest ecosystem using height and intensity information derived from airborne laser scanning. Remote Sens Environ 114:1403–1415CrossRefGoogle Scholar
  45. Mücke W (2008) Analysis of full-waveform airborne laser scanning data for the improvement of DTM generation. Master’s thesis, Institute of Photogrammetry and Remote Sensing, Vienna University of TechnologyGoogle Scholar
  46. Mücke W, Hollaus M (2011) Modelling light conditions in forests using airborne laser scanning data. In: Proceedings of the SilviLaser 2011, Tasmania, p 8Google Scholar
  47. Mücke W, Briese C, Hollaus M (2010) Terrain echo probability assignment based on full-waveform airborne laser scanning observables. Int Arch Photogramm Remote Sens Spat Inf Sci 38(7A):157–162Google Scholar
  48. Næsset E (1997) Estimating timber volume of forest stand using airborne laser scanner data. Remote Sens Environ 61:246–253CrossRefGoogle Scholar
  49. Næsset E (2002) Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens Environ 80:88–99CrossRefGoogle Scholar
  50. Næsset E (2007) Airborne laser scanning as a method in operational forest inventory: status of accuracy assessments accomplished in scandinavia. Scand J For Res 22:433–442CrossRefGoogle Scholar
  51. Neuenschwander AL, Magruder LA, Tyler M (2009) Landcover classification of small-footprint, fullwaveform lidar data. J Appl Remote Sens 3:033,544/1–033,544/13Google Scholar
  52. Nilsson M (1996) Estimation of tree heights and stand volume using an airborne lidar system. Remote Sens Environ 56:1–7CrossRefGoogle Scholar
  53. Optech Inc. (2013) www.leica-geosystems.com. Homepage of the company Optech Inc. Accessed Aug 2013
  54. Ørka HO, Næsset E, Bollandsås OM (2009) Classifying species of individual trees by intensity and structure features derived from airborne laser scanner data. Remote Sens Environ 113:1163–1174CrossRefGoogle Scholar
  55. Persson Å, Söderman U, Töpel J, Ahlberg S (2005) Visualization and analysis of full-waveform airborne laser scanner data. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W19): 103–108Google Scholar
  56. Pfeifer N, Stadler P, Briese C (2001) Derivation of digital terrain models in the SCOP++ environment. In: Torlegård K, Nelson J (eds) Proceedings of the OEEPE workshop on airborne laserscanning and interferometric SAR for detailed digital terrain models, StockholmGoogle Scholar
  57. Pfeifer N, Gorte B, Oude Elberink S (2004) Influences of vegetation on laser altimetry – analysis and correction approaches. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):283–287Google Scholar
  58. Reitberger J, Krzystek P, Stilla U (2008) Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees. Int J Remote Sens 29:1407–1431CrossRefGoogle Scholar
  59. Reitberger J, Schnörr C, Krzystek P, Stilla U (2009) 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J Photogramm Remote Sens 64:561–574CrossRefGoogle Scholar
  60. Riegl LMS (2013) www.riegl.com. Homepage of the company RIEGL laser measurement systems GmbH. Accessed Aug 2013
  61. Rossmann J, Schluse M, Buecken A, Krahwinkler P, Hoppen M (2009) Cost-efficient semi-automatic forest inventory integrating large scale remote sensing technologies with goal-oriented manual quality assurance processes. In: IUFRO division 4 – extending forest inventory and monitoring over space and time, Quebec CityGoogle Scholar
  62. Thiel KH, Wehr A (2004) Performance capabilities of laser scanners – an overview and measurement principle analysis. Int Arch Photogramm Remote Sens Spat Inf Sci 36(8/W2):14–18Google Scholar
  63. Tóvari D, Pfeifer N (2005) Segmentation based robust interpolation – a new approach to laser data filtering. Int Arch Photogramm Remote Sens Spat Inf Sci 36(3/W19):79–84Google Scholar
  64. Vaughn NR, Moskal LM, Turnblom EC (2012) Tree species detection accuracies using discrete point lidar and airborne waveform lidar. Remote Sens 4:377–403CrossRefGoogle Scholar
  65. Vetter M, Höfle B, Hollaus M, Gschöpf C, Mandlburger G, Pfeifer N, Wagner W (2011) Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data – a voxel based approach. Int Arch Photogramm Remote Sens Spat Inf Sci 38(5/W12):1–6Google Scholar
  66. Vosselman G (2000) Slope based filtering of laser altimetry data. Int Arch Photogramm Remote Sens 33(B3):935–942Google Scholar
  67. Wagner W, Ullrich A, Melzer T, Briese C, Kraus K (2004) From single-pulse to full-waveform airborne laser scanners: potential and practical challenges. Int Arch Photogramm Remote Sens Spat Inf Sci 35(Part B3):201–206Google Scholar
  68. Wagner W, Hollaus M, Briese C, Ducic V (2008) 3D vegetation mapping using small-footprint full-waveform airborne laser scanners. Int J Remote Sens 29:1433–1452CrossRefGoogle Scholar
  69. Wing BM, Ritchie MW, Boston K, Cohen WB, Gitelman A, Olsen MJ (2012) Prediction of understory vegetation cover with airborne lidar in an interior ponderosa pine forest. Remote Sens Environ 124:730–741CrossRefGoogle Scholar
  70. Yao W, Krzystek P, Heurich M (2012) Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data. Remote Sens Environ 123:368–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Markus Hollaus
    • 1
    Email author
  • Werner Mücke
    • 1
  • Andreas Roncat
    • 1
  • Norbert Pfeifer
    • 1
  • Christian Briese
    • 1
    • 2
  1. 1.Research Groups Photogrammetry and Remote Sensing, Department of Geodesy and GeoinformationVienna University of TechnologyViennaAustria
  2. 2.Ludwig Boltzmann Institute for Archaeological Prospection and Virtual ArchaeologyViennaAustria

Personalised recommendations